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Abstract 

This paper describes and empirically evaluates a 
biologically-inspired adaptation mechanism that al-
lows grid network services to autonomously adapt to 
dynamic environment changes in the network. Based 
on the observation that the immune system has ele-
gantly achieved autonomous adaptation, the proposed 
mechanism, the iNet artificial immune system, is de-
signed after the mechanisms behind how the immune 
system detects antigens (e.g. viruses) and specifically 
reacts to them. iNet models a set of environment condi-
tions (e.g. network traffic and resource availability) as 
an antigen and a behavior of grid services (e.g. migra-
tion and replication) as an antibody. iNet allows each 
grid service to autonomously sense its surrounding 
environment conditions (i.e. an antigen) to evaluate 
whether it adapts well to the sensed conditions, and if 
it does not, adaptively perform a behavior (i.e. an anti-
body) suitable for the sensed conditions. Empirical 
evaluation results show that iNet works efficiently in 
acceptable degree of accuracy and makes grid services 
adaptive to dynamic network environment.  

1. Introduction 
Grid systems are expected to be more autonomous 

and adaptive to dynamic changes in the network (e.g. 
changes in network traffic and resource availability) in 
order to improve user experience, expand application’s 
operational longevity and reduce maintenance cost [1, 
2, 3]. As inspiration for a new design paradigm for grid 
applications, we observe various biological systems 
have already achieved autonomy and adaptability. We 
believe if grid applications are designed after certain 
biological concepts and mechanisms, they may be able 
to increase their autonomy and adaptability. 

The NetSphere architecture applies key biological 
concepts and mechanisms to design grid applications. 
A grid application is modeled as a decentralized group 
of autonomous software agents. This is analogous to a 
bee colony (an application) consisting of multiple bees 
(agents). Each agent implements a functional service 
and follows biological behaviors such as migration, 

communication, replication, energy exchange and 
death. 

This paper addresses autonomous adaptability of 
grid applications (i.e. agents). The proposed adaptation 
mechanism, iNet, is designed after the mechanisms 
behind how the immune system detects antigens (e.g. 
viruses) and produces specific antibodies to kill them. 
iNet models a set of environment conditions (e.g. net-
work traffic) as an antigen and a behavior of agents as 
an antibody. iNet allows each agent to autonomously 
sense its local environment conditions (i.e. an antigen) 
to evaluate whether it adapts well to the sensed condi-
tions, and if it does not, adaptively perform a behavior 
(i.e. an antibody) suitable for the conditions. For exam-
ple, agents may invoke migration behavior for moving 
towards network hosts that accept a large number of 
user requests for their services. This leads to the 
adaptation of agent locations, and agents can reduce 
response time for users. Empirical evaluation results 
show iNet works efficiently in acceptable degree of 
accuracy and makes agents adaptive to dynamic net-
work environment. 

This paper is organized as follows. Section 2 over-
views the design of agents in the NetSphere architec-
ture. Section 3 describes the design of iNet. Section 4 
shows empirical evaluation results. Sections 5 and 6 
conclude with comparison with existing related work. 

2. NetSphere architecture 
In the NetSphere architecture, agents are designed 

based on the three principles described below [4]. 
Decentralization: Agents are decentralized. There 

are no central entities to control and coordinate agents 
(i.e. no directory servers and no resource managers). 
Decentralization allows grid services to be scalable and 
simple by avoiding performance bottleneck and any 
central coordination in deploying them [5, 6]. 

Autonomy: Agents are autonomous. Agents moni-
tor their local network environments and autonomously 
behave and interact without any interventions from/to 
other agents, platforms and human users. 
    Adaptability: Agents are adaptive to dynamic envi-
ronment conditions (e.g. user demands and resource 



availability). Each agent contains iNet, which allows it 
to adaptively behave to the current environment. 

Each agent is implemented as a Java object and runs 
on a NetSphere platform. The platform is also imple-
mented in Java and runs atop a Java VM on a network 
host [4]. Each agent consists of attributes, body and 
behaviors [4]. Attributes carry descriptive information 
regarding the agent (e.g. agent ID). The body imple-
ments a service the agent provides. For example, an 
agent may implement a genetic algorithm for an 
optimization problem, while another agent may imple-
ment a physical model for scientific simulations. 
Behaviors implement non-service related actions that 
are inherent to all agents. Although NetSphere defines 
nine standard agent behaviors [4], this paper focuses on 
four of them. 

Migration: Agents may move between platforms. 
Energy exchange and storage: Agents may receive 

and store energy in exchange for providing services to 
other agents or users. Agents may also expend energy 
for services that they receive from other agents, and for 
resources available on a platform (e.g. memory space). 

Communication: Agents may communicate with 
other agents for the purposes of, for example, request-
ing a service or exchanging energy. 

Lifecycle regulation: Agents may regulate their 
lifecycles. They may make their copies (replication) in 
response to higher energy level. They also may die as a 
result of energy starvation. If energy expenditure of an 
agent is not balanced with the energy gain, the agent 
will not be able to pay for the resources it needs, i.e., it 
dies from lack of energy. 

3. The iNet artificial immune system 
This section overviews how the natural immune 

system works (Section 3.1), and describes how the iNet 
artificial immune system is designed after the natural 
immune system (Section 3.2). 

3.1. Natural Immune System 

The immune system is an adaptive defense mecha-
nism to regulate the body against dynamic environ-
ment changes (e.g. antigen invasions). Through a num-
ber of interactions among various white blood cells 
(e.g. macrophages and lymphocytes) and molecules 
(e.g. antibodies), the immune system evokes two re-
sponses to antigens: innate and adaptive immune 
response. 

In the innate immune response, the immune system 
performs self/non-self discrimination to detect anti-
gens. This response is initiated by macrophages and T-
cells, a type of lymphocytes. Macrophages move 
around the body to ingest antigens and present them to 
T-cells so that T-cells can recognize them. T-cells are 
produced in thymus and trained through the negative 
selection process. In this process, thymus removes T-

cells that react with the body’s own (self) cells. The 
remaining T-cells are used as detectors to identify non-
self cells (i.e. antigens). When T-cells detect non-self 
cells, they secrete chemical signals to activate the sec-
ond immune response: adaptive immune response. 

In the adaptive immune response, the immune sys-
tem produces antibodies that specifically react and kill 
an antigen identified by T-cells. Antibodies form a net-
work structure and communicate with each other [7]. 
This network is formed with stimulation and suppres-
sion relationships among antibodies. Thus, the adaptive 
immune response is offered by multiple types of 
antibodies, although a single type of antibody (the best 
matched with an antigen) may play the dominant role. 
The immune network also helps to keep the quantita-
tive balance of antibodies. Through the stimulation and 
suppression interactions, the population of specific 
antibodies rapidly increases following the recognition 
of an antigen and, after eliminating the antigen, de-
creases again. Performed based on this self-regulation 
mechanism, the adaptive immune response is an emer-
gent product from many interactions among antibodies. 

3.2. Design and implementation of iNet 
The iNet artificial immune system consists of the 

environment evaluation (EE) facility and behavior 
selection (BS) facility (Figure 1) corresponding to the 
innate and adaptive immune response, respectively. EE 
allows each agent to continuously sense a set of current 
environment conditions as an antigen and examine 
whether it is self or non-self. A self antigen indicates 
that the agent adapts to the current environment condi-
tions well, and a non-self antigen indicates it does not. 
When EE detects a non-self antigen, EE activates BS 
(Figure 1). BS allows each agent to choose a behavior 
as an antibody that specifically matches with the de-
tected non-self antigen. 

3.2.1. Environment evaluation facility (EE) 

EE performs two steps: initialization and self/non-
self classification (Figure 2). The initialization step 
produces detectors that identify self and non-self anti-
gens (i.e. environment conditions). In iNet, an antigen 
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Figure 1. Organization of the iNet artificial immune system
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Figure 4. An Example Decision Tree 
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Figure 3. Initialization Step in EE 

(i.e. a set of environment conditions) is implemented as 
a feature vector. Each feature vector (X) consists of a 
set of features (F) and a class value (C). F contains a 
series of environment conditions. If an agent senses 
agent population on a local platform, resource utiliza-
tion on a local platform and workload (the number of 
user requests) on a local platform, a feature vector may 
be represented such as Xcurent=((Low: Agent popula-
tion, Low: Resource utilization, Heavy: Workload), C).  
C indicates whether a given antigen (i.e. a set of 
environment conditions) is self (0) or non-self (1). 

To evaluate whether an antigen (i.e. feature vector) 
is self or non-self, the initialization step produces 
detectors that identify them (Figure 2). This step is 
designed after the negative selection process in the 
immune system. In the initialization step, EE first gen-
erates feature vectors randomly, and separates them 
into self detectors, which closely match with self anti-
gens (feature vectors), and non-self detectors1, which 
do not closely match with self antigens (feature vec-
tors). This separation is performed via vector matching 
between randomly generated feature vectors and self 
antigens (feature vectors) that human users supply 
(Figure 3). Currently, EE uses the Euclidean vector 
matching algorithm. After vector matching, both self 
and non-self detectors are stored in a feature table 
(Figure 3)2.  The second step in EE performs self/non-self 
classification of environment conditions (Figure 2). It 
uses the detectors in a feature table to classify the cur-
rent environment conditions into self or non-self. The 
self/non-self classification step is performed with a 
decision tree built from detectors in a feature table. 
Figure 4 shows an example decision tree. EE starts to 
examine a set of given current environment conditions, 
Xcurrent, at the root of the decision tree. Each node in the 
tree specifies which feature is considered. Based on the 
value of the specified feature in Xcurrent, EE follows 

                                                           
1 Non-self detectors in iNet are equivalent to T-cells in the immune 
system.  
2 The immune system removes non-self detectors through negative 
selection process. However, in iNet, both self and non-self detectors 
are kept in a feature table to perform self/non-self classification.  

down along the branch indicating the value. This proc-
ess is repeated until EE reaches at the leaf of tree 
which notices the class value of Xcurrent. Once EE 
detects a non-self antigen, it activates BS immediately. 

The reasons for using decision tree as a classifier 
are ease of implementation and algorithmic efficiency. 
Since a decision tree is easy to understand and imple-
ment, iNet can maintain a lower barrier for developers 
to design adaptive grid applications. Also, a decision 
tree performs classification much faster than other 
algorithms such as clustering, support vector machine 
and Markov model algorithms [8, 9]. The efficiency of 
classification is one of the most important 
requirements in iNet because each agent periodically 
senses and classifies its surrounding environment 
conditions. 

3.2.2. Behavior selection facility (BS) 

Once EE classifies the current environment condi-
tions as a non-self antigen, it activates BS. BS selects 
an antibody (i.e. agent’s behavior) suitable for the de-
tected non-self antigen (i.e. environment conditions). 
Each antibody is structured as shown in Figure 5. It 
consists of Paratope, precondition under which it is 
selected (one of environment conditions), Behavior ID, 
one of agent behaviors, and Idiotope, relationships to 
other antibodies (one or more links). Antibodies are 
linked with each other using stimulation and suppres-
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Figure 2. iNet Adaptation Process 



sion relationships (see Section 3.1). Each antibody has 
its own concentration value corresponding to the num-
ber of the antibody. The value is used to prioritize anti-
bodies (behaviors) in behavior selection. BS identifies 
candidate antibodies (behaviors) suitable for a given 
non-self antigen (environment conditions), prioritizes 
them based on their concentration values, and selects 
the most suitable one from the candidates. When 
prioritizing antigens (behaviors), stimulation relation-
ships between them contribute to increase their 
concentration values, and suppression relationships 
contribute to decrease it. Each relationship has its own 
strength (affinity), which indicates the degree of 
stimulation or suppression. 

Figure 6 shows a generalized network of antibodies. 
The antibody i stimulates M antibodies and suppresses 
N antibodies. mji and mik denote affinity values between 
antibody j and i, and between antibody i and k. mi is an 
affinity value between an antigen and antibody i. The 
concentration of antibody i, denoted by ai, is calculated 
with the following equations. 
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In the equation (1), the first and second terms in a 

big bracket denote the stimulation and suppression 
from other antibodies. The affinity values between 
antibodies (i.e. mji and mik) are positive between 0 and 
1. mi is 1 when antibody i is stimulated directly by an 
antigen, otherwise 0. k denotes the dissipation factor 
representing the natural death of an antibody. This 
value is 0.1. The initial concentration value for every 
antibody, ai(0), is 0.01. The equation (2) is a sigmoid 

function used to squash the Ai(t) value between 0 and 
1. 

Every antibody’s concentration is calculated 200 
times repeatedly. This repeat count is obtained from a 
previous simulation experience [10, 11]. If no antibody 
exceeds a predefined threshold (0.7) during the 200 
calculation steps, the antibody whose concentration 
value is the highest is selected (i.e. winner-tales-all 
selection). If one or more antibodies’ concentration 
values exceed the threshold, an antibody is selected 
based on the probability proportional to the current 
concentrations (i.e. roulette-wheel selection). 

Figure 7 shows an example network of antibodies. 
It contains four antibodies, which represent commu-
nication behavior and migration behavior with two 
different policies. Antibody 1 represents the migration 
behavior invoked when resource availability is low on 
the local platform. Antibody 1 suppresses Antibody 3 
when it is stimulated (i.e. when resource availability is 
low on the local platform). Now, suppose that a (non-
self) antigen indicates (1) resource availability is low 
on the local platform, (2) network traffic is low on the 
local platform and (3) user location is close. This anti-
gen stimulates Antibodies 1, 2 and 4 simultaneously. 
Their population increases, and it is likely that Anti-
body 2’s concentration value becomes highest because 
Antibody 2 suppresses Antibody 4, which in turn sup-
presses Antibody 1. As a result, Antibody 2 (i.e. migra-
tion behavior) would be selected. 

4. Empirical evaluation results 
This section shows empirical evaluation results to 

examine the efficiency and accuracy of iNet and the 
adaptability of grid services (agents) developed with 
iNet. The efficiency and accuracy of iNet are evaluated 
with a Java 2 standard edition JVM on a Windows XP 
PC with a 2.5GHz Intel Celeron CPU and 1GB mem-
ory. The adaptability of agents is evaluated with a 
maximum of nine Windows XP PCs, each PC hosts a 
NetSphere platform on a Java2 standard edition JVM 
with 2.0GHz Intel Celeron CPU and 512MB memory. 
Those PCs are connected through 100Mbps Ethernet. 
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Figure 5. Antibody Structure 
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Figure 6. A Generalized Network of Antibodies 
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Figure 7. An Example Network of Antibodies 



4.1. Efficiency and accuracy of iNet 
The overhead of EE (TEE) includes the initialization 

time (Tinit) and classification time (Tclassify). Tinit consists 
of the time (t1) to generate self/non-self detectors, and 
the time (t2) to build a decision tree (i.e. TEE = Tinit + 
Tclassify). Table I shows that Tinit grows in proportion to 
the values of N (the size of a feature table), A (the num-
ber of features in each feature vector) and classification 
accuracy. For example, if there are four features in 
each feature vector and iNet is expected to achieve 
90% classification accuracy, EE needs to have 90 
detectors in a feature table and its initialization time is 
approximately 8.6 seconds. Please note that agents 
(grid applications) do not incur the initialization 
overhead at runtime because EE performs initialization 
before running agents.  

Table II shows Tclassify; how long it takes for EE to 
classify an antigen (a set of environment conditions) 
into self or non-self. Agents (grid applications) incur 
classification overhead at runtime. However, the over-
head is small enough and acceptable in most agents 
(applications).  

Figure 8 shows how EE is accurate to classify an 
antigen (a set of environment conditions) into self or 
non-self. Classification accuracy increases as the val-
ues of N and A grow. In general, EE can achieve 90% 
classification accuracy with small overhead depicted in 
Table II. There is a trade-off between efficiency (Tinit 
and Tclassify) and classification accuracy. Application 
developers need to determine the value of N, based on 

the results shown in Tables I and II, depending on the 
requirements of their applications. 

The overhead of BS (TBS) represents the time to se-
lect an antibody (behavior) suitable for a given antigen 
(a set of environment conditions). In BS, the number of 
antibodies (Ab) is determined by the number of fea-
tures in each feature vector (A), the number of distinct 
values of each feature (V) and the number of behaviors 
that each agent supports (B). According to the antibody 
structure (Figure 5), it will contain a value of one of 
features and one of behaviors. Therefore, the number 
of all possible types of antibodies would be calculated 
as Ab = (A*V)*B. As shown in Figure 9, the overhead 
of BS exponentially increases as Ab grows. 

Compared with Tinit and TBS, Tclassify is very small. 
For example, when A=5, EE requires Tinit=9.877sec at 
least for the initialization (Table I), and BS does 
TBS=135.41msec for behavior selection with a network 
of 75 antibodies (e.g. Ab=(5*3)*5) (Figure 9). TBS will 
be skipped if the classification spends Tclassify=3msec 
(Table II) and says a current environment condition is 
“Self”. EE works well to keep the overhead of iNet 
lightweight by eliminating TBS when necessary.  

4.2. Autonomous adaptability of agents 
In this experiment, the testbed network deploys four 

NetSphere platforms on four PCs (i.e. a platform on 
each PC) at the beginning of an experiment (0:00). 
Three hours later (at 3:00), five more PCs are added to 
the testbed network, and nine NetSphere platforms 
work on nine PCs from 3:00 to 7:00 (Figure 10). The 
platforms (and PCs) are connected with each other 
based on a grid (2x2 or 3x3) topology (Figure 10). 
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Table I. Initialization Time (Tinit) 
with A=3, DT could not achieve 90% classification accuracy.

N: recommended size of a feature table 
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Table II. Tclassify: Overhead of Classification 
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At the beginning of an experiment, a single web ser-
vice agent is randomly deployed on a platform. Each 
agent contains iNet that is configured with four behav-
iors (migration, communication, replication and death) 
and seven environment conditions (resource availabil-
ity on the local platform and a one-hop away remote 
platform, workload on the local platform and a one-
hop away platform, energy level, user location, the 
number of agents running on the local platform). A 
workload generator simulates a user (Figure 10). It 
generates HTTP request messages and randomly sends 
them to agents. It keeps track of the locations of 
agents. When an agent migrates, the agent notifies its 
new location to the workload generator3. The workload 
generator pays energy to an agent when it receives an 
HTTP response message from the agent. 

Figure 11 shows how agents autonomously adapt 
their throughput to workload changes by adjusting 
their population and locations. Figure 11 (1) shows the 
workload for agents (i.e. how many HTTP request 
messages a user generates and sends to agents). The 
workload keeps around 600 messages/min from 0:00 to 
1:00, spikes to approximately 12,000 messages/min at 
1:20, and drops to 600 messages/min at 5:20. Figure 11 
(2) shows how agents change their population against 
workload changes. As agents perform replication 
behavior in response to enough energy gain from a 
user, their population gradually grows. This allows 
agents to process more HTTP request messages from a 
user. Also, agents migrate to platforms where resource 
availability is higher. This prevents agents to exces-
sively crowd on a single platform, and contributes to 
evenly distribute agents over platforms. As shown in 
Figure 11 (3), agents autonomously increase their 
throughput as they perform replication and migration 
behaviors. The agent throughput represents how many 
HTTP response messages agents send back to a user. 

From 2:20 to 3:00, the agent throughput does not in-
crease although a user generates high workload. The 
agent population does not increase either. In this pe-
riod, agents cannot replicate themselves because a 
number of agents (approx 35 agents) work on four plat-
forms and resource availability is very low on the plat-
forms. When five more platforms (PCs) enter to the 
testbed network at 3:00, agents migrate to the new plat-
forms, where resource availability is higher, and repli-
cate themselves on the new platforms. After that, the 
agent population and throughput increase again to 
process HTTP request messages from a user (see Fig-
ure 11).  

When the workload drops at 5:00, many agents can-
not gain enough energy to keep living because they 

                                                           
3 In principle, agents are decentralized as described in Section 2. 
However, for simplicity, the workload generator in this measurement 
plays a role of a directory that maintains the locations of agents. 

cannot receive enough HTTP request messages from a 
user. Due to energy starvation, some of agents die, 
resulting in a drop of agent population. This prevents 
unnecessary agents from staying in the network and 
consuming resources.  

5. Related work 
Artificial immune systems have been proposed and 

used in various application domains such as anomaly 
detection [12] and pattern recognition [13]. [12] mainly 
focuses on the generation of detectors for self/non-self 
classification and improves the negative selection proc-
ess of the artificial immune system. [13] focuses on the 
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Figure 11. (1) generated workload, (2) the number of agents,
(3) throughput of agents. 
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accuracy for the matchmaking of an antigen and anti-
body. On the other hand, this paper proposes an artifi-
cial immune system to improve autonomous adaptabil-
ity in grid network services. To the best of our knowl-
edge, this work is the first attempt to apply an artificial 
immune system into the autonomic adaptation domain. 

Similar work has been proposed in Organic Grid 
[14] project. [14] attempts to the decentralized task 
scheduling for large-scale computation on grid 
environment over the Internet. Similar to iNet, mobile 
agents autonomously executes their services (e.g. com-
puting subtasks) on the platform embedded in each 
host and perform their replication behavior to achieve 
their objectives (e.g. compute as fast as possible). Yet, 
iNet focuses on the grid service adaptation. Agents 
consider more behaviors for adaptation, and through 
those various adaptation decisions, the high adaptabil-
ity of grid network services (i.e. agents) is achieved. 

There are several research efforts that allow net-
work systems to adapt to application and end-user 
requirements with a technique of runtime component 
replacement. For example, [15, 16] can dynamically 
replace running components (e.g. byte code) with oth-
ers. It is possible to change the functional aspect of 
components. iNet does not modify the body (functional 
part) of agents at runtime; it focuses on adapting the 
behavior of agents (non-functional part) in order to 
minimize runtime adaptation overhead. The overhead 
should be cheap because iNet assumes each agent often 
performs its behavior to keep adapting to dynamically 
changing environment while it should be considerably 
expensive to perform even a single runtime component 
replacement. Another difference is that [15, 16] 
assumes a centralized network architecture where a 
centralized server collects environment conditions 
from each component to make replacement decisions. 
In contrast, iNet assumes a decentralized network 
architecture where each agent monitors its surrounding 
environment and makes adaptation decisions. 

6. Concluding remarks 
This paper describes and empirically evaluates a 

biologically-inspired mechanism that allows grid ser-
vices to autonomously adapt to dynamic changes in the 
network. The proposed adaptation mechanism, called 
the iNet artificial immune system, allows each grid 
service to autonomously sense its local environment 
conditions to evaluate whether it adapts well to the 
conditions, and if it does not, adaptively perform a 
behavior suitable for the conditions. Empirical evalua-
tion results show that iNet works efficiently with high 
degree of accuracy and makes grid services adaptive. 
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