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Abstract—This paper presents mDHT, a novel architectural
enhancement to DHT using multicast service discovery. In
mDHT, a group of host computers in a subnet participate in a
DHT overlay as a single node. A query is routed from subnet
to subnet until it reaches the final destination subnet, where it
is resolved among the hosts using link-local multicast. Under a
reasonable deployment assumption, mDHT offers many benefits
over standard DHTs, such as locality, easy bootstrapping, high
availability, and near imperviousness to node churn.

Index Terms—mDHT, DHT, multicast, churn, Zeroconf,
mDNS, p2p, overlay.

I. I NTRODUCTION

We have witnessed two significant advances in peer-to-peer
(p2p) networking technology in recent years, driven by the
consumers’ desire to interconnect at the two opposite ends of
networking scale. On the global scale, distributed hash tables
(DHTs) [1]–[3] solved the scalability problem of the Internet-
wide overlay networks. DHTs impose certain structures into
the overlay topologies in order to achieve logarithmic-time
lookup of a resource in the network. On the local scale, Zero
Configuration Networking (Zeroconf) [4] all but eliminatedthe
need to configure applications and devices to discover and talk
to each other in a same subnet. Zeroconf implements service
discovery by exchanging link-local multicast packets.

This paper describes an architectural enhancement to DHT
using Zeroconf multicast, which we callmDHT. In mDHT,
the meaning of a “node” is changed from an individual host
computer to an entire subnet, i.e., an entire subnet participates
in a DHT overlay as a single node. A lookup query is routed
from subnet to subnet in mDHT until it reaches the subnet for
which the query is destined. The query is then resolved within
the subnet using multicast.

Our mDHT architecture can be applied to any existing
DHT system. Under a reasonable deployment assumption
(the validity of which we reinforce with a measurement of
an existing p2p system), mDHT offers numerous benefits
including locality, load balancing, easy bootstrapping, high
availability, and near imperviousness to node churn.

The rest of this paper is organized as follows. We give
background information on hierarchical DHTs and Zeroconf
technology in Section II. We delve into mDHT architecture
in Section III, starting with an overview and then describing
each aspect of mDHT architecture in detail. In Section IV, we

discuss the benefits of mDHT, and analyze our deployment
assumption using a measurement of a real-world p2p system.
We conclude and discuss future work in Section V.

II. BACKGROUND

A. Evolution of P2P Architecture

The p2p systems architecture has evolved continuously in
order to accommodate the demand of ever-increasing scale of
p2p overlay networks. The scalability limit of flat unstructured
p2p systems such as the early version of Gnutella, which
performed content lookup by flooding the network, inspired
the development of structured p2p systems based on DHTs. A
DHT network is characterized by an efficient algorithm to map
an arbitrary string to a particular node in the network and to
produce a routing path of a bounded number of hops from any
node to that node. The mapping is deterministic and results in
a balanced distribution of the strings among the participating
nodes. This enables efficient lookup of distributed data items
when each data item is associated with a string (a file name,
for example) and the item is stored in the node to which the
associated string maps.

Another way to overcome the scalability limit of flat
unstructured systems was to introduce hierarchy. In a two-
tier hierarchical organization used in the later versions of
Gnutella [5], the core overlay network is formed not by every
participating node, but by a selected subset calledsuperpeers.
Each non-superpeer maintains a connection to a superpeer who
will act as a gateway to the services offered by the overlay.
Figure 1(a) illustrates this arrangement.

The idea of hierarchical overlay can be applied to DHTs as
well as unstructured networks, and the depth of hierarchy can
be more than just two levels. Many system proposals exhibit
complexities that go well beyond that of the simple two-
tier superpeer architecture [6]–[8]. In addition to the obvious
advantage of reduced overlay size, hierarchical designs can
offer various other advantages, such as taking account of
physical network and node heterogeneity, better resilience to
churn, administrative control and autonomy, and more efficient
caching and load balancing strategies. These advantages apply
both to DHTs and unstructured networks, but they are espe-
cially beneficial to DHTs, since the rigid overlay structures
of DHTs make it harder to incorporate those considerations
into flat overlays. Those hierarchical designs that are more



(a) Two-tier superpeer architecture. The
overlay network of superpeers can be an
unstructured network or a DHT.

(b) A multicast-based superpeer architec-
ture. (This is not our mDHT.) A superpeer
is a single point of failure in a subnet.

(c) Our mDHT architecture. A subnet is a
node in a DHT. The node IDs are chosen
by hashing the subnet IP addresses.

Fig. 1.

complex than the simple two-tier superpeer architecture tend
to focus on maximizing performance in one or two of those
areas. The simple two-tier architecture, however, still provides
some benefits in all those areas compared to the flat overlay
design. Moreover, the simplicity of the two-tier architecture is
an important advantage over other more complex hierarchical
designs, when it comes to developing, deploying and main-
taining a large scale overlay network. For these reasons, the
simple two-tier superpeer architecture of Figure 1(a) is often
the preferred choice for p2p networks on the Internet [9], [10].

B. Zeroconf: Local Service Discovery Using Multicast

When multiple IP-enabled devices are physically connected
with one another, Zeroconf makes it possible for one device
to use the services provided by another without requiring the
user to configure the devices manually. For example, when a
user connects two computers either directly using an Ethernet
crossover cable or via an Ethernet switch, he will be able
to accomplish his file-transfer task by simply starting up the
appropriate Zeroconf-enabled applications at both ends. The
applications use Zeroconf technology todiscovereach other,
without the user having to furnish them with the connection
information such as IP addresses and port numbers.

Zeroconf performs local service discovery by exchanging
DNS packets via link-local multicast, the details of which
are described in a pair of specifications, DNS-based Service
Discovery (DNS-SD) [11] and Multicast DNS (mDNS) [12].
DNS-SD defines a set of naming rules for certain DNS record
types that it uses for advertising and discovering services. PTR
records are used to enumerate service instances of a given
service type. A service instance name is mapped to a host
name and a port number using a SRV record. If a service
instance has more information to advertise than the host name
and port number, the additional information is carried in a
TXT record.

The DNS records are stored in a collection of mDNS dae-
mons, which are limited-functionality DNS servers runningon
each host in a local subnet. The mDNS daemons collectively
manage a special top-level domain, “.local.”, which is used

for names that are meaningful only in a local subnet. The
queries and answers are sent via link-local multicast using
UDP port 5353 instead of 53, the conventional port for DNS.
An application can advertise a network service to the subnet
by creating appropriate DNS records and depositing them into
the mDNS daemon running on the same host. The mDNS
daemon will then respond with these records when it hears a
multicast query for a matching service. Creating DNS records
and storing them with mDNS are usually done by invoking
API calls in a DNS-SD/mDNS client library implementation.

Zeroconf technology is widespread today. Bonjour, Ap-
ple [13]’s Zeroconf implementation, is an integral part of
Mac OS X operating system. Bonjour is also installed on a
large fraction of computers running Windows, thanks to the
popularity of iTunes—Apple’s music playing application—
which installs Bonjour for Windows as part of its installation
process. For UNIX-like platforms, there is a mature open-
source implementation of Zeroconf called Avahi [14], which
comes preinstalled in a number of major Linux distributions
such as Ubuntu [15].

C. Multicast-based Superpeer Architecture

Figure 1(b) illustrates a possible hybrid of Zeroconf and
superpeer-based DHT. A node in a subnet is elected as a
superpeer and participates in the DHT. The other nodes in
the subnet learn the identity of the superpeer through the
superpeer’s Zeroconf service announcement, and thereforeare
able to access the DHT through the superpeer.

At first glance, this architecture seems to offer a reasonable
alternative to the regular superpeer architecture of Figure 1(a)
if we assume that, on average, a significant number of nodes
are found in a single subnet. It is unclear, however, that the
use of multicast provides much benefit at all. Moreover, a
major weakness of superpeer architectures is still present: the
superpeer is a single point of failure among the nodes attached
to that superpeer. We will not consider this model any further.
It is presented here as a conceptual bridge leading to our
mDHT architecture, and to ensure that the reader doesnot
conjure up this model as his or her mental image of mDHT.



III. MDHT ARCHITECTURE

A. Overview

Figure 1(c) illustrates our mDHT architecture. An entire
subnet, not an individual host, becomes a “node” and partici-
pates in a DHT. A node identifier (node ID) must be assigned
to a subnet as a whole, so it cannot be based on an IP address
of any individual host. Figure 1(c) shows one way to assign
node IDs on subnet level: node IDs are chosen by hashing
subnet IP addresses. Other methods of ID assignment can be
used as long as a single ID is assigned to an entire subnet and
that ID is propagated to all participating hosts in the subnet.

Messages are routed in the same way they are routed in reg-
ular DHTs. A query is routed among the nodes until it reaches
its destination according to the particular DHT algorithm used
in the overlay. In mDHT, a node is a subnet. Once a query
reaches the destination subnet, the query is resolved among
the hosts in the subnet using link-local multicast.

Our mDHT can be applied to any DHT since its operation
depends only on the generic facilities common to all DHTs
such as routing tables or node identifiers. Nevertheless, itis
often helpful to use a specific DHT when referring to a part of
data structure or a maintenance procedure, since terminology
varies across DHTs. In those cases, we use Chord [1]. Also,
when we use the termnode, we mean a logical entity that
is given a node ID, which is a host computer in a regular
DHT, but a subnet in mDHT. We use the termhostto refer to
individual computers.

B. Routing Table

We explained that a query is routed in mDHT just as it is
routed in a regular DHT, passing through intermediate nodes
and finally reaching the node to which it is destined. Once the
query arrives in the destination subnet, it is resolved among the
hosts in the subnet using multicast. But how does the message
travel from a node to another when a node is a subnet, not a
host? Message transfer is still based on TCP/IP networking,
and there is no such thing as sending a message to a subnet.

Suppose a subnetA is a node in a mDHT overlay and,
among the hosts in the subnetA, three hostsa1, a2, a3have
joined the overlay. (The three hosts share a single node ID,
hash(A)for example, as explained in Section III-A.) Suppose
a subnetB is also a node, with hostsb1, b2, b3participating.
Imagine thata1 has issued a query, and the DHT algorithm
has determined that the nodeB is the next hop. In order for
a1 to send a message to the subnetB, it needs to know at least
one specific host in that subnet. Let’s assume thata1 knows
thatb1 andb2 reside inB. The hosta1 randomly picks one of
the two hosts inB, sayb2, and sends the message. IfB is the
final destination for the message,b2 will switch to multicast
to resolve the query in its subnet. If not, it will find the next
hop, sayC, and proceed in the same way asa1 did before.
(This is assuming that recursive query routing is used in the
DHT; if iterative routing is used,b2 will tell a1 where the
next hop is anda1 will repeat the procedure.)

Each host in a DHT carries a routing table that has a list
of nodes. In Chord, a routing table entry (called afinger)

points to a host node, and it consists of the node’s ID, IP
address and port number. In mDHT, a node is a subnet, and
the routing table entry for a node needs to include ahost set,
the IP addresses and port numbers of the participating hosts
in the subnet. For example, a mDHT implementation based on
Chord may redefine the finger as a collection of the following
information: SHA-1 hash of a subnet IP address as a node
ID, the subnet IP address, and a host set of maximum 8 IP
addresses and port numbers.

In our example ofa1 sending a message toB, a1 randomly
picked one host from the host set forB. When iterative query
routing is used, there is another option. The same message can
be sent to multiple hosts in the host set. In the example,a1
can send the query to bothb1 and b2, and take the faster
response. This will shorten the overall lookup latency by
reducing timeout delays from failed hosts. It will also help
maintain the host sets, as unresponsive hosts can be removed
from them. This mechanism is similar to sending parallel
queries to multiple adjacent nodes, available in some DHTs
such as Kademlia [3]. The difference is that, in mDHT, parallel
queries are sent to asingle node.

C. Host Set Maintenance

The host sets in the routing tables need to be periodically
updated. The authoritative list of active hosts in a subnet comes
from the hosts in the subnet themselves. Each host monitors
the multicast announcements sent by other hosts as they join
and leave the overlay, and keeps track of the list of active hosts
in the subnet. Zeroconf API makes this easy.

This list of active hosts in a subnet is propagated to all
the routing table entries that point to this subnet using a
combination of push and pull methods. Every host periodically
refreshes its own routing table entries by contacting one of
the hosts for an up-to-date list of active hosts. This can be
incorporated into the regular DHT maintenance procedures
such as Chord’s FIXFINGERS(). An updated list can also
be pushed, on a join or leave event in a subnet, onto the
neighboring nodes such as Chord’s successor and predecessor.

D. Host Join and Leave

When there is no other participating host in a subnet, host
join and leave in mDHT follow the same procedures of regular
DHTs.

When a subnet already contains one or more participating
hosts, joining and leaving the mDHT overlay from that subnet
is almost trivial. A newly joining host simply makes a mul-
ticast announcement. The other hosts, which are monitoring
the multicast announcements, add the new host into their lists
of active hosts, which will eventually find their way to the
routing tables of other nodes (Section III-C). A leaving host
also makes a multicast announcement, telling the other hosts
to remove it from their lists of active hosts. In addition, a host
may need to transfer data when joining or leaving, according
to the data replication policy in place (Section III-E).



E. Data Replication in Subnet

When DHT is used as a data storage and lookup facility,
a data item is mapped to a particular node by the DHT
algorithm. In the case of mDHT, where a node is a subnet,
there is a question of which host (or which set of hosts) will
store a data item mapped to the subnet.

The simplest strategy is to have one host store a particular
data item, most likely the host that happened to receive the
initial message for depositing the data item into the DHT. If
a lookup request for that data item arrives at a different host
in the subnet, it will issue a multicast query, to which the
host owning the data will respond. When the host owning the
data item leaves the overlay, it must transfer the data item
to another participating host. This strategy does not provide
any shield against host failures at mDHT level. However, the
data replication schemes of regular DHTs such as Chord’s
successor-list can still be used.

On the opposite end, another strategy is to replicate all data
items fully within the subnet. When a host receives a new data
item, it is immediately propagated to all participating hosts in
the subnet. This results in a high data injection cost, but the
lookup latency caused by the multicast query is eliminated.
A host failure is not a problem as long as there is another
participating host in the subnet. On the other hand, a newly
joining host needs to copy all existing data from a neighbor.

The optimal strategy is likely to be somewhere in the
middle. A simple, yet reasonable approach might be to try
to replicate data in a fixed number of hosts. Obviously the
number represents a maximum since there may not be as many
participating hosts in the subnet. Another possible strategy is
to start with a low number of replicas and increase the number
per data item as the node receives more and more lookup
queries for the item.

IV. D ISCUSSION

A. Benefits of mDHT

1) Immunity to Churn:High rate of churn—the continuous
process of hosts joining and leaving an overlay—has been a
difficult problem in DHT design. In mDHT, as long as there
are other participating hosts in a subnet, hosts joining and
leaving in that subnet hasno effecton the DHT structure. The
subnet remains as the same node in the DHT as individual
hosts come and go, and there is no need to fix anything in the
DHT structure.

Contrast this with the superpeer architecture we saw earlier
in Figure 1(a). A superpeer represents a single point of failure
among the nodes attached to it. If a superpeer leaves the
overlay, presumably one of the non-superpeers can step up
to become a new superpeer to hold the same group together,
but even then, the new superpeer needs to be repositioned in
the DHT overlay because its node ID is different from that of
the previous superpeer.

2) High Availability: Many DHTs use data replication and
parallel queries to increase the availability of data itemsstored
in a DHT as a whole. Achieving high availability of a specific

node, however, is not so straightforward. Our mDHT, on the
other hand, can increase the availability of a node simply by
adding more hosts to the subnet. This ability to strengthen
a specific node would be particularly useful when it is used
with a DHT that also provides administrative autonomy and
controlled data placement, such as SkipNet [16].

3) Easy Bootstrapping:The use of multicast makes it easy
for a new node to discover and join an mDHT overlay when
there is another participating host already present in the subnet.
This may reduce the load on the global bootstrapping servers
in some systems, since only the first participating host in a
subnet needs to contact a bootstrapping server.

4) Parallel Queries and Load Balancing on Single Node:
As explained in Section III-B, the fact that a node is a subnet
consisting of multiple hosts enables mDHT to send parallel
queries to a single node, as opposed to Kademlia’s parallel
queries which are sent to multiple adjacent nodes.

Within a subnet in mDHT, the participating hosts naturally
share the load, since a random subset of the hosts receive each
query. This is again in contrast with the superpeer architecture
of Figure 1(a), where a superpeer represents a single point of
failure and possibly a bottleneck.

There is a subtle issue, however, when we consider load
balancing among all the hosts in the whole overlay. The fact
that a node in mDHT is a subnet, and therefore contains a
varying number of hosts in it, may conceivably result in a load
deviation worse than those of standard DHTs. We conjecture
that a DHT load balancing strategy such as [17] will be as
effective on mDHT as it is on standard DHTs. Analysis and
simulation to support this conjecture is planned as a future
work.

Another point to note is that DHT load balancing is not
such a serious problem in practice, since the expectation isthat
most hosts will only consume a small fraction of the host’s
resources. A more important task is mitigating “hot spots”
caused by exceedingly popular items. Standard DHTs use
replication to deal with hot spots. Our mDHT can do the same.
In addition, node redundancy can be increased when the DHT
algorithm allows controlled data placement (Section IV-A2).

5) Awareness of Physical Proximity:A mDHT node rep-
resents a grouping of p2p participants in closest proximityto
one another. A p2p application built on top of mDHT can
take advantage of this locality property in various ways. For
example, a file sharing application can reduce data traffic by
having a host computer cache popular contents, not only for
the purpose of repeated retrieval, but for making it available
for the other hosts in the subnet. The cache inventories can
then be exchanged via multicast among the hosts.

B. Analysis of Assumption

The claimed benefits of mDHT depend on the assumption
that the majority of the subnets contain multiple hosts partici-
pating in the overlay network. In order to test this assumption
on a real-world p2p network, we examined the IP addresses
of 9582 Skype relay hosts, which were collected as part of an



Fig. 2. Ratio of the hosts that are participating alone in their subnets.

experiment by Khoet al. [18], measuring Skype relay calls
over a three-month period.

Since it is difficult to determine the subnet mask of an
arbitrary IP address, we simply fix a hypothetical subnet mask
of certain number of bits, and group those IP addresses that fall
into the same subnets under the fixed subnet mask. Figure 2
shows the ratios of theisolated hosts, the hosts that are alone
in their subnets, as we vary the subnet mask from 32 to 0 bits.
(The 32-bit subnet mask is the vacuous one where each host
IP address becomes its own subnet; and the 0-bit mask is the
degenerate one where the whole Internet is a single subnet.)
The dotted line plots a result for the whole data set of 9582
hosts, and the solid line for a subset of 2150 hosts that belong
in the .EDU domain.

The result from the .EDU hosts (the solid line) supports
our assumption. With 24-bit subnet mask (i.e., /24 subnet),
half of the hosts have at least one other host in their subnets.
Moreover, subnets in University campuses tend to be larger
than /24. The 21-bit mask reduces the ratio of isolated hosts
down to 25%.

It is harder to justify our assumption if we include not only
the .EDU hosts, but all the hosts in the data set (the dotted
line). It takes the 21-bit mask to achieve 50%, and the 19-
bit mask to get down to 25%. It should be noted, however,
that the majority of the IP addresses in this data set belong
in the domains of residential ISPs [18], indicating that they
are home computers. The access networks of residential ISPs
are not likely to allow multicast between subscribers, so they
represent hostile environments for mDHT. But we observe two
encouraging trends that point to a future direction of residential
networks that is more favorable to mDHT. First is the rise of
home networks. Many households have multiple networked
devices, and the use of a NAT router to form a home network
is becoming commonplace. (The residential IP addresses in
our data set do not include any host behind NAT, since Skype
does not choose such a host as a relay.) Second, residential
ISPs are increasingly concerned about the traffic generatedby
p2p applications, and they are looking for ways to reduce the
traffic [19]. A residential ISP can reduce the traffic generated
by a mDHT-based application simply by enabling multicast

among the users in a neighborhood, so that they can share
content cache as described in Section IV-A5.

V. CONCLUSION AND FUTURE WORK

We presented mDHT, a novel hybrid architecture that aug-
ments DHT with multicast service discovery. Our mDHT
shares some of the positive traits of the traditional two-level
superpeer architecture, but we eliminate the single point of
failure in a peer cluster. In addition, the redundancy within a
node makes mDHT impervious to churn, and offers an easy
way to increase node availability.

In the future, we plan to implement a prototype, and prove
our conjecture on load balancing through simulation.
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