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Abstract—Large-scale network applications are expected to be 
more autonomous and adaptive to dynamic changes in the net-
work to improve user experience, expand applications’ opera-
tional longevity and reduce maintenance cost. Based on the ob-
servation that various biological systems have already met the 
requirements (i.e., autonomy and adaptability), this paper de-
scribes a biologically-inspired framework, called iNet, to design 
autonomous and adaptive network applications. iNet is designed 
after the mechanisms behind how the immune system works. iNet 
models a set of environment conditions (e.g., network traffic and 
resource availability) as an antigen and a behavior of network 
applications (e.g., migration and reproduction) as an antibody. 
iNet allows network applications to autonomously sense its sur-
rounding environment conditions (i.e., antigens) and adaptively 
invoke a behavior (i.e., antibody) suitable for the conditions. The 
configuration of antibodies evolves via genetic operations (e.g., 
mutation and crossover). Simulation results show that iNet allows 
agents to autonomously adapt to changing environment condi-
tions by invoking their behaviors suitable for the current envi-
ronment condition and evolving their antibody configurations. 

I. INTRODUCTION 
Large-scale network applications such as grid computing 

applications and data center applications face several chal-
lenges, particularly autonomy and adaptability, as they have 
been rapidly increasing in complexity and scale [1, 2, 3]. They 
are expected to autonomously adapt to dynamic changes in the 
network (e.g., workload surges and resource extinction) in 
order to improve user experience, expand applications’ opera-
tional longevity and reduce maintenance cost. As inspiration 
for a new design paradigm for network applications, the au-
thors of the paper observe that various biological systems have 
already developed the mechanisms necessary to meet the 
above requirements (i.e., autonomy and adaptability) [4]. For 
example, bees act autonomously, influenced by local condi-
tions and local interactions with other bees. A bee colony 
adapts to dynamic environmental conditions. For example, 
when the amount of honey in a hive is low, many bees leave 
the hive to gather nectar from flowers. When the hive is full of 
honey, bees rest in the hive. Based on this observation, the 
authors of the paper believe that, if network applications are 
designed after certain biological principles and mechanisms, 
they may be able to increase autonomy and adaptability. 

BEYOND1 is an architecture that applies biological princi-
                                                        

1 BEYOND: Biologically-Enhanced sYstem architecture beyond Ordinary 
Network Design 

ples and mechanisms to design autonomous and adaptive net-
work applications. In BEYOND, each network application is 
designed as a decentralized collection of software agents. This 
is analogous to a bee colony (network application) consisting 
of multiple bees (agents). Each agent provides a particular 
functionality of a network application, and implements bio-
logical behaviors such as migration, reproduction and death.  

This paper focuses on the autonomous adaptability for 
agents in BEYOND, and describes a biologically-inspired ad-
aptation mechanism for the agents. The proposed mechanism, 
called iNet, is designed after the mechanisms behind how the 
immune system specifically produce antibodies to eliminate 
antigens (e.g., viruses) and evolves antibodies. iNet models a 
set of environment conditions (e.g., network traffic and re-
source availability) as an antigen and an agent behavior as an 
antibody. Each agent contains its own immune system (i.e., 
iNet), and the configuration of iNet (antibodies) defines the 
agent’s behavior policy (i.e., when to invoke which behavior). 
iNet allows each agent to autonomously sense its local envi-
ronment conditions (i.e., an antigen) and adaptively invoke a 
behavior (i.e., an antibody) suitable for the conditions. For 
example, agents may invoke the replication behavior at the 
network hosts that accept a large number of user requests for 
their services. This leads to the adaptation of agent population, 
and agents can improve their throughput. Also, agents may 
invoke the migration behavior to move toward network hosts 
that receive a large number of user requests for their services. 
This results in the adaptation of agent locations, and agents 
can reduce response time for users.  

iNet also allows each agent to dynamically evolve its own 
iNet configuration (antibody configuration) when it replicates 
or reproduces. Agents perform this evolution process by gen-
erating behavioral diversity and executing natural selection. 
Behavioral diversity means that different agents maintain dif-
ferent iNet configurations. This is generated via mutation and 
crossover, which alter iNet configurations during agent repli-
cations and reproductions. Natural selection retains the agents 
that adapt well to environment conditions (i.e., the agents that 
have iNet configuration suitable for the environment condi-
tions) and eliminate the agents that does not adapt to the con-
ditions. This evolution mechanism frees application develop-
ers (agent developers) from anticipating all possible environ-
mental changes and tuning their agents to the changes at de-
sign time, thereby significantly simplifying the process to de-
sign and configure agents. 



This paper describes the design of iNet and evaluates how 
iNet contributes for agents to autonomously adapt to environ-
mental changes in the network. Simulation results show that 
iNet allows network applications to evolve through generations 
and to autonomously adapt to changing environment conditions. 

II. BEYOND ARCHITECTURE 
In BEYOND, agents run on a middleware platform in a 

network host. Each platform provides a set of runtime services 
that agents use to perform their services and behaviors. There 
are no central entities to control and coordinate agents. Decen-
tralization allows agents to be scalable and simple by avoiding 
performance bottleneck and any central coordination in de-
ploying them [14, 15]. 

Each agent consists of attributes, body and behaviors. At-
tributes carry descriptive information regarding an agent (e.g., 
agent ID). The body implements a functional service the agent 
provides. For example, an agent may implement a web service 
in a data center, while another agent may implement a physical 
model for scientific simulations in a grid computing system. 
Behaviors implement the actions inherent to all agents:  

Migration: Agents may move between platforms. 
Energy exchange and storage: Agents may store and ex-

pend energy as biological entities strive to gain energy by 
seeking and consuming food. Each agent gain energy in ex-
change for providing services to other agents or users. They 
may also expend energy for services that they receive from 
other agents, and for resources available on a platform (e.g. 
memory space).  

Replications: Agents may make their copies in response to 
higher energy level, which indicates higher demand for the 
agents. A replicated agent is placed on the platform that its 
parent agent resides on, and it receives the half amount of the 
parent’s energy level. 

Reproduction: Agents may select another agent as a mating 
partner and reproduce a child which inherits the traits (e.g. 
iNet configurations) of its parents by crossover and mutation 
of genes. Agents are evolvable by generating behavioral diver-
sity and executing natural selection, performed based on the 
concept of energy. For example, an abundance of stored en-
ergy indicates higher demand to an agent; thus, the agent may 
be designed to favor reproduction or replication to increase its 
availability. A scarcity of stored energy (i.e., an indication of 
lack of demand) eventually causes elimination of the agent. 

Communication: Agents may communicate each other for 
the purposes of, for example, requesting a service, exchanging 
energy, or reproducing a child. 

Death: Agents die due to energy starvation. If energy ex-
penditure of an agent is not balanced with energy gain, the 
agent cannot pay for the resources it needs; it dies from lack of 
energy. When an agent dies, an underlying platform removes 
the agent and releases all resources allocated to the agent. 

III. DESIGN OF INET ADAPTATION MECHANISM 
This section overviews how the natural immune system 

works (Section III.A) and describes how iNet is designed after 
the natural immune system (Section III.B). 

A. Natural Immune System 
The immune system is an adaptive defense mechanism to 

regulate the body against dynamic environment changes (e.g. 
antigen invasions). When the immune system detects an anti-
gen invasion, it activates B-cells (a certain type of immune 
cells). Some of the activated B-cells who strongly react to an 
antigen start to replicate themselves (called affinity matura-
tion) and produce antibodies that specifically react to the anti-
gen identified by T-cells. Antibodies form a network structure 
and communicate with each other [9]. This network is formed 
with stimulation and suppression relationships among antibod-
ies. By these relationships, antibodies are dynamically chang-
ing their population, i.e. proliferation and death, and change 
their network structure. Thus, the adaptive immune response is 
offered by multiple types of antibodies, although a single type 
of antibody (the best matched with an antigen) may play the 
dominant role. The antibody network also helps to keep the 
quantitative balance of antibodies. Through the stimulation 
and suppression interactions, the population of specific anti-
bodies rapidly increases following the recognition of an anti-
gen and, after eliminating the antigen, decreases again. Per-
formed based on this self-regulation mechanism, the adaptive 
immune response is an emergent product from many interac-
tions among antibodies. 

Besides, the immune system inherits immune cells from 
parents to children via maternal milk and placenta. Even sin-
gle-cell organisms inherit genes to their offspring. Also, dur-
ing affinity maturation, a primary repertoire of roughly 109 
different B-cell receptors can be generated from individual 
genes by recombining existing gene segments or mutation. 
The different combinations of a set of genes give rise to recep-
tors that can bind unlimited numbers of foreign invaders, and 
specific antibodies are produced from the receptors [10]. This 
process helps to react to a variety of antigens, so the immune 
system needs to generate vast numbers of antibodies. 

B. iNet Artificial Immune System 

iNet allows an agent to continuously sense a set of current 
environment conditions as an antigen and to select a behavior 
as an antibody that specifically matches with the sensed anti-
gen. Each antibody consists of three parts: precondition under 
which it is selected (one of environment conditions), Behavior 
ID, one of agent behaviors, and relationships to other antibod-
ies (one or more links). Antibodies are linked with each other 
using stimulation and suppression relationships. Each antibody 
has its own concentration value corresponding to the number 
of the antibody. The value is used to prioritize antibodies (be-
haviors) in behavior selection. iNet identifies candidate anti-
bodies (behaviors) suitable for a given non-self antigen (envi-
ronment conditions), prioritizes them based on their concentra-
tion values, and selects the most suitable one from the candi-
dates. When prioritizing antigens (behaviors), stimulation rela-
tionships between them contribute to increase their concentra-
tion values, and suppression relationships contribute to de-
crease it. Each relationship has its own strength (affinity), 



which indicates the degree of stimulation or suppression. 
Figure 1 shows a generalized network of antibodies. The an-

tibody i stimulates M antibodies and suppresses N antibodies. 
mji and mik denote affinity values between antibody j and i, and 
between antibody i and k. mi is an affinity value between an 
antigen and antibody i. The concentration of antibody i, de-
noted by ai, is calculated with the following equations. 
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In the equation (1), the first and second terms in a big 

bracket denote the stimulation and suppression from other 
antibodies. The affinity values between antibodies (i.e. mji and 
mik) are positive between 0 and 1. mi is 1 when antibody i is 
stimulated directly by an antigen, otherwise 0. k denotes the 
dissipation factor representing the natural death of an anti-
body. This value is 0.1. The initial concentration value for 
every antibody, ai(0), is 0.01. The equation (2) is a sigmoid 
function used to squash the Ai(t) value between 0 and 1. 

Every antibody’s concentration is calculated 200 times re-
peatedly. This repeat count is obtained from a previous simu-
lation experience [12]. If no antibody exceeds a predefined 
threshold (0.7) during the 200 calculation steps, the antibody 
whose concentration value is the highest is selected (i.e. win-
ner-tales-all selection). If one or more antibodies’ concentra-
tion values exceed the threshold, an antibody is selected based 
on the probability proportional to the current concentrations 
(i.e. roulette-wheel selection). 

Figure 2 shows an example network of antibodies. It con-
tains four antibodies, which represent migration, replication 
and death behaviors. Antibody 1 represents the migration be-
havior invoked when distance to users is far. Antibody 1 sup-
presses Antibody 3 when it is stimulated Now, suppose that an 
antigen indicates (1) user location is far, (2) workload is heavy 
on the local platform and (3) resource cost is high at neighbor-
ing platform. This antigen stimulates Antibodies 1, 2 and 4 
simultaneously. Their population increases, and it is likely that 
Antibody 2’s concentration value becomes highest because 
Antibody 2 suppresses Antibody 4, which in turn suppresses 
Antibody 1. As a result, Antibody 2 (i.e. migration to 
neighboring node behavior) would be selected. 

Evolutionary Mechanism of iNet: iNet allows agents to 

select a mating partner and produce a child by performing re-
production behavior. The generated children inherit the pa-
rameters and structure of antibody network (described in sec-
tion III.B) from their parents by genetic operations, crossover 
and mutation. iNet employs the concept of fitness for survival 
of agents who adapt to current environment well. The fitness 
indicates the degree of adaptation to current environment and 
application requirements. Through the evolutionary process, 
agents improve their fitness from generation to generation. In 
other words, they autonomously adjust their iNet configuration 
by finding optimal values of antibody network. This results in 
the evolution of iNet and survival of agents with the high 
adaptability to environment changes. 

(1) Chromosome and Genes: Each agent has one antibody 
network as its phenotype, which consists of a set of antibodies 
stimulating or suppressing each other (affinity relationship). 
The genotype is defined by the antibody genes which specify 
the presence of antibodies and the affinity genes which specify 
affinity relationship. The phenotype is determined by genotype 
on a chromosome, so each agent has a sequence of genes 
composed of a binary string and a set of affinity values repre-
senting the genotype (Figure 3). For example, an agent whose 
genotype is {(1, 0, 1, 1), (0, 1, 2, 0, 0, 0, .5, 0, 1, 0, 0, .5)} has 
an antibody network consists of 3 antibodies (ID:1,3,4) and 5 
affinity relationships. 

(2) Fitness Value: In order to evaluate the adaptability of 
agent, the degree of adaptation (how well an agent adapts to 
current environment) is quantified with fitness values based on 
following six factors. 

Response Time (f1): Each agent tries to reduce the response 
time for users requesting a service. R is minimum response 
time taken to provide services. (e.g. in our simulation 
R=0.2sec. An agent running on the same node as users takes 
0.2sec to provide its service). 

)3( .....   
meResponseTi

Rf1 =  

Throughput (f2): Each agent tries to improve its throughput 
according to workload (e.g. the number of requested mes-
sages). Throughput is represented as a ratio of provided mes-
sages by an agent to users and requested messages to the agent 
from users. 
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Energy Efficiency (f3): Each agent tries to improve its En-
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Figure 1. A Generalized Antibody Network 
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Figure 2. An Example Antibody Network 



ergy Efficiency, which is measured as consumption rate, CR, 
the ratio of the consumed energy and gained energy by an 
agent. E is the desired consumption rate in [0,1] according to 
environment conditions (e.g. E=0.1 indicates agents prefer to 
stay rather than invoking behaviors while E=0.7 indicates 
agents often perform behaviors to get more energy). 
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Resource Efficiency (f4): Each agent tries to efficiently 
utilize available resources (e.g. memory spaces). Resource 
Efficiency is measured as resource utilization, RU, over work-
load ratio WL (a fraction of # of request messages on a plat-
form and # of messages that agents can handle on the platform 
during a particular time period), and also it is influenced by 
queue utilization, QU, the fraction of the number of waiting 
messages to be processed in the queue and the maximum 
queue size (e.g. max resource for a node is as 64M and max 
queue size is 1000 messages). 
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Age (f5): Each agent has its lifetime, L, which indicates 
agents’ experience (e.g. older agents have survived longer in 
the system). Through the evolutionary process, older agents 
may have adapted antibody network. S is the desired agent 
lifetime in second (e.g. S=3600, 7200, etc. When workload is 
changed every one hour, agents survived in more than one 
hour imply that they adapt to the environment change). Age 
factor is increased along a sigmoid curve as follows.  
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Load Balancing (f6): Each agent tries to balance the work-
load into neighboring nodes. Load Balancing is measured as 
variance of agent distribution on local and neighboring nodes. 
N is # of neighboring nodes and one for local node. 

N
neighbors)local and #ofAgents(local)#ofAgents(LB
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N
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Finally, the fitness value F of each agent will be computed 
as equation (9) in a particular time period. w is the weight 
value for each fitness factors. For simplicity, ws are defined as 
1/6 in the simulation section. 

)9( .....  , wi * fi F 6i1 ≤≤∑=  

(3) Genetic Operations (Crossover and Mutation): When 
an agent invokes a reproduction behavior, it finds a mating 
partner agent and generates a child. The agent will select its 
partner running on the same platform and whose fitness value 
is greater than itself. The generated child will contain a set of 
genes inherited from both parents according to the ratio of 
parents’ fitness values as described in Figure 4. If the agent 
cannot find such partner, then it replicates itself. 

The generated children or replicated agent may mutate after 
the crossover. With mutation probability M, they may change 
values in both antibody genes (i.e. 0 or 1) and affinity genes 
(i.e. affinity values).  

IV. SIMULATION RESULTS 
This section presents several simulation results to evaluate 

the autonomous adaptability of agents with iNet and their evo-
lutionary process. The simulations are carried out on the 
BEYOND simulator2. 

Figure 5 shows a simulated network as a server farm con-
sisting of network hosts connected in a 10x10 grid topology. 
BEYOND platform is running on each network host, and each 
agent implements a web service. Service requests travel from 
users to agents via user access point. This simulation study 
assumes that a single (emulated) user runs on the access point 
and sends service requests to agents. When a user issues a ser-
vice request, request messages are broadcasted to search a 
target agent that can process the issued service requests. 

In order to show that iNet agents effectively adapt to the en-
vironmental changes regardless of workload scale, this simula-
tion generates a random workload for web service agents de-
scribed in figure 6 (a). The workload trace is designed based 
on a daily request rate for the www.ibm.com site in February, 
2001 [11]. The request rate peaks to about 5,500 requests per 
min in the morning and 9,000 requests per min in the evening. 
At the beginning, four agents whose antibody network is ran-
domly configured are randomly deployed. In order to evaluate 
how the evolutionary process impacts the adaptability of 
agents, two different types of agents—agents with a reproduc-
tion behavior and without it, i.e. with evolution and without 

                                                        
2 The BEYOND simulator contains 13,490 lines of Java code. It is available 
for researchers who investigate autonomous and adaptive grid applications 
(http://dssg.cs.umb.edu). 
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Figure 4. An example of genetic operations 

Ab1

Ab3

Ab2

Ab4

1 20.5

0.5

0

1

Ab1

Ab3

Ab2

Ab4

1 20.5

0.5

0

1

1 0 1 1   0 1 2  0 0 0 .5 0 1  0 0 .5e.g.  genotype 1 0 1 1   0 1 2  0 0 0 .5 0 1  0 0 .5e.g.  genotype

chromosome

Antibody genes Affinity genes

chromosome

Antibody genes Affinity genes

phenotype

 
Figure 3 . Phenotype and genotype 



evolution—are compared. 
Figure 6 (b) shows how agents autonomously adapt their 

population to workload. When agents receive requests, they 
start providing their service for users. Agents gain more en-
ergy from users and try to perform replication or reproduction 
behavior to increase their population. However, agents without 
evolution cannot perform a replication behavior appropriately; 
moreover, they incorrectly invoke a death behavior despite 
receiving user requests. It follows that randomly configured 
agents do not have a proper antibody network suitable for the 
environment. On the other hand, agents with evolution suc-
cessfully increase their population. This is because they repro-
duce children having the adapted antibody network where a 
replication behavior is appropriately selected according to the 
workload. 

Figure 6 (c) shows how agents autonomously adapt re-
sponse time for a user. At the beginning of simulation, re-
sponse time becomes very high because only four agents proc-
ess 2,000 requests a minute and a distance between the agent 
and users is long. However, after the agents accumulate 
enough energy from users and start migrating towards users 
and replicating themselves, they rapidly decrease response 
time. For agents with evolution, when workload is generated, 
the response time spikes up to 10 seconds, but they decrease it 
to 2 seconds in 30 minutes. It follows that they reproduce chil-
dren who successfully invoke migration and replication behav-
iors according to the workload. On the other hand, agents 
without evolution cannot reduce their response time because 
they do not properly migrate towards users and increase their 
population. 

Consequently, figure 6 (a) also shows the throughput 
achieved by two different types of agents. It is measured as the 
number of responses that users receives a minute from agents. 
Agents with evolution autonomously meet given workload by 
dynamically adjusting their population and locations through 
migration and replication behaviors while agents without evo-
lution cannot achieve their throughput to workload. 

Figure 6 (d) shows the average fitness value of agents. 
While agents without evolution do not improve their fitness 
value, agents with evolution reproduce children who obtain the 
adapted antibody network and improve fitness value to about 
0.6~0.7 by increase their population and reducing response 
time. 

Figure 6 (e) shows the variance of agents’ fitness values, 
how the fitness values are spread around the average. The 
variance for agents without evolution has not converged well 
while the variance for agents with evolution has gradually 
converged to 0. The lower variance implies that all agents’ 
fitness values are close each other. Together with the results in 
figure 6 (d), we can conclude that “Good” configuration 
(genes) of antibody network is successfully spread out to other 
agents by evolutionary process. Thus, agents adapts to the 
environment conditions well through generations. 

Finally, in order to show how the evolutionary process im-
pacts the agents’ activity, two different types of agents are in-
tentionally added. For example, the first type of agents (called 
REP agents) does not have a migration behavior in their anti-
body network, so they can only perform a replication or repro-
duction behavior. On the other hand, the second type of agents 
(called MIG agents) does not have a replication or reproduction 
behavior, so they can only perform a migration behavior. Fig-
ure 6 (f) shows the average distance between agents and users 
on the left y-axis and the number of agents on the right y-axis. 
It is clearly shown that REP agents cannot reduce the distance 
while those agents with evolution reproduce children who ob-
tain a migration behavior and migrate towards use locations. 
Similarly, MIG agents cannot replicate themselves; however, 
those agents with evolution can obtain a replication behavior 
by mutation and increase their population according to the 
workload. 

V. RELATED WORK 
This paper proposes an extended version of iNet adaptation 

mechanism inspired by the natural immune system. The previ-
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ous version of iNet [7, 8] did not contain the evolutionary 
mechanism. For the previous iNet, application developers (e.g. 
agent designers) are required to configure the antibody net-
work manually and intentionally before deployment (i.e. at 
design time) so that agents adaptively perform a suitable be-
havior for local environment conditions. However, since the 
current iNet allows agents to adjust their own iNet configura-
tion by tuning parameters such as affinity values between anti-
bodies, agents can be randomly configured and deployed 
without predicting possible environmental changes and tuning 
parameters at design time. The optimal iNet configurations are 
autonomously spread out by genetic operations to surviving 
agents in the network. This contributes to achieve the high 
adaptability of agents to dynamic environment changes over 
generations and to reduce the maintenance cost of agents, i.e. 
network applications. 

This work is an extension to the Bio-Networking [5, 6], in-
spired by the biological principles and mechanisms that allow 
network systems to scale, adapt, and survive; however, the 
BEYOND architecture employs a different approach to design 
the adaptation mechanism for agents. There is a difference in 
how agents select a behavior (i.e. a behavior policy). iNet im-
plements an artificial immune system as an adaptation mecha-
nism while [5, 6] implements the weighted sum of environ-
ment conditions for each behavior. 

 Although [6] also includes an evolutionary mechanism 
which adjusts parameters (i.e. weight values) at runtime, ap-
plication developers still have to manually design the weighted 
sum equation itself (i.e. which environment conditions should 
be considered as weighted sum factors) and configure the 
threshold value for all behaviors at offline. It is hard to find 
optimal threshold values without knowing network configura-
tion beforehand. But, iNet will autonomously find the optimal 
affinity values (i.e. stimulation and suppression strength) and 
form the adaptive antibody network. 

Similar work has been proposed in Organic Grid project 
[13]. [13] attempts to the decentralized task scheduling for 
large-scale computation on grid environment over the Internet. 
Agents autonomously find and migrate to the hosts that provide 
enough resources to execute subtasks allocated to the agent. 
iNet is designed for and can be applied into any types of appli-
cation services (e.g. web service, database service, etc), while 
[13] is designed for ones specific to task scheduling and com-
putation. iNet is proposed as one of design approaches for net-
work applications, so it is unrestrained in doing anything. For 
this purpose, iNet includes more various behaviors and is capa-
ble of sensing more environment conditions than that of [13]. 

VI. CONCLUSION 
This paper describes and evaluates an immunologically-

inspired adaptation mechanism, called iNet. Each agent (appli-

cation component) embeds iNet to adaptively perform their 
behaviors suitable for changing environment conditions. Each 
agent’s configuration of antibodies evolves via genetic opera-
tions when the agent performs replication or reproduction. 
Simulation results show that iNet allows agents to autono-
mously adapt to dynamic changes in environment conditions by 
invoking their behaviors suitable for the current environment 
condition and evolving their antibody configurations. 
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