
An Autonomic Adaptation Mechanism for Decentralized Grid Applications

Chonho Lee and Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
{chonho, jxs} @ cs.umb.edu

Abstract

This paper describes and empirically evaluates a
biologically-inspired adaptation mechanism that al-
lows grid network services to autonomously adapt to
dynamic environment changes in the network. Based
on the observation that the immune system has ele-
gantly achieved autonomous adaptation, the proposed
mechanism, the iNet artificial immune system, is de-
signed after the mechanisms behind how the immune
system detects antigens (e.g. viruses) and specifically
reacts to them. iNet models a set of environment condi-
tions (e.g. network traffic and resource availability) as
an antigen and a behavior of grid services (e.g. migra-
tion and replication) as an antibody. iNet allows each
grid service to autonomously sense its surrounding
environment conditions (i.e. an antigen) to evaluate
whether it adapts well to the sensed conditions, and if
it does not, adaptively perform a behavior (i.e. an anti-
body) suitable for the sensed conditions. Empirical
evaluation results show that iNet works efficiently in
acceptable degree of accuracy and makes grid services
adaptive to dynamic network environment.

1. Introduction
Grid systems are expected to be more autonomous

and adaptive to dynamic changes in the network (e.g.
changes in network traffic and resource availability) in
order to improve user experience, expand application’s
operational longevity and reduce maintenance cost [1,
2, 3]. As inspiration for a new design paradigm for grid
applications, we observe various biological systems
have already achieved autonomy and adaptability. We
believe if grid applications are designed after certain
biological concepts and mechanisms, they may be able
to increase their autonomy and adaptability.

The NetSphere architecture applies key biological
concepts and mechanisms to design grid applications.
A grid application is modeled as a decentralized group
of autonomous software agents. This is analogous to a
bee colony (an application) consisting of multiple bees
(agents). Each agent implements a functional service
and follows biological behaviors such as migration,

communication, replication, energy exchange and
death.

This paper addresses autonomous adaptability of
grid applications (i.e. agents). The proposed adaptation
mechanism, iNet, is designed after the mechanisms
behind how the immune system detects antigens (e.g.
viruses) and produces specific antibodies to kill them.
iNet models a set of environment conditions (e.g. net-
work traffic) as an antigen and a behavior of agents as
an antibody. iNet allows each agent to autonomously
sense its local environment conditions (i.e. an antigen)
to evaluate whether it adapts well to the sensed condi-
tions, and if it does not, adaptively perform a behavior
(i.e. an antibody) suitable for the conditions. For exam-
ple, agents may invoke migration behavior for moving
towards network hosts that accept a large number of
user requests for their services. This leads to the
adaptation of agent locations, and agents can reduce
response time for users. Empirical evaluation results
show iNet works efficiently in acceptable degree of
accuracy and makes agents adaptive to dynamic net-
work environment.

This paper is organized as follows. Section 2 over-
views the design of agents in the NetSphere architec-
ture. Section 3 describes the design of iNet. Section 4
shows empirical evaluation results. Sections 5 and 6
conclude with comparison with existing related work.

2. NetSphere architecture
In the NetSphere architecture, agents are designed

based on the three principles described below [4].
Decentralization: Agents are decentralized. There

are no central entities to control and coordinate agents
(i.e. no directory servers and no resource managers).
Decentralization allows grid services to be scalable and
simple by avoiding performance bottleneck and any
central coordination in deploying them [5, 6].

Autonomy: Agents are autonomous. Agents moni-
tor their local network environments and autonomously
behave and interact without any interventions from/to
other agents, platforms and human users.
 Adaptability: Agents are adaptive to dynamic envi-
ronment conditions (e.g. user demands and resource

availability). Each agent contains iNet, which allows it
to adaptively behave to the current environment.

Each agent is implemented as a Java object and runs
on a NetSphere platform. The platform is also imple-
mented in Java and runs atop a Java VM on a network
host [4]. Each agent consists of attributes, body and
behaviors [4]. Attributes carry descriptive information
regarding the agent (e.g. agent ID). The body imple-
ments a service the agent provides. For example, an
agent may implement a genetic algorithm for an
optimization problem, while another agent may imple-
ment a physical model for scientific simulations.
Behaviors implement non-service related actions that
are inherent to all agents. Although NetSphere defines
nine standard agent behaviors [4], this paper focuses on
four of them.

Migration: Agents may move between platforms.
Energy exchange and storage: Agents may receive

and store energy in exchange for providing services to
other agents or users. Agents may also expend energy
for services that they receive from other agents, and for
resources available on a platform (e.g. memory space).

Communication: Agents may communicate with
other agents for the purposes of, for example, request-
ing a service or exchanging energy.

Lifecycle regulation: Agents may regulate their
lifecycles. They may make their copies (replication) in
response to higher energy level. They also may die as a
result of energy starvation. If energy expenditure of an
agent is not balanced with the energy gain, the agent
will not be able to pay for the resources it needs, i.e., it
dies from lack of energy.

3. The iNet artificial immune system
This section overviews how the natural immune

system works (Section 3.1), and describes how the iNet
artificial immune system is designed after the natural
immune system (Section 3.2).

3.1. Natural Immune System

The immune system is an adaptive defense mecha-
nism to regulate the body against dynamic environ-
ment changes (e.g. antigen invasions). Through a num-
ber of interactions among various white blood cells
(e.g. macrophages and lymphocytes) and molecules
(e.g. antibodies), the immune system evokes two re-
sponses to antigens: innate and adaptive immune
response.

In the innate immune response, the immune system
performs self/non-self discrimination to detect anti-
gens. This response is initiated by macrophages and T-
cells, a type of lymphocytes. Macrophages move
around the body to ingest antigens and present them to
T-cells so that T-cells can recognize them. T-cells are
produced in thymus and trained through the negative
selection process. In this process, thymus removes T-

cells that react with the body’s own (self) cells. The
remaining T-cells are used as detectors to identify non-
self cells (i.e. antigens). When T-cells detect non-self
cells, they secrete chemical signals to activate the sec-
ond immune response: adaptive immune response.

In the adaptive immune response, the immune sys-
tem produces antibodies that specifically react and kill
an antigen identified by T-cells. Antibodies form a net-
work structure and communicate with each other [7].
This network is formed with stimulation and suppres-
sion relationships among antibodies. Thus, the adaptive
immune response is offered by multiple types of
antibodies, although a single type of antibody (the best
matched with an antigen) may play the dominant role.
The immune network also helps to keep the quantita-
tive balance of antibodies. Through the stimulation and
suppression interactions, the population of specific
antibodies rapidly increases following the recognition
of an antigen and, after eliminating the antigen, de-
creases again. Performed based on this self-regulation
mechanism, the adaptive immune response is an emer-
gent product from many interactions among antibodies.

3.2. Design and implementation of iNet
The iNet artificial immune system consists of the

environment evaluation (EE) facility and behavior
selection (BS) facility (Figure 1) corresponding to the
innate and adaptive immune response, respectively. EE
allows each agent to continuously sense a set of current
environment conditions as an antigen and examine
whether it is self or non-self. A self antigen indicates
that the agent adapts to the current environment condi-
tions well, and a non-self antigen indicates it does not.
When EE detects a non-self antigen, EE activates BS
(Figure 1). BS allows each agent to choose a behavior
as an antibody that specifically matches with the de-
tected non-self antigen.

3.2.1. Environment evaluation facility (EE)

EE performs two steps: initialization and self/non-
self classification (Figure 2). The initialization step
produces detectors that identify self and non-self anti-
gens (i.e. environment conditions). In iNet, an antigen

attributes

Agent

body

behaviors

Self environment
condition

Non-self environment
condition

Behavior
(antibody)

Environment Evaluation Behavior Selection

Network of
antibodies

A set of environment
conditions (antigen)

Activation

attributes

Agent

body

behaviors

Self environment
condition

Non-self environment
condition

Behavior
(antibody)

Environment Evaluation Behavior Selection

Network of
antibodies

A set of environment
conditions (antigen)

Activation

Figure 1. Organization of the iNet artificial immune system

F1

F3

F3 F2 F2

high low

high low heavy light

heavy light high low

1 0 1 0 1 0

high low

F2

high low

heavy light

1 0 1 0 1 011

F1F1

F3F3

F3F3 F2F2 F2F2

high low

high low heavy light

heavy light high low

1 0 1 0 1 0

high low

F2

high low

heavy light

1 0 1 0 1 011

Sample of a current environment condition
On a local platform

F1: # of agents
F2: Resource utilization
F3: Workload

Xcurrent

0 implies that

Sample of a current environment condition
On a local platform

F1: # of agents
F2: Resource utilization
F3: Workload

= (Low, Low, Heavy, “unknown”)

Xcurrent.class = “Self”

F1

F3

F3 F2 F2

high low

high low heavy light

heavy light high low

1 0 1 0 1 0

high low

F2

high low

heavy light

1 0 1 0 1 011

F1F1

F3F3

F3F3 F2F2 F2F2

high low

high low heavy light

heavy light high low

1 0 1 0 1 0

high low

F2

high low

heavy light

1 0 1 0 1 011

F1F1

F3F3

F3F3 F2F2 F2F2

high low

high low heavy light

heavy light high low

1 0 1 0 1 0

high low

F2

high low

heavy light

1 0 1 0 1 011

F1F1

F3F3

F3F3 F2F2 F2F2

high low

high low heavy light

heavy light high low

1 0 1 0 1 0

high low

F2

high low

heavy light

1 0 1 0 1 011

Sample of a current environment condition
On a local platform

F1: # of agents
F2: Resource utilization
F3: Workload

Xcurrent

0 implies that

Sample of a current environment condition
On a local platform

F1: # of agents
F2: Resource utilization
F3: Workload

= (Low, Low, Heavy, “unknown”)

Xcurrent.class = “Self”

Figure 4. An Example Decision Tree

Randomly generated
environment condition

(X)

Self detector
(Ds)

User defined Self
environment condition (S)

Non-self
detector (Dn)Distance (X, S)

> T
=< T

T: threshold

D3 0 (Self)

D1 0 (Self)
D2 1 (Non-self)

….

F1 F2 F3 …. Class

Features

Feature Table

Feature Vectors
(detectors)

Randomly generated
environment condition

(X)

Self detector
(Ds)

User defined Self
environment condition (S)

Non-self
detector (Dn)Distance (X, S)

> T
=< T

T: threshold

D3 0 (Self)

D1 0 (Self)
D2 1 (Non-self)

….

F1 F2 F3 …. Class

D3 0 (Self)

D1 0 (Self)
D2 1 (Non-self)

….

F1 F2 F3 …. Class

Features

Feature Table

Feature Vectors
(detectors)

Figure 3. Initialization Step in EE

(i.e. a set of environment conditions) is implemented as
a feature vector. Each feature vector (X) consists of a
set of features (F) and a class value (C). F contains a
series of environment conditions. If an agent senses
agent population on a local platform, resource utiliza-
tion on a local platform and workload (the number of
user requests) on a local platform, a feature vector may
be represented such as Xcurent=((Low: Agent popula-
tion, Low: Resource utilization, Heavy: Workload), C).
C indicates whether a given antigen (i.e. a set of
environment conditions) is self (0) or non-self (1).

To evaluate whether an antigen (i.e. feature vector)
is self or non-self, the initialization step produces
detectors that identify them (Figure 2). This step is
designed after the negative selection process in the
immune system. In the initialization step, EE first gen-
erates feature vectors randomly, and separates them
into self detectors, which closely match with self anti-
gens (feature vectors), and non-self detectors1, which
do not closely match with self antigens (feature vec-
tors). This separation is performed via vector matching
between randomly generated feature vectors and self
antigens (feature vectors) that human users supply
(Figure 3). Currently, EE uses the Euclidean vector
matching algorithm. After vector matching, both self
and non-self detectors are stored in a feature table
(Figure 3)2. The second step in EE performs self/non-self
classification of environment conditions (Figure 2). It
uses the detectors in a feature table to classify the cur-
rent environment conditions into self or non-self. The
self/non-self classification step is performed with a
decision tree built from detectors in a feature table.
Figure 4 shows an example decision tree. EE starts to
examine a set of given current environment conditions,
Xcurrent, at the root of the decision tree. Each node in the
tree specifies which feature is considered. Based on the
value of the specified feature in Xcurrent, EE follows

1 Non-self detectors in iNet are equivalent to T-cells in the immune
system.
2 The immune system removes non-self detectors through negative
selection process. However, in iNet, both self and non-self detectors
are kept in a feature table to perform self/non-self classification.

down along the branch indicating the value. This proc-
ess is repeated until EE reaches at the leaf of tree
which notices the class value of Xcurrent. Once EE
detects a non-self antigen, it activates BS immediately.

The reasons for using decision tree as a classifier
are ease of implementation and algorithmic efficiency.
Since a decision tree is easy to understand and imple-
ment, iNet can maintain a lower barrier for developers
to design adaptive grid applications. Also, a decision
tree performs classification much faster than other
algorithms such as clustering, support vector machine
and Markov model algorithms [8, 9]. The efficiency of
classification is one of the most important
requirements in iNet because each agent periodically
senses and classifies its surrounding environment
conditions.

3.2.2. Behavior selection facility (BS)

Once EE classifies the current environment condi-
tions as a non-self antigen, it activates BS. BS selects
an antibody (i.e. agent’s behavior) suitable for the de-
tected non-self antigen (i.e. environment conditions).
Each antibody is structured as shown in Figure 5. It
consists of Paratope, precondition under which it is
selected (one of environment conditions), Behavior ID,
one of agent behaviors, and Idiotope, relationships to
other antibodies (one or more links). Antibodies are
linked with each other using stimulation and suppres-

Non-self
environment
condition

Environment Evaluation Behavior Selection

Initialization
(create detectors)

Environment Sensing

Given condition has
been memorized?

NO

YES

Self
environment

condition

Activation

Self/Non-self
Classification of

Environment
Condition

Concentration
Calculation

Behavior Selection
Non-self
environment
condition

Environment Evaluation Behavior Selection

Initialization
(create detectors)

Environment Sensing

Given condition has
been memorized?

NO

YES

Self
environment

condition

Activation

Self/Non-self
Classification of

Environment
Condition

Concentration
Calculation

Behavior Selection

Figure 2. iNet Adaptation Process

sion relationships (see Section 3.1). Each antibody has
its own concentration value corresponding to the num-
ber of the antibody. The value is used to prioritize anti-
bodies (behaviors) in behavior selection. BS identifies
candidate antibodies (behaviors) suitable for a given
non-self antigen (environment conditions), prioritizes
them based on their concentration values, and selects
the most suitable one from the candidates. When
prioritizing antigens (behaviors), stimulation relation-
ships between them contribute to increase their
concentration values, and suppression relationships
contribute to decrease it. Each relationship has its own
strength (affinity), which indicates the degree of
stimulation or suppression.

Figure 6 shows a generalized network of antibodies.
The antibody i stimulates M antibodies and suppresses
N antibodies. mji and mik denote affinity values between
antibody j and i, and between antibody i and k. mi is an
affinity value between an antigen and antibody i. The
concentration of antibody i, denoted by ai, is calculated
with the following equations.

(2)
))(5.0exp(1

1
)(

(1) ...)(
1

)(
1

)(
1

1)(

tiA
t

i
a

t
i

akim
M

k
tkaikm

M
tja

N

j
jim

Ndt

tidA

−+
=

−+∑
=

⋅−⋅∑
=

= 










In the equation (1), the first and second terms in a

big bracket denote the stimulation and suppression
from other antibodies. The affinity values between
antibodies (i.e. mji and mik) are positive between 0 and
1. mi is 1 when antibody i is stimulated directly by an
antigen, otherwise 0. k denotes the dissipation factor
representing the natural death of an antibody. This
value is 0.1. The initial concentration value for every
antibody, ai(0), is 0.01. The equation (2) is a sigmoid

function used to squash the Ai(t) value between 0 and
1.

Every antibody’s concentration is calculated 200
times repeatedly. This repeat count is obtained from a
previous simulation experience [10, 11]. If no antibody
exceeds a predefined threshold (0.7) during the 200
calculation steps, the antibody whose concentration
value is the highest is selected (i.e. winner-tales-all
selection). If one or more antibodies’ concentration
values exceed the threshold, an antibody is selected
based on the probability proportional to the current
concentrations (i.e. roulette-wheel selection).

Figure 7 shows an example network of antibodies.
It contains four antibodies, which represent commu-
nication behavior and migration behavior with two
different policies. Antibody 1 represents the migration
behavior invoked when resource availability is low on
the local platform. Antibody 1 suppresses Antibody 3
when it is stimulated (i.e. when resource availability is
low on the local platform). Now, suppose that a (non-
self) antigen indicates (1) resource availability is low
on the local platform, (2) network traffic is low on the
local platform and (3) user location is close. This anti-
gen stimulates Antibodies 1, 2 and 4 simultaneously.
Their population increases, and it is likely that Anti-
body 2’s concentration value becomes highest because
Antibody 2 suppresses Antibody 4, which in turn sup-
presses Antibody 1. As a result, Antibody 2 (i.e. migra-
tion behavior) would be selected.

4. Empirical evaluation results
This section shows empirical evaluation results to

examine the efficiency and accuracy of iNet and the
adaptability of grid services (agents) developed with
iNet. The efficiency and accuracy of iNet are evaluated
with a Java 2 standard edition JVM on a Windows XP
PC with a 2.5GHz Intel Celeron CPU and 1GB mem-
ory. The adaptability of agents is evaluated with a
maximum of nine Windows XP PCs, each PC hosts a
NetSphere platform on a Java2 standard edition JVM
with 2.0GHz Intel Celeron CPU and 512MB memory.
Those PCs are connected through 100Mbps Ethernet.

Relationships to other
antibodies (behaviors)

Precondition
under which this

antibody is selected

Agent
Behavior ID

Antibody

BehaviorParatope Idiotope

Relationships to other
antibodies (behaviors)

Precondition
under which this

antibody is selected

Agent
Behavior ID

Antibody

BehaviorParatope Idiotope

Figure 5. Antibody Structure

preconditionbehavior

Antibody i
precondition behavior

precondition behavior

precondition behavior

Antibody 1

Antibody k

Antibody M

precondition behavior

precondition behavior

precondition behavior

Antibody 1

Antibody j

Antibody N

Antigen

mi1

miM

mik

m1i

mNi

mji

mi

…
…

…
…

stimulation suppression

preconditionbehavior

Antibody i
precondition behaviorprecondition behaviorbehavior

precondition behaviorprecondition behaviorbehavior

precondition behaviorprecondition behaviorbehavior

Antibody 1

Antibody k

Antibody M

precondition behaviorbehavior

precondition behaviorprecondition behaviorbehavior

precondition behaviorprecondition behaviorbehavior

Antibody 1

Antibody j

Antibody N

AntigenAntigenAntigen

mi1

miM

mik

m1i

mNi

mji

mi

…
…

…
…

stimulation suppression

Figure 6. A Generalized Network of Antibodies

Antibody 3

Remote RA
Low

Comm
Service

Local RA
Low

Migration
Higher RA

Antibody 1

User Loc
Close

Migration
Toward User

Local Traffic
Heavy

Comm
Service

Antibody 4

stimulation suppression

Antibody 2

Antibody 3

Remote RA
Low

Comm
Service

Local RA
Low

Migration
Higher RA

Antibody 1

User Loc
Close

Migration
Toward User

Local Traffic
Heavy

Comm
Service

Antibody 4

stimulation suppression

Antibody 2

Figure 7. An Example Network of Antibodies

4.1. Efficiency and accuracy of iNet
The overhead of EE (TEE) includes the initialization

time (Tinit) and classification time (Tclassify). Tinit consists
of the time (t1) to generate self/non-self detectors, and
the time (t2) to build a decision tree (i.e. TEE = Tinit +
Tclassify). Table I shows that Tinit grows in proportion to
the values of N (the size of a feature table), A (the num-
ber of features in each feature vector) and classification
accuracy. For example, if there are four features in
each feature vector and iNet is expected to achieve
90% classification accuracy, EE needs to have 90
detectors in a feature table and its initialization time is
approximately 8.6 seconds. Please note that agents
(grid applications) do not incur the initialization
overhead at runtime because EE performs initialization
before running agents.

Table II shows Tclassify; how long it takes for EE to
classify an antigen (a set of environment conditions)
into self or non-self. Agents (grid applications) incur
classification overhead at runtime. However, the over-
head is small enough and acceptable in most agents
(applications).

Figure 8 shows how EE is accurate to classify an
antigen (a set of environment conditions) into self or
non-self. Classification accuracy increases as the val-
ues of N and A grow. In general, EE can achieve 90%
classification accuracy with small overhead depicted in
Table II. There is a trade-off between efficiency (Tinit
and Tclassify) and classification accuracy. Application
developers need to determine the value of N, based on

the results shown in Tables I and II, depending on the
requirements of their applications.

The overhead of BS (TBS) represents the time to se-
lect an antibody (behavior) suitable for a given antigen
(a set of environment conditions). In BS, the number of
antibodies (Ab) is determined by the number of fea-
tures in each feature vector (A), the number of distinct
values of each feature (V) and the number of behaviors
that each agent supports (B). According to the antibody
structure (Figure 5), it will contain a value of one of
features and one of behaviors. Therefore, the number
of all possible types of antibodies would be calculated
as Ab = (A*V)*B. As shown in Figure 9, the overhead
of BS exponentially increases as Ab grows.

Compared with Tinit and TBS, Tclassify is very small.
For example, when A=5, EE requires Tinit=9.877sec at
least for the initialization (Table I), and BS does
TBS=135.41msec for behavior selection with a network
of 75 antibodies (e.g. Ab=(5*3)*5) (Figure 9). TBS will
be skipped if the classification spends Tclassify=3msec
(Table II) and says a current environment condition is
“Self”. EE works well to keep the overhead of iNet
lightweight by eliminating TBS when necessary.

4.2. Autonomous adaptability of agents
In this experiment, the testbed network deploys four

NetSphere platforms on four PCs (i.e. a platform on
each PC) at the beginning of an experiment (0:00).
Three hours later (at 3:00), five more PCs are added to
the testbed network, and nine NetSphere platforms
work on nine PCs from 3:00 to 7:00 (Figure 10). The
platforms (and PCs) are connected with each other
based on a grid (2x2 or 3x3) topology (Figure 10).

60
65
70
75
80
85
90
95

100

10 70 130 190 250 310 370 430 490 550 610
of feature vectors (detectors) in a feature table

A
cc

ur
ac

y
(%

)

A = 4
A = 5
A = 6

Figure 8. Classification Accuracy when A=4, 5, and 6

Ab = 75
TBS=135.41

0
25
50
75

100
125
150
175
200

10 20 30 40 50 60 70 80 90
of Antibodies

Ti
m

e
(m

se
c)

Figure 9. TBS, Overhead of BS facility,

i.e. time for selecting a behavior

Table I. Initialization Time (Tinit)
with A=3, DT could not achieve 90% classification accuracy.

N: recommended size of a feature table

3 4 5
t1 0.0015 0.0016 0.0034
t2 2.21 3.913 9.874
Total 2.212 3.915 9.877

20 40 75
t1 0.0015 0.0031 0.0094
t2 2.767 7.121 16.101
Total 2.769 7.124 16.111

25 70 150
t1 - 0.0034 0.0141
t2 - 8.748 18.528
Total - 8.751 18.542

- 90 225Size of feature table (N)

80%

85%

90%
Tinit (sec)

Size of feature table (N)

of features (A)

Tinit (sec)

Tinit (sec)

Size of feature table (N)

Table II. Tclassify: Overhead of Classification

of features (A) 3 4 5 6 … 10
Tclassify (msec) 1.5 3.0 3.0 3.0 4.5

At the beginning of an experiment, a single web ser-
vice agent is randomly deployed on a platform. Each
agent contains iNet that is configured with four behav-
iors (migration, communication, replication and death)
and seven environment conditions (resource availabil-
ity on the local platform and a one-hop away remote
platform, workload on the local platform and a one-
hop away platform, energy level, user location, the
number of agents running on the local platform). A
workload generator simulates a user (Figure 10). It
generates HTTP request messages and randomly sends
them to agents. It keeps track of the locations of
agents. When an agent migrates, the agent notifies its
new location to the workload generator3. The workload
generator pays energy to an agent when it receives an
HTTP response message from the agent.

Figure 11 shows how agents autonomously adapt
their throughput to workload changes by adjusting
their population and locations. Figure 11 (1) shows the
workload for agents (i.e. how many HTTP request
messages a user generates and sends to agents). The
workload keeps around 600 messages/min from 0:00 to
1:00, spikes to approximately 12,000 messages/min at
1:20, and drops to 600 messages/min at 5:20. Figure 11
(2) shows how agents change their population against
workload changes. As agents perform replication
behavior in response to enough energy gain from a
user, their population gradually grows. This allows
agents to process more HTTP request messages from a
user. Also, agents migrate to platforms where resource
availability is higher. This prevents agents to exces-
sively crowd on a single platform, and contributes to
evenly distribute agents over platforms. As shown in
Figure 11 (3), agents autonomously increase their
throughput as they perform replication and migration
behaviors. The agent throughput represents how many
HTTP response messages agents send back to a user.

From 2:20 to 3:00, the agent throughput does not in-
crease although a user generates high workload. The
agent population does not increase either. In this pe-
riod, agents cannot replicate themselves because a
number of agents (approx 35 agents) work on four plat-
forms and resource availability is very low on the plat-
forms. When five more platforms (PCs) enter to the
testbed network at 3:00, agents migrate to the new plat-
forms, where resource availability is higher, and repli-
cate themselves on the new platforms. After that, the
agent population and throughput increase again to
process HTTP request messages from a user (see Fig-
ure 11).

When the workload drops at 5:00, many agents can-
not gain enough energy to keep living because they

3 In principle, agents are decentralized as described in Section 2.
However, for simplicity, the workload generator in this measurement
plays a role of a directory that maintains the locations of agents.

cannot receive enough HTTP request messages from a
user. Due to energy starvation, some of agents die,
resulting in a drop of agent population. This prevents
unnecessary agents from staying in the network and
consuming resources.

5. Related work
Artificial immune systems have been proposed and

used in various application domains such as anomaly
detection [12] and pattern recognition [13]. [12] mainly
focuses on the generation of detectors for self/non-self
classification and improves the negative selection proc-
ess of the artificial immune system. [13] focuses on the

0
10
20
30
40
50
60
70
80
90

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00

Time

of

 a
ge

nt
s

0

2000
4000
6000

8000
10000

12000

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00

Time

w
or

kl
oa

d
(#

 o
f m

sg
s/m

in
)

0

2000
4000

6000
8000

10000
12000

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00
Time

Th
ro

ug
hp

ut
 (#

 o
f m

sg
s/

m
in

)

Figure 11. (1) generated workload, (2) the number of agents,
(3) throughput of agents.

Workload
generator

4 PCs available from 0:00 to 3:00

9 PCs available from 3:00 to 7:00

Workload
generator

4 PCs available from 0:00 to 3:00

9 PCs available from 3:00 to 7:00

Figure 10. Testbed Architecture

accuracy for the matchmaking of an antigen and anti-
body. On the other hand, this paper proposes an artifi-
cial immune system to improve autonomous adaptabil-
ity in grid network services. To the best of our knowl-
edge, this work is the first attempt to apply an artificial
immune system into the autonomic adaptation domain.

Similar work has been proposed in Organic Grid
[14] project. [14] attempts to the decentralized task
scheduling for large-scale computation on grid
environment over the Internet. Similar to iNet, mobile
agents autonomously executes their services (e.g. com-
puting subtasks) on the platform embedded in each
host and perform their replication behavior to achieve
their objectives (e.g. compute as fast as possible). Yet,
iNet focuses on the grid service adaptation. Agents
consider more behaviors for adaptation, and through
those various adaptation decisions, the high adaptabil-
ity of grid network services (i.e. agents) is achieved.

There are several research efforts that allow net-
work systems to adapt to application and end-user
requirements with a technique of runtime component
replacement. For example, [15, 16] can dynamically
replace running components (e.g. byte code) with oth-
ers. It is possible to change the functional aspect of
components. iNet does not modify the body (functional
part) of agents at runtime; it focuses on adapting the
behavior of agents (non-functional part) in order to
minimize runtime adaptation overhead. The overhead
should be cheap because iNet assumes each agent often
performs its behavior to keep adapting to dynamically
changing environment while it should be considerably
expensive to perform even a single runtime component
replacement. Another difference is that [15, 16]
assumes a centralized network architecture where a
centralized server collects environment conditions
from each component to make replacement decisions.
In contrast, iNet assumes a decentralized network
architecture where each agent monitors its surrounding
environment and makes adaptation decisions.

6. Concluding remarks
This paper describes and empirically evaluates a

biologically-inspired mechanism that allows grid ser-
vices to autonomously adapt to dynamic changes in the
network. The proposed adaptation mechanism, called
the iNet artificial immune system, allows each grid
service to autonomously sense its local environment
conditions to evaluate whether it adapts well to the
conditions, and if it does not, adaptively perform a
behavior suitable for the conditions. Empirical evalua-
tion results show that iNet works efficiently with high
degree of accuracy and makes grid services adaptive.

7. References
[1] P. Dini, W. Gentzsch, M. Potts, A. Clemm, M. Yousif

and A. Polze, “Internet, Grid, Self-adaptability and Be-

yond: Are We Ready?,” In Proc. of the IEEE Int’l
Workshop on Self-Adaptable and Autonomic Computing
Systems, Aug. 2004.

[2] Large Scale Networking Coordinating Group of the
Interagency Working Group for Information Technol-
ogy Research and Development (IWG/IT R&D), Report
of Workshop on New Visions for Large-scale Networks:
Research and Applications, Mar 2001.

[3] R. Sterritt and D. Bustard, “Towards an Autonomic
Computing Environment,” In Proc. of 14th IEEE
International Workshop on Database and Expert Sys-
tems Applications, Sep 2003.

[4] J. Suzuki and T. Suda, “A Middleware Platform for a
Biologically-inspired Network Architecture Supporting
Autonomous and Adaptive Applications,” IEEE Journal
on Selected Areas in Communications, vol 23, 2005.

[5] N. Minar, K. H. Kramer and P. Maes, “Cooperating
Mobile Agents for Dynamic Network Routing,” In A.
Hayzelden and J. Bigham (eds.) Software Agents for Fu-
ture Communications Systems, Springer, 1999

[6] G. Cabri, L. Leonardi and F. Zambonelli, “Mobile-
Agent Coordination Models for Internet Applications,”
In IEEE Computer, Feb 2000.

[7] N.K.Jerne, “Idiotypic Networks and Other Preconceived
Ideas,” In Immunological Review, vol. 79, 1984.

[8] P. Berkhin, “Survey of Clustering Data Mining Tech-
niques,” Accrue Software, Inc., San Jose, CA, 2002.

[9] T. Mitchell, Machine Learning, McGraw-Hill, 1997.
[10] J. Suzuki and Y. Yamamoto, “iNet: An Extensible

Framework for Simulating Immune Network,” In Proc.
of IEEE International Conference on Systems, Man, and
Cybernetics, October 2000.

[11] J. Suzuki and T. Suda, “Adaptive Behavior Selection of
Autonomous Objects in the Bio-Networking Architec-
ture,” In Proc. of 1st Annual Symposium on Autonomous
Intelligent Networks and Systems, May 2002.

[12] F. A. González, D. Dasgupta, “Anomaly Detection Us-
ing Real-Valued Negative Selection,” Genetic Program-
ming and Evolvable Machines, 4(4), 2003.

[13] L. N. de Castro, J. I. Timmis, “Artificial Immune Sys-
tems: A Novel Paradigm to Pattern Recognition,” In
Artificial Neural Networks in Pattern Recognition, J. M.
Corchado, L. Alonso, and C. Fyfe (eds.), SOCO-2002,
University of Paisley, UK, pp. 67-84.

[14] A.J. Chakravarti, G. Baumgartner, M. Lauria, “The
Organic Grid: Self-organizing Computational Biology
on Desktop Grid,” In A Zomaya, Parallel Computing for
Bioinformatics, John Wiley & Sons, 2005.

[15] S. Cheng, D. Garlan, B. Schmerl, P. Steenkiste, and N.
Hu, “Software Architecture-based Adaptation for Grid
Computing,” In the 11th IEEE Conference on High Per-
formance Distributed Computing, July 2002.

[16] K Shirose, S Matsuoka, H Nakada, and H Ogawa,
“Autonomous Configuration of Grid Monitoring Sys-
tems,” In the 2004 Symposium on Application and the
Internet (SAINT2004), Japan, January 2004.

