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Abstract

The 60 GHz frequency band promises very high data rates – in the order of
Gb/s – due to the availability of large amounts of bandwidth. High free-
space path loss at the 60 GHz frequency band makes it necessary to employ
beamforming capable directional antennas to confine signal power in the
desired direction. When beamforming is used, the links are sensitive to
misalignment in antenna directionality, due to the movement of devices. To
identify and circumvent the misalignments, we propose to use motion sensors
(i.e., accelerometer and gyroscope) which are already present in most mod-
ern mobile devices. By finding the extent of misaligned beams, corrective
actions are carried out to reconfigure the antennas. Motion sensors in mobile
devices provide means to estimate the extent of misalignments. We collec-
ted real data from motion sensors and steered the beams appropriately. The
results from our study show that the sensors are capable of detecting the
cause of the error as translational or rotational movements. Furthermore it
is also shown that sensor data can be used to predict the next location of
the user. This can be used to reconfigure the directional antenna to switch
the antenna beam and hence avoid frequent link disruptions. This decreases
the number of beam searches, thus lowering the MAC overhead.
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Chapter 1

Introduction

1.1 Motivation

The unprecedented increase of mobile devices together with a rapid emer-
gence of bandwidth hungry applications require wireless communication
technologies which can provide data rates in the order of multi-Gb/s. Presently,
Wi-Fi (IEEE 802.11) operating at 2.4/5 GHz is the most favored commu-
nication technology for wireless local area networks (WLANs). There have
been many efforts such as higher order modulation schemes (64 QAM, 256
QAM, etc.), MIMO, MU-MIMO, channel bonding, frame aggregation, etc.
at PHY and MAC layers to enhance the data rates of Wi-Fi. However, the
limited bandwidth present in the 2.4/5 GHz frequency band is not sufficient
to provide the desired multi-Gb/s connectivity. Large unused bandwidths
are available in the millimeter-wave band, which ranges from 30 to 300 GHz.
Specifically a lot of interest has been shown in the 60 GHz band for short-
range communications after the federal communications commission (FCC)
has allocated 4-9 GHz in the 57-64 GHz band for unlicensed use [11,22,33,34],
as shown in Figure 1.1.

57 58 59 60 61 62 63 64 65 66

USA

Europe

China

Japan

(GHz)

Figure 1.1: The unlicensed bands in the 60 GHz frequency range.
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The IEEE organization has come up with IEEE 802.15.3c and IEEE
802.11ad – 60 GHz standards, to define medium access control (MAC) and
physical (PHY) specifications for short range communications in the 60 GHz
band. IEEE 802.15.3c [1] published in 2009 targets wireless personal area
network (WPAN) applications and specifies a mandatory data rate of 1.6 Gbps
and maximum data rate of 4.6 Gbps at a distance of 10-20 m. In 2012, IEEE
has proposed IEEE 802.11ad [2] as a WLAN alternative at the 60 GHz fre-
quency band which is back compatible with the popular IEEE 802.11b/g/n/ac.
IEEE 802.11ad promises data rates up to 6.7 Gbps.

1.2 Challenges

The physical properties of 60 GHz propagation significantly differs from
2.4/5 GHz signal propagation, throwing several challenges. A major chal-
lenge in the 60 GHz band is the very high free-space path loss following from
Friis transmission equation [12]:

Pr = PtGrGt

(
λ

4πR

)2

, (1.1)

where Pr, Pt, Gt, Gr, λ and R are the received/transmitted power, re-
ceiver/transmit antenna gain, wavelength and distance between the anten-
nas, respectively. Using λ = c

f , it can easily be seen that the attenuation
at the 60 GHz band is 22 dB higher than at the 5 GHz band. In addition
to free-space path losses, the 60 GHz band is also subject to oxygen losses
with a peak value of about 10 dB/km. However current 60 GHz standards
are mainly focused on indoor usage [1, 2], thus oxygen losses are negligible
at shorter ranges. Even though the high attenuation is a major challenge,
consequently it offers less interference between devices. To compensate for
the additional path loss at 60 GHz, directional antennas are used to confine
signal power in the desired direction. Use of directional antennas also of-
fers excellent spatial reuse. Another major challenge is the necessity of line
of sight (LOS) paths due to the inability to diffract around obstacles and
penetrate through walls [14,27,28]. In indoor environments, presence of fur-
niture, walls and humans can greatly affect the 60 GHz links. The loss due
to human shadowing is around 20-30 dB [13]. To solve this issue, intelligent
beamforming antennas are needed which can select alternative non line of
sight (NLOS) paths, in case the LOS path is obstructed.

1.3 Problem statement

As already stated, to compensate the high free-space path loss at 60 GHz,
narrow-beamwidth directional antennas are used. Highly directional anten-
nas help to improve link quality and extend the communication range. IEEE
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802.15.3c and IEEE 802.11ad provide multi-level beamforming protocols to
setup directional links. However, in case of device movement, it can be very
difficult to maintain the desired link quality if narrow-beamwidth directional
antennas are used. A slight displacement in device position/orientation can
result in link misalignment. This thesis focuses on the challenge of device
movement in 60 GHz networks, which can limit the maximum achievable
link quality [3, 9, 18,20]. Different causes are attributed to link degradation
due to device movement:

• Linear motion: The first cause is linear motion, also referred to as a
translational movement, which usually happens when the user walks
with the device.

• Angular motion: Secondly, angular movement is caused when the
user is turning around or changing the orientation of the mobile device.

• Blockage: Lastly, blockage occurs when the links are interrupted by
other users or obstacles while the user is moving around. In this case
NLOS paths have to be used.

It is usually difficult to determine the cause of link degradation. In [32]
the rate at which the received signal power changes is monitored to identify
the error type affecting the link. It is important to note that the solution
to reclaim the lost communication link because of one of these errors is not
compatible with the other errors. Each error requires different compensa-
tion. For example, in a traditional setup if the device is moving in a linear
direction, the station (STA)/access point (AP) does not know what causes
the link degradation. This means it might switch to a NLOS beam-pair,
which has a worse signal-to-interference-plus-noise ratio (SINR). Hence it is
important to correctly identify the communication errors before proceeding
to solve them.

1.4 Contributions

This work proposes to use the motion sensors, which are already embedded
into most modern devices, to help with the identification of the error. When
the device employs its sensors, it can estimate using simple classification
techniques if the error is caused by rotation, translation or beam blockage.
Once the error is identified, it is possible to go a step further and also
try to resolve this error. This means that we can predict the next beam-
pair and shift to them before the link quality drops significantly. If the
link quality drops too much, the beamformed link has to be re-established.
To re-establish the communication link, transmit (TX) and receive (RX)
stations have to restart searching for the best beam-pair; we refer to this as
re-beamforming. However, with the help of sensor data, device movement

3



can be predicted and appropriate antenna weight vectors can be calculated
to maintain a stable link. So the overheads of a beam searching procedure
can be avoided. Thus this work mainly solves two problems: (i) determining
the error that caused the link degradation using activity recognition; and
(ii) predict the next beam-pair such that the link quality remains stable
while minimizing the number of re-beamforming procedures.

An overview of these objectives is shown in Figure 1.2. The sensor data

Analyse sensor data.
Identify the movement 

using classifier. 

Power drops

Reconfigure TX/RX 

beam direction

RX

TX

Predict next 
beam-pair based 

on the movement.

Figure 1.2: Flowchart of the error identification and prediction phases.

is analyzed to identify the user’s movement by means of a classifier. When
the received signal strength drops by a certain power threshold, the next
beam-pair is predicted based on the movement. Consequently the TX/RX
antenna weights are adapted such that an improved link is established.

1.5 Thesis organisation

The rest of the thesis is organised as follows. In Chapter 2 we describe
the architecture of the IEEE 802.11ad standard to position relevance of our
work. Following that, in Chapter 3 we discuss the used sensors and gen-
eralize major movements that occur. In Chapter 4 the activity recognition
phase is explained and results are shown. This is followed by the movement
prediction phase and its results in Chapter 5. Finally we conclude with
general remarks, limitations and future work in Chapter 6.
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Chapter 2

IEEE 802.11ad

As stated in Chapter 1, IEEE 802.11ad standard provides MAC and PHY
specifications for 60 GHz WLANs. It aims to achieve data rates up to
6.7 Gbps needed for applications, such as wireless HD displays, 3D gaming,
and rapid upload/download. IEEE 802.11ad is back compatible to IEEE
802.11 series, and in absence of 60 GHz link, fallback options to 2.4/5 GHz
bands are provided.

Similar to the IEEE 802.11b/g/n basic service set, IEEE 802.11ad uses
a personal basic service set (PBSS), which is the operating area of IEEE
802.11ad networks. To provide basic timing to the STAs, one STA assumes
the role of AP/PBSS central point (PCP), as shown in Figure 2.1.

AP/PCP

STA

STA

STA

Figure 2.1: An example of the IEEE 802.11ad WLAN architecture.

This chapter will explain in detail how the IEEE 802.11ad standard oper-
ates. First the PHY and MAC layers will be discussed. After that the focus
will be put on the beamforming process and the beam training duration.

2.1 WLAN PHY layer

A packet in the PHY layer has a structure as shown in Figure 2.2. The
first frames are the short training field (STF) and channel estimation (CE)
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STF CE Header Data
Beam 

1
Beam 

2
Beam 
NTRN

CE R/T R/T R/T R/T

AGC TRN-R/T

Beam 1-NTRN

Figure 2.2: IEEE 802.11ad PHY in-packet training structure [2].

fields. They help among others with signal acquisition and synchroniza-
tion [26]. The header contains general information about the packet, such
as the modulation and coding scheme (MCS), the size of the packet and
also if optional training fields are appended. The data field contains the
MAC header and MAC data. The beam training fields for both receiver and
transmitter (TRN-R/T) can be appended to the data packet as part of the
in-packet beamforming training. The automatic gain control (AGC) fields
are added to account for the variation in signal strength when transmitting
and receiving beam training fields.

The PHY layer supports three modulation methods: (i) control modu-
lation, (ii) single carrier (SC) modulation + low-power SC modulation and
(iii) orthogonal frequency division multiplexing (OFDM) modulation. These
modulation methods are summarized in Table 2.1.

Table 2.1: Modulation and coding schemes for IEEE 802.11ad [2].

Modulation
method

MCS index Modulation Data rate
(Mbps)

Control PHY 0 DBPSK 27.5

SC PHY 1-12 π/2-BPSK, π/2-
QPSK, π/2-16QAM

385 - 4620

OFDM PHY 13-24 SQPSK, QPSK, 16-
QAM, 64-QAM

693 - 6757

Low-power SC
PHY

25-31 π/2-BPSK, π/2-QPSK 626 - 2503

Each modulation method has its own purpose. The control PHY is used
for basic communication before a high resolution beamformed link is estab-
lished between devices. SC PHY allows for lower receive sensitivity com-
pared to OFDM PHY, where MCSs 1 to 4 are mandatory to ensure interop-
erability. OFDM PHY offers the highest data rate of 6.757 Gbps with MCS
24 using 64-QAM. The low-power SC PHY is optional and provides lower
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processing power requirements.

2.2 WLAN MAC layer

The access methods used in WLAN comprises of both carrier sense multiple
access with collision avoidance (CSMA/CA) and time division multiple ac-
cess (TDMA) [2, 8]. A frame in WLANs is referred to as a beacon interval
(BI), the structure of which can be seen in Figure 2.3. The BI consists of

BTI

Beacon Interval
DTI

A-BFT ATI CBAP 1 CBP 2SP 1 SP 2 CBAP 2

Time

Figure 2.3: A superframe of the MAC layer of the IEEE 802.11ad protocol.

different access periods. The first period is the beacon time interval (BTI),
in which the AP/PCP transmits one or more beacons in different direc-
tions. STAs wanting to join the PBSS, can be trained in the association
beamforming training (A-BFT) stage of the BI. During announcement time
(AT) the AP/PCP can transmit management information to the STAs in a
request/response fashion. The main data transmission interval is the data
transmission interval (DTI), in which two periods are present. The conten-
tion based access period (CBAP) and service period (SP) allows any frame
exchange, including data transmissions. It is possible to use any combination
in the number and order of SPs and CBAPs in the DTI.

Thanks to the directional nature of the antennas, 60 GHz communication
provides excellent spatial reuse capability. Thus it is possible to employ
spatial sharing, where different stations use different SPs at the same time.
For example, STA A and B can have a scheduled SP at the same time as a
SP between STA C and D, as directional links will not interfere with each
other.

2.3 Beamforming training

IEEE 802.11ad uses a multi-level beamforming scheme similar to that of
IEEE 802.15.3c [2]. The IEEE 802.11ad beamforming process consists of
two phases. The first phase is the sector level sweep (SLS). Its purpose is to
allow communications between two STAs. The SLS is followed by the beam
refinement protocol (BRP). In general the BRP is used to further train RX
and TX antennas of a STA after the SLS phase, in a request/response based
manner. An example of a beamforming training sequence can be seen in
Figure 2.4.
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Figure 2.4: An example of beamforming training in IEEE 802.11ad [2].

The STA requesting beamforming is referred to as the initiator, while
the receiving STA is referred to as the responder. In order to track the
beams/channel a beam tracking phase can be used after the SLS/BRP.

2.3.1 SLS

The SLS is started by the initiator. Its purpose is to allow communications
between two STAs. In turn, the SLS can consist of as many as 4 subphases.
The first is the initiator sector sweep (ISS), to train the initiator link. This
is followed by the responder sector sweep (RSS), to subsequently train the
responder link. The last two subphases are the sector sweep (SSW) feedback
and the SSW acknowledgement (ACK).

During the ISS an initial connection is made between STA and AP/PCP.
One of them receives with a quasi-omni directional antenna, while the other
transmits a sequence of training frames covering different TX sectors. The
roles are reversed in the RSS, after at least one sector sweep frame is success-
fully received. The optimal antenna weight vector (AWV) of both stations
are exchanged during the SSW feedback and SSW ACK.

2.3.2 BRP

In general the BRP is used to further train a STA’s RX and TX antennas
after the SLS phase. This phase is a request/response based process. The
STA requesting beamforming training is referred to as the initiator, while
the receiving STA is referred to as the responder. The BRP phase consists of
a BRP setup subphase, and a multiple sector ID detection capture (MIDC)
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phase. In turn the MIDC phase can either consist of a multiple sector ID
detection (MID) subphase and beam combining (BC) subphase combined,
or only the MID subphase.

The BRP setup subphase is used to exchange information regarding the
next subphases. During the MID subphase, a quasi-omni TX beam is used
while the receiver sweeps its beams to determine the set of RX AWVs with
the best link quality. The MID subphase is followed by the BC subphase.
The BC subphase tests the best B RX AWVs together with the best B
TX AWVs, to determine the best beam-pair. The IEEE 802.11ad stand-
ard suggest a maximum number of B = 7 AWVs to be tested in the BC
subphase.

2.4 Training duration

This section will try to get a grasp for the training duration involved in the
beamforming process. Since there are many variations in the sequence of
possible beam training phases, we assume the following generic sequence.
First a full SLS is performed (both initiator and responder), followed by a
BRP setup subphase and a full MID phase, and finally a full BC phase. All
the phases in our sequence are performed using Control PHY.

We first take a look at the time required to send a packet, with and
without beamtraining data appended. Combining this with the beam train-
ing sequence, an approximate time required to establish a beamformed link
is calculated.

Training duration for a single packet

The minimal time required to send one packet using Control PHY without
any additional training fields is given by TPNT (packet no training):

TPNT = TSTF + TCE + THeader + TData. (2.1)

Using Figure 2.2 the time for a single in-packet beamtraining packet TIPT

(in-packet training) can be defined as follows:

TIPT = TPNT + (

AGC︷ ︸︸ ︷
4× 320 +

CE︷︸︸︷
1152 +

R/T︷ ︸︸ ︷
4× 640)×NTRN × TC

= TPNT + 4992×NTRN × TC , (2.2)

where NTRN is the amount of AWVs that need to be trained in a packet.
The time parameters for Control PHY are listed in Table 2.2.

Different stages involved in training

Let N I
QO and NR

QO be the number of quasi-omni beams at the initiator

(transmitter) and responder (receiver) respectively. And let N I
b and NR

b be

9



Parameter Description Value

TSTF Short training field duration 3.636µs

TCE Channel estimation duration 0.656µs

TC Chip time 0.57 ns

THeader Header duration 1.6051µs

TData Minimal data duration 7.2960µs

SBIFS Short beamforming interframe spacing 1µs

BRPIFS Beam refinement protocol interframe spacing 40µs

MBIFS Medium beamforming interframe spacing 3µs

LBIFS Long beamforming interframe spacing 6µs

Table 2.2: IEEE 802.11ad Control PHY time parameters.

the number of beam sectors available at the initiator and responder respect-
ively. During the SLS the antenna setting should remain constant for the
duration of the entire packet, thus no in-packet training is possible during
the SLS phase. Using this, the training duration for the SLS becomes:

TSLS = TISS + MBIFS + TRSS + MBIFS

+ TSSW−FB + MBIFS + TSSW−ACK , (2.3)

TISS = TPNT ×N I
b ×NR

QO + SBIFS× (N I
b − 1)

+ LBIFS× (NR
QO − 1), (2.4)

TRSS = TPNT ×NR
b ×N I

QO + SBIFS× (NR
b − 1)

+ LBIFS× (N I
QO − 1), (2.5)

TSSW−FB = TSSW−ACK = TPNT . (2.6)

After the SLS phase, the BRP setup subphase is performed which consists
of a single packet sending the information for the subsequent MID and BC
phase.

TBRP−setup = TPNT . (2.7)

Next is the MID phase, where in-packet training is possible:

TMID = TI−MID + BRPIFS + TR−MID + BRPIFS

+ TI−MID−FB + BRPIFS + TR−MID−FB, (2.8)

TI−MID = (TPNT + 4992×NR
b × TC)×N I

QO

+ SBIFS× (N I
QO − 1), (2.9)

TR−MID = (TPNT + 4992×N I
b × TC)×NR

QO

+ SBIFS× (NR
QO − 1), (2.10)

TI−MID−FB = TR−MID−FB = TPNT . (2.11)
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And finally the BC phase, where in-packet training is also used:

TBC = TI−BC + BRPIFS + TR−BC + BRPIFS

+ TI−BC−FB + BRPIFS + TR−BC−FB, (2.12)

TI−BC = (TPNT + 4992×B × TC)×B
+ SBIFS× (B − 1), (2.13)

TR−BC = (TPNT + 4992×B × TC)×B
+ SBIFS× (B − 1), (2.14)

TI−BC−FB = TR−BC−FB = TPNT . (2.15)

Combining all this results in the following beamforming training time:

Ttraining = TSLS + SBIFS + TBRP−setup + BRPIFS

+ TMID + SBIFS + TBC . (2.16)

If we assume N I
b = NR

b = 64, N I
QO = NR

QO = 4 and B = 5 then
the beamforming process for both the initiator and the responder takes
Ttraining = 9.2 ms. If we furthermore assume that 4 STAs are present in the
network and re-beamforming needs to be done every 100 ms; which is a real
possibility if rotations are involved as explained in Chapter 3. Then in this
situation throughput is decreased by 37%, which otherwise could have been
spent on transmitting data.

This chapter gave an overview of the IEEE 802.11ad standard, which uses
the 60 GHz band to achieve data rates up to 6.7 Gbps necessary for wireless
HD displays, 3D gaming, and rapid upload/download. The beamforming
protocol and required beam training times were also explored and it was
shown that throughput is quickly decreased by 37% if re-beamformings are
not taken care of. The next chapter will explore what causes link degrada-
tion and what means are available to detect them.
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Chapter 3

Sensors and movement

Narrow-beamwidth directional antennas are employed in 60 GHz commu-
nication to compensate for the high free-space path loss. However, device
movement can result in frequent link outage due to an error in the alignment
of transmit and receive antenna beams. To resolve this error and prevent a
total loss of the communication link, the movement first has to be detected,
which is possible with the use of motion sensors.

This chapter first discusses the possibilities of sensors embedded in modern
devices. After that the possible movements and corresponding breakdown
frequencies are explained.

3.1 Sensors

Smartphones have many sensors, among which accelerometers, gyroscopes
and magnetometers can be seen as the most relevant to detect motion. Both
the accelerometer and the gyroscope data are used in the error identification
phase. Furthermore we make use of a sensor fused orientation sensor in the
movement prediction phase. All the used sensors will be elaborated upon
below.

Accelerometers

Accelerometers can be found in every smartphone. Thanks to accelerometers
the earlier smartphones were able to distinguish between up and down and
thus implement an auto-tilt feature. The accelerometer measures, as its
name suggests, acceleration along the X, Y and Z axis:

a =

axay
az.

 (3.1)

Note that gravitational accelerations are also measured by the accelerometer.
This means that when the device is at rest ||a|| ≈ 9.81 m/s2, and when the
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device is in free fall ||a|| ≈ 0 m/s2. The linear acceleration (without the force
of gravity) can still be obtained by applying a high-pass filter to extract the
gravitational component from the raw data. Apart from not directly being
able to measure the linear acceleration, accelerometers are also very noisy.
Usually this noise is diminished by applying a low-pass filter.

The actual accelerometers found in smartphones have quite a high samp-
ling rate, which varies from 1 kHz to 2 kHz [25,29,31]. However the sampling
rate is limited by the smartphone manufacturers to a maximum of 100-
200 Hz depending on the smartphone model. This is most likely done to
limit the power consumption.

Gyroscopes

Gyroscopes measure angular velocity based on the Coriolis force along the
X, Y and Z axis:

ω =

ωx

ωy

ωz.

 (3.2)

A challenge inherent to gyroscopes is a bias causing a linearly increasing
error when the gyroscope data is integrated over time, called drift. The bias
can be substantially reduced by using a calibration period in which the bias
error is estimated and subtracted from later readings. This process will need
to be repeated periodically such that the error remains small.

Gyroscopes also have quite a high sampling rate, varying from 800 Hz to
8 kHz depending on the gyroscope model [30, 31]. As is the case with the
accelerometers, the smartphone manufacturers also limit the sample rate to
100-200 Hz.

Sensor fused orientation sensor

Sensor fusion is based on combining sensory data, such that the result is
better than using the sensors individually. The result of sensor fusion is a
virtual sensor, which combines one or more physical sensors by exploiting
their strengths while trying to diminish their weaknesses. In [5] it is investig-
ated how accelerometers, gyroscopes and magnetometers can be combined to
obtain the orientation of the smartphone. The result is an orientation sensor
which measures the orientation of the device relative to the East-North-Up
coordinates, and is represented as

ε =

αβ
ψ

 (3.3)

Here α, β and ψ denote the azimuth angle, elevation angle and skew angle
of the device, respectively. For simplicity, it is assumed that the device is
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held horizontally in the hands of the user. This means only the azimuth
angle α will be used in the movement prediction phase to determine the
direction of movement. This is of course an abstraction of reality where the
user may hold the device in a tilted manner. There are methods that deal
with this problem such that an estimate of the direction of the user can still
be found [24], however these methods were not implemented here.

Specifications

A summary of the sensor specifications from the used Samsung Galaxy SIII
is shown in Table 3.1 [31]. Since the orientation sensor is sensor fused, it’s

Table 3.1: Accelerometer, gyroscope and orientation sensor specifica-
tions [31].

Sensor Sample rate Scale Sensitivity

Accelerometer 100 Hz ±2/± 4/± 8 g ±1/±2/±4/±7.8
mg/digit

Gyroscope 200 Hz ±250/ ±500/
±2000 dps

8.75/17.50/70
mdps/digit

Orientation 200 Hz - -

scale and sensitivity are not known and only the sampling rate is known
through experimentation.

3.2 Translational movement

We assume the beams of both the STA and the AP are aligned after a
successful beamforming procedure. When the STA starts to move in a linear
direction, both the STA and the AP need to change beam direction, as can
be seen in Figure 3.1. This means that if the STA starts to move, it needs

STA

r

d

AP

Mis-aligned 
beams

Aligned beams

ϴSTA

ϴAP

Figure 3.1: A movement in a linear direction, also called translational move-
ment.

to notify the AP such that both devices know that their beam-pairs need to
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be realigned when the signal power drops.

The distance r after which the link begins to deteriorate can be calculated
as follows [18]:

r = d tan

(
Θmin

2

)
, (3.4)

where d is the distance between the STA and the AP, and
Θmin = min(ΘSTA,ΘAP ). ΘSTA and ΘAP are the half-power beamwidth
(HPBW) of the STA and AP, respectively. If the user is moving in a linear
direction as shown in Figure 3.1, the time after which the beam needs to be
switched is calculated with:

τtran =
r

v
, (3.5)

where v is the velocity of the STA. As an example; if the stations are d = 3 m
apart, the STA is moving at v = 1.5 m/s and Θmin = 30◦, the beams will
need to switch beams after τtran = 536 ms.

3.3 Rotational movement

When the STA experiences a turn, only the beam direction of the STA needs
to be changed, as can be seen in Figure 3.2. Furthermore, from Figure 3.2 it

STA

d

AP

Mis-aligned beams

ϴSTA ϴAP

Figure 3.2: A rotational movement.

can quickly be seen that the STA should switch its beam after the following
time:

τrot =
ΘSTA

2ω
. (3.6)

Here ω denotes the angular speed of the device. An interesting thing to note
is that τrot is not dependent on the distance between the STA and the AP.

To get an understanding of how often beam switching needs to be done,
angular speeds were measured [32]. Table 3.2 shows the necessity of perform-
ing frequent re-beamforming due to rotations if no additional information
is known. This was also explored and shown in [18] where beam switch-
ing needed to be done every 14-54 ms during rotations, depending on the
antenna setup.

Thus if the user is rotating the device at ω = 800◦/s and ΘSTA = 30◦,
the STA beam should switch after τrot = 18.7 ms. Comparing this to the
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Table 3.2: Angular displacement of a smartphone under different activit-
ies [32].

Activities Angular displacement
in 100 ms

Reading, web browsing (no change of orientations) 6◦ − 11◦

Reading, web browsing (horizontal from/to vertical
orientation changes)

30◦ − 36◦

Playing games 72◦ − 80◦

example switching time of τtran = 536 ms for translational movement, it is
clear that timing restrictions due to rotations are a lot more severe than
timing restrictions due to translations.

This chapter describes the available sensors; accelerometers, gyroscopes and
orientation sensors. Both the accelerometer and gyroscope can be used to
detect motion, while the orientation sensor gives an indication of the move-
ment direction. Angular and translational movements were discussed and
it was shown that rotations can cause faster link degradation than trans-
lations. In the next two chapters we discuss and show the results for our
two objectives. The first objective is to see if we can accurately identify
what caused the error: translation, rotation or blockage. The second ob-
jective consists of checking whether or not we can accurately predict the
next beam-pair when we know the origin of the error.
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Chapter 4

Activity Recognition

As explained in the previous chapter, two major types of movement can oc-
cur: (i) translational and (ii) rotational movement. Both types of movement
approach beam switching in different ways, which is why we need to differ-
entiate between them. This can be done by performing activity recognition
to identify whether a user is moving in a straight line or turning around.

In this chapter two activity recognition algorithms are explored. The
first algorithm, k-nearest neighbors (k-NN) is a simple, yet very effective
algorithm used in activity recognition [4,23], which uses a feature vector to
identify features specific to a certain activity. The second algorithm is an
extension of the well-known markov model (MM) and is called a Hidden
Markov Model [7, 21]. In a MM every state corresponds to a (physical)
observation, where the next state is only dependent on the current state,
this is often referred to as ”memoryless”. The hidden markov model (HMM)
is different from the standard MM in one unique way; the observation is a
probabilistic function of the state. Thus the actual (hidden) states are not
known, only the observed states emitted at every hidden state are known.
This allows for more complex and flexible models to be created.

4.1 k-NN

The k-NN algorithm is well known and can be described as follows [19]. Let
k be the number of nearest neighbours and T = {x1,x2, . . . ,xN} be the
training samples. xi = (f i, ci), where f i is the feature vector of the training
samples xi and ci is the class that xi belongs to. The feature vector was
chosen to contain the mean and standard deviation of a and ω, which have
shown good results as reported in [6]. The maximal autocorrelation of a was
also used as a feature to better detect the steps taken by a user. Resulting
in f = [µa, µω, σa, σω,max(Ra)].

A new sample x̂ = (f̂ , ĉ) is classified as shown in Algorithm 1. Mul-
tiple measures of distances can be used to calculate the distance d(f̂ ,f i)
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Algorithm 1 k-NN

1: for each x̂ = (f̂ , ĉ) do
2: Calculate the distance d(f̂ ,f i) between x̂ and all xi in T .
3: Sort T ascending based on the distance d(f̂ ,f i).
4: Select the first k samples from T , these are the k points closest to x̂.
5: Assign a class to ĉ based on the majority vote of the k classes.
6: end for

between the feature vector of the input sample and the training samples.
We chose to use the l2 norm, where the distance d is calculated as d(f̂ ,f) =√∑n

j=1 |f̂j − fj |2. Here n = 15 is the length of the feature vector.

Blockage can also indirectly be detected using sensors. If the SINR drops
and the device does not measure any movement, it is apparent that the beam
was blocked. Note that this conclusion is only valid if we assume movement
and blockage do not occur at the same time. If they do occur at the same
time, it will be difficult to identify the source of the link disruption.

4.2 HMM

In a MM every state can directly be observed, whereas in a HMM the actual
states are hidden. The only thing that can be observed are the observable
states emitted at every hidden state, as shown in Figure 4.1.

Observation 
sequence

Hidden state 
sequence

q1 q2

o1 o2 oT...

qT...

Figure 4.1: The hidden and observed states in the HMM.

The HMM can be characterized as follows:

• A set of N states: S = {s1, s2, . . . , sN}.

• A set of M observable states: V = {v1, v2, . . . , vM}.

• A sequence of hidden states: Q = (q1, q2, . . . , qT ), where the hidden
state at time t is denoted as qt.
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• A sequence of observed states: O = (o1, o2, . . . , oT ), where the ob-
served state at time t is denoted as ot.

• The state transition matrix: A = [ai,j ], where ai,j is the probability of
a state transaction from state si to state sj :

ai,j = P (qt = sj |qt−1 = si), 1 ≤ i, j ≤ N. (4.1)

• The observation symbol probability distribution in state j and for
observation k is B = [bj(k)] where bj(k) is

bj(k) = P (ot = vk|qt = sj), 1 ≤ j ≤ N, 1 ≤ k ≤M. (4.2)

• The initial state distribution: π = [πi] where πi is

πi = P (q1 = si), 1 ≤ i ≤ N. (4.3)

The model parameters of a HMM are represented as the tuple λ = (A,B, π).

4.2.1 Compute observation probability

The HMM based activity recognition uses multiple HMMs to determine
which underlying activity has the highest probability of happening. To de-
termine this probability the following question needs to be answered: ”How
do we efficiently compute the probability of an observation sequence given
a model, P (O|λ), where O is the observation sequence O = o1o2 . . . oT and
λ is the model λ = (A,B, π)?”. The probability of an observation sequence
O for a given hidden state sequence Q is [7, 21]:

P (O|Q,λ) =

T∏
t=1

= P (ot|qt, λ) = bq1(o1)bq2(o2) . . . bqT (oT ), (4.4)

and the probability of the hidden state sequence is:

P (Q|λ) = πq1aq1,q2aq2,q3 . . . aqT−1,qT . (4.5)

To calculate P (O|λ) we multiply Equation (4.4) and Equation (4.5) to ob-
tain:

P (O|λ) =
∑
Q

P (O|Q,λ)P (Q|λ) (4.6)

=
∑

q1,q2,...,qT

πq1bq1(o1)aq1,q2bq2(o2), . . . aqT−1,qT bqT (oT ). (4.7)

However, using this approach to calculate P (O|λ) we would need in the
order of 2T ·NT calculations [21].
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Thus to efficiently find P (O|λ) the forward-backward algorithm is used.
For the forward procedure, let us define the forward variable αt(i) as the
probability of the observation sequence O = o1o2 . . . ot and state si at time
t given the model λ:

αt(i) = P (o1o2 . . . ot, qt = si|λ). (4.8)

αt(i) can be solved using the following algorithm:

1. Initilization:
α1(i) = πibi(o1), 1 ≤ i ≤ N. (4.9)

2. Induction:

αt+1(j) =

[
N∑
i=1

αt(i)ai,j

]
bj(ot+1), 1 ≤ t ≤ T −1, 1 ≤ j ≤ N. (4.10)

3. Termination:

P (O|λ) =

N∑
i=1

αT (i). (4.11)

Using this procedure the calculations are now in the order of N2T , substan-
tially less than 2T ·NT .

4.2.2 Activity recognition using HMM

This section covers how we apply HMMs for activity recognition, inspired
by [16]. First we describe how the HMM is trained. After that it is shown
how an activity is identified based on an observation sequence.

Training the HMM

To classify the data in different categories the model parameters λ = (A,B, π)
of the HMM need to be trained. One can use either supervised or unsuper-
vised training. Supervised training assumes the training data is labeled
such that the parameters can easily be estimated. For unsupervised train-
ing the training data is not labeled and the Baum-Welch algorithm can be
used [21]. Since labeled training data is available (and necessary) for the
k-NN algorithm we will focus on supervised training. The state transition
matrix A = [ai,j ] can be estimated as follows:

ai,j = P (si|sj) =
Count(si, sj)

Count(si)
, (4.12)

where Count(si, sj) is the number of transitions from si to sj in the training
data.
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The observation matrix B = [bj(k)] follows from:

bj,k = P (vj |sk) =
Count(vk, sj)

Count(sj)
, (4.13)

where Count(vk, sj) is the number of observed emissions of vk at state sj in
the training data.

And the initial state π = [πi]:

πi = P (q1 = si) =
Count(q1 = si)

Count(q1)
. (4.14)

The model parameters A, B and π, now completely define the HMM.

Identifying the observation sequences

An activity is classified as one of four activities: (i) standing still, (ii) turning,
(iii) walking or (iv) both turning and walking. We use two sensors (acceler-
ometer + gyroscope) that are capable of measuring along three axes, thus
we have six different observation sequences. The six sensor-based HMMs
are trained for each activity, according to the procedure described in Sec-
tion 4.2.2, resulting in a total of 24 HMMs.

Sensors

Activity 1

Weighted sum using w

𝒂 =  

𝑎𝑥

𝑎𝑦

𝑎𝑧

  

...

HMM ax HMM ay HMM az

HMM ωx HMM ωy HMM ωz

Activity N

Weighted sum using w

HMM ax HMM ay HMM az

HMM ωx HMM ωy HMM ωz

Select activity with highest prob.

Activity

Prob. activity 1 Prob. activity N

𝝎 =  

𝜔𝑥

𝜔𝑦

𝜔𝑧

  

Map sensor values to HMM observable states

Training data Training data

Figure 4.2: The HMM structure used for activity recognition.
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To identify an observation sequence we use the procedure as shown in
Figure 4.2. The input is a sequence of sensor values a = [ax, ay, az]

T and
ω = [ωx, ωy, ωz]

T , which are observed for a certain duration.
The first step is to map these values to observable states for the HMMs

to use. The HMMs in our setup use discrete hidden and observed states,
thus to convert the sensor values to discrete symbols we round the raw
sensor values. It is possible to model the observed symbols as Gaussian
and thus create continuous states; however this increases the computational
complexity of the setup. Also the discretization acts as a filter to limit small
noise variations present in the sensor data.

The second step is to calculate the probability of the observed sequence
for every activity. This means we need to calculate P (O|λ), as described in
Section 4.2.1. Here O is the mapped sequence of sensor values and λ are the
model parameters of the trained HMMs. The probabilities are combined by
using a weighted sum w = [wax, way, waz, wωx, wωy, wωz].

Finally, the identified activity is based on the highest probability coming
from each individual activity. The different explicit features from the activit-
ies can be strengthened by assigning different weights w to the probabilities
calculated from the HMMs, which will be shown in the next section.

4.3 Results

We perform activity recognition using the sensors in the devices, such that
we can detect if the user is (i) standing still, (ii) turning, (iii) walking
or (iv) both turning and walking. The activity recognition was done by
sampling the sensors for 10 min at the highest sampling frequency, as shown
in Table 3.1, while doing the above activities. The training data was gathered
from the first 5 min of the recorded samples. Both activity recognition al-
gorithms were run on the remaining 5 min to determine their accuracy.

4.3.1 k-NN results

The k-NN search was tested with k = 1 and k = 3. The accuracy of the
k-NN search for different window sizes can be seen in Figure 4.3. A window
size of 0.1 s means we are trying to detect the activity from the last 0.1 s.
From Figure 4.3 it can be seen that there is almost no discernible difference
between using k = 1 and k = 3. Both achieve an accuracy of 100% when the
user is standing still, meaning we were always able to identify if the user was
standing still. Furthermore, turning could be identified with an accuracy of
96-100%, and linear movement was detected with an accuracy of 92-100%.
It can be observed that the combination of angular and linear movement was
the hardest to detect with only 81% to 97% accuracy. As was also explored
in [6] the window size has a big impact on the results. Basically there is a
trade-off between accuracy and speed. When the window size decreases, the
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Figure 4.3: The accuracy of the k-NN based search for different window
sizes with (a) k = 1 and (b) k = 3.

activity will be recognized faster, however the results will be less accurate
and vice versa.

4.3.2 HMM results

Using different weights the HMM based activity recognition algorithm also
produced two sets of results, as shown in Figure 4.4. Figure 4.4a shows the
accuracy of activity recognition with uniform weights w = [16 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ].

Next to that in Figure 4.4b the weights were changed to
w = [18 ,

1
8 ,

1
4 ,

1
8 ,

1
8 ,

1
4 ], such that more emphasis was put on the Z-axis

of both sensors. The reasoning behind this is that specific features of the
movement can best be seen along the Z-axis.
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Figure 4.4: The accuracy of the HMM based algorithm for different window
sizes with (a) uniform weights and (b) higher weight on the Z-axis.

In both Figure 4.4b and Figure 4.4a standing still achieved an accuracy
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of 100%. Also turning and walking individually give similar results for both
set of weights - in the range of 70% to 99% accuracy. The real difference
is observed when the user is both turning and walking at the same time.
Especially for a short window time of 0.1 s the accuracy rises from 33%
to 54% when higher weights are applied to the Z-axis, as compared to the
uniform weights.

Comparing HMM to k-NN it can be seen that activity recognition using
HMM does not perform nearly as well as k-NN. We suspect this is due to
two factors. The first is that for the k-NN algorithm specific features were
selected that could best identify each activity. Such as µa, σa for standing
still, µa, σa,max(Ra) for walking and µω, σω for turning. This inherently
gives the k-NN algorithm an edge over HMM, where no features were selected
and only raw sensor data was used as input for the model. The second factor
comes from using the short window times. We suspect that short window
times of 0.1 to 0.5 s are not sufficient for the HMM, which needs longer
observation sequences to differentiate between the activities. This can also
be seen from Figure 4.4 where the HMM algorithm performs almost, if not
as well as k-NN with a window time of 2 s.

4.4 Improvements for activity recognition

From Table 3.2 we observe that angular movement can happen rapidly. This
means that the window size of 0.1 s is not enough when the movement is
faster. Table 3.1 shows that he accelerometer is sampling at roughly 100 Hz,
which means 10 samples are taken every 0.1 s. To further increase the re-
action time for activity recognition, the window size needs to be decreased
further. If we strive for a reaction time of 0.01 s, consequently the window
time should be decreased to 0.01 s. This means we would observe barely 1
sample in a window, which is not sufficient to recognize an activity. To over-
come this limitation the sampling rate of the sensors needs to be increased.
If the sampling rate is increased, faster and more accurate results can be
obtained.

In this chapter two activity recognition algorithms were explored that use
motion sensor data as input. The first algorithm uses k-NN, which is a simple
algorithm focused on features specific for certain activities. The second al-
gorithm uses multiple HMMs to determine which activity has the highest
likelihood of happening. Results show that k-NN outperforms the HMMs,
especially for short window times. The next chapter describes the second
phase of this thesis, where the emphasis is on movement prediction.
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Chapter 5

Movement prediction

In the previous chapter, we presented activity recognition as a means to
identify the cause of link degradation, i.e., translational or rotational move-
ment, in 60 GHz communication using directional antennas. The next logical
step is to steer the AP beam in an appropriate direction such that the link
quality can be maintained.

According to IEEE 802.11ad, if the directional link between a pair of
devices is lost, the re-beamforming procedure is invoked, which is nothing
else than an exhaustive search for the best beam-pairs. Re-beamforming
consumes a significant amount of time to align the beam-pair, which reduces
the channel usage for transmitting data, as shown in Section 2.4. In this
approach we propose next location/angle prediction of devices based on the
observed sensor data. Instead of invoking the re-beamforming procedure,
the device can switch to the predicted antenna beam-pair, based on the
activity of the user. If the predicted beams are correct the STA/AP are
able to maintain the link quality. In case the predicted beam-pair is not
correct and the link is lost, the re-beamforming procedure still needs to be
performed. Thus our goal is to minimize the number of re-beamformings by
switching to predicted beam-pairs.

We assume a 60 GHz AP is located on the ceiling of the room. The
room in the test setup is divided into separate sectors, each with their own
beam directed towards them, as shown in Figure 5.1a. The STA is also able
to beam to the AP. To simplify the simulation only the azimuth plane is
considered for the STA beam, as shown in Figure 5.1b. This is a simple
2D case, where only clockwise and anti-clockwise rotations occur, thus the
beam elevation angle of the STA θSTA will not be considered.

This chapter will first explain the prediction methods that will be evalu-
ated in Section 5.1. After this the test setup and the movement prediction
results will be discussed in Section 5.2.
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Figure 5.1: The (a) room and (b) directional beams.

5.1 Prediction methods

Apart from using no prediction to switch the beam pairs, two prediction
methods are investigated: (i) simple prediction and (ii) sensor prediction.
All three methods are activated only when the received power drops by a
certain threshold PDth – the drop-off threshold. A forced re-beamforming
is done if the received power reaches the re-beamforming threshold PRth, as
shown in Figure 5.2.

Peak power

Peak power + PDth

PRth

Figure 5.2: A power curve showing the drop-off threshold PDth and re-
beamforming threshold PRth.

Using no prediction is easily explained; every time the signal power drops
by PDth, re-beamforming is performed. This method is the baseline where
no intelligence is used.

The other two prediction methods do require some sort of intelligence
and will be explained below. Both methods make use of the signed angle
distance between two angles ∆(a, b), expressed in degrees:

∆(a, b) = mod(a− b+ 180, 360)− 180, (5.1)

where mod(m,n), a and b are the modulo operation, target angle and
source/starting angle, respectively.
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5.1.1 Simple prediction

This prediction method is based on extrapolating the next beam sector from
the previous beam sector. This is done differently for both the AP and the
STA, both of which will be explained below. There is no distinction between
rotations or translations, since the simple prediction method is unable to
differentiate between the movements.

AP beam prediction

Using Figure 5.1a, if we take Sc = [xc, yc]
T as the current sector and Sp =

[xp, yp]
T as the previous sector. The AP predicts the next sector Sn as

follows:

Sn =

[
xn
yn

]
=

[
xc + sgn(xc − xp)
yc + sgn(yc − yp)

]
,

where sgn(∗) is the signum operator. For example, if the user moves from
beam sector [xp, yp]

T = [3, 1]T to [xc, yc]
T = [3, 2]T , the next beam sector

is predicted to be [xn, yn]T = [3, 3]T . This method works well if the user
is always walking in one direction, however if turns are made this method
wrongly predicts the next beam-pair.

STA beam prediction

The STA predicts the next beam based on the previous and the current
beam as follows:

φSTA(k + 1) =φSTA(k) + sgn(∆(φSTA(k), φSTA(k − 1)))φSTAas, (5.2)

where φSTA(k) is the beam direction of the STA at time k, and φSTAas is
the angle spacing between two adjacent beam directions of the STA.

5.1.2 Sensor prediction

Besides differentiating the beam switching prediction for the AP and the
STA, the sensor prediction also separates between rotational and transla-
tional movement. Before the beam prediction is done, the movement is
first identified using the sensors as explained in Chapter 4. The prediction
method employs the orientation sensor of the device. It is assumed that
the azimuth angle α from this sensor can be used as an indication of the
direction of the user.

AP beam prediction

Rotation prediction: Beam predictions for the AP in case of device rotations
are not applicable as seen in Chapter 3. In this case only the STA needs to
reorientate its beam in the direction of the AP.
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Translation prediction: If we again take Sc = [xc, yc]
T as the current sector.

Then the AP predicts the next beam sector Sn in the case of translations
as follows:

Sn =

[
xn
yn

]
=

[
xc + nint(sinα)
yc + nint(cosα)

]
, (5.3)

where nint(∗) is the nearest integer, or round function and α represents the
azimuth angle of the device orientation.

STA beam prediction

Rotation prediction: If the user is turning, the next beam of the STA can
be found with:

φSTA(k + 1) =φSTA(k) + sgn(∆(α(k), α(k − 1)))φSTAas. (5.4)

Note that this equation is very similar to that of simple prediction; however
we are now using the direction of the device to predict the next beam, in-
stead of the previous beams.

Translation prediction: If the user is walking, the next beam of the STA
is predicted with:

φSTA(k + 1) =φSTA(k) + sgn(∆(φSTA(k), α(k)))φSTAas. (5.5)

The function sgn(∆(φSTA(k), α(k))) should evaluate to 0 in the special case
where ∆(φSTA(k), α(k)) = 0◦ or ∆(φSTA(k), α(k)) = −180◦.

5.2 Evaluation

To evaluate the 60 GHz network with mobility we first need to create a test
setup, as described in Section 5.2.1. Secondly, we evaluate the different pre-
diction methods by exploring the statistical properties in simulation using
a random waypoint model (RWPM), the results of which are shown in Sec-
tion 5.2.2. Lastly, we also try to verify the simulations by illustrating what
happens along a single route, recorded with real sensor data. These routes
and their results are shown in Section 5.2.3.

In both the RWPM simulation and the single route verification we explore
two scenarios.

Scenario 1 The first scenario is where the user is standing/sitting in a
location in the room and rotating their device at the same time. Since
the only activity the user (STA) will be performing are turns, the AP
does not need to change beams. This scenario will often happen when
users operate their device.
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Scenario 2 The second scenario is less common where the user is walking
around in the room. In this scenario both translations and rotations
occur, and thus this scenario has the extra challenge of identifying
the activity, since different activities require different beam switching
strategies. To identify the activity the k-NN algorithm was selected
instead of the HMM algorithm since it achieved better performance,
as shown in Chapter 4.

In both scenarios the re-beamforming threshold PRth is set to -70 dBm, since
the receiver sensitivity for the most robust SC PHY MCS is -68 dBm accord-
ing to the IEEE 802.11ad [2] standard.

5.2.1 Test setup

The test setup is divided into two parts which are combined to create a
simulation environment. The first part consists of creating the room, the
TX antennas (AP) and a measurement grid. This environment was created
using a verified radio frequency propagation simulator, called Radiowave
Propagation Simulator (RPS) [10]. RPS provides close to real 60 GHz signal
strength at various locations on a floor plan. The second part happens in
Matlab, which collects the signal strength data from RPS. In Matlab a
directional RX (STA) antenna is added, and the RWPM and single route
are created for scenario 1 and 2. Both parts will be explained in more detail
below.

RPS setup

In RPS a room is created as shown in Figure 5.3a, with material properties
of glass, concrete and wood as shown in Table 5.1.

4 m

10 m

10 m

AP

STA

(a) (b)

Figure 5.3: The test setup in the room, where (a) shows the RPS simulation
environment and (b) the received power.
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Table 5.1: Dielectric properties of materials in 60 GHz [13].

Material Thickness (m) εRe εIm

Concrete wall/ceiling 0.3 6.14 -0.3015

Wooden floor 0.2 2.81 -0.0964

Wooden door 0.04 2.81 -0.0964

Glass window 0.02 4.58 -0.0458

A 100×100 grid is placed at a height of 1.5 m to simulate possible positions
of users when holding a mobile device. RPS is able to measure the signal
power at every position in this grid. A directional TX antenna is placed in
the middle of the room at a height of 4 m, which will act as the AP. This
antenna can be directed at one of 25 different sectors, such that a 5 × 5
grid is created as shown in Figures 5.1a and 5.3b. The TX antenna pattern
is Gaussian shaped, as is also assumed in the IEEE 802.11ad task group
channel model [17], and represented by:

G(θ, φ) = G0 exp(−γθ2), (5.6)

where G0, θ and φ are the maximum antenna gain, elevation and azimuth
angle of the beams, respectively. The coefficient γ is determined by the
HPBW as follows:

γ =
4 ln(2)

HPBW
. (5.7)

We chose a HPBW of 30◦ for the TX (AP) antenna, such that some overlap
is present among the different sectors.

The antenna gain is calculated using the directivity of the antenna [15]:

G0 = kD, (5.8)

where k is the efficiency factor and D the directivity. When the HPBW is
known, the directivity can be approximated by [15]:

D =
40000

ΘazΘel
, (5.9)

where Θaz and Θel are the HPBW in the azimuth and elevation plane,
respectively. Thus for Θaz = 30◦ and Θel = 30◦, the antenna directivity is
D = 16.48 dB. The antenna efficiency k is chosen such that the resulting
maximum antenna gain is G0 = 16 dB.

In order to beamform to the 25 different sectors with center coordinates
[x, y], the TX beams and corresponding sectors were all given an azimuth
angle φ and elevation angle θ. These angles were obtained using the following
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simple geometric formula:

φx,y = arctan2 (x− xAP , y − yAP ) (5.10)

θx,y = arctan2
(
h,
√

(x− xAP )2 + (y − yAP )2
)

(5.11)

where h = 2.5 m is the height difference between AP and user, xAP = 5 m,
yAP = 5 m are the x and y coordinate of the AP. The x and y coordinates
represent the center of the sector, where x and y both range from 1 m to 9 m
in steps of 2 m. arctan2(y, x) is the four-quadrant inverse tangent function,
which gives the angle between the positive x-axis of a plane and the point
given by the coordinates [x, y] on it. The angle is positive for counter-
clockwise angles (upper half-plane, y > 0), and negative for clockwise angles
(lower half-plane, y < 0).

Using Equations (5.10) and (5.11) the TX antenna beams were assigned
beaming directions φ and θ as depicted in Table 5.2.

Table 5.2: Angles used in the RPS test setup where each cell denotes the
[φ, θ] of that sector with center coordinates [x,y].

9 −45◦, 24◦ −27◦, 29◦ 0◦, 32◦ 27◦, 29◦ 45◦, 24◦

7 −63◦, 29◦ −45◦, 41◦ 0◦, 51◦ 45◦, 41◦ 63◦, 29◦

5 −90◦, 32◦ −90◦, 51◦ 0◦, 90◦ 90◦, 51◦ 90◦, 32◦

3 −117◦, 29◦ −135◦, 41◦ 180◦, 51◦ 135◦, 41◦ 117◦, 29◦

1 −135◦, 24◦ −153◦, 29◦ 180◦, 32◦ 153◦, 29◦ 135◦, 24◦

y (m)
x (m)

1 3 5 7 9

The discussed parameters and others for the RPS setup are shown in
Table 5.3.

Table 5.3: RPS parameters.

Room dimensions 10× 10× 4 m

Carrier frequency 60 GHz

TX Θaz 30◦

TX Θel 30◦

TX power 10 dBm

TX antenna gain (G0) 16 dB

Noise figure 10 dB

Antenna polarization Left hand circular
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Matlab setup

In Matlab the signal strength values from the RPS grid are collected and
used for further simulations. To simulate the directionality of the RX (STA)
antenna we didn’t use RPS, instead Matlab was used. The same Gaussian
antenna pattern is used as for the TX antenna in RPS. To simplify our
analysis the RX antenna beams are only able to beam in a 2D plane, which
are uniformly spaced by φSTAas. This means Θaz = 30◦ and Θel = 180◦,
which (using Equation (5.9)) results in D = 8.70 dB. Again the antenna
efficiency k is chosen such that the maximum RX antenna gain is G0 = 8 dB.
These and other parameters for the Matlab setup are shown in Table 5.4.

Table 5.4: Matlab parameters.

RX Θaz 30◦

RX Θel 180◦

RX antenna gain 8 dB

φSTAas 22.5◦

Scenario 1 location [x, y] = [2, 2] m

Single route PDth -3 dBm

PRth -70 dBm

5.2.2 RWPM simulation results

We use a RWPM such that we can recreate multiple instances and compare
multiple types of movement prediction statistically. It is not possible to
match real sensor data to a random waypoint model, thus in the tests with
the RWPM the activity and the orientation of the user are assumed to be
known. However as we’ve seen in Chapter 4 the accuracy is not 100%,
thus the recognition accuracy obtained from using k-NN with k = 3 and a
window time of 0.1 s is applied in the RWPM. Furthermore, the orientation
data is also not perfect in the real world, thus an orientation error is added
in the simulated RWPM orientation data. The error was set to be zero mean
Gaussian with a standard deviation of 5◦, such as to simulate sensor and
environmental noise.

Scenario 1: stationary and turning

The waypoints in this scenario were 100 randomly generated angles to which
the device turns. Turning to these waypoints was done at random speeds in
the range of 6◦ to 80◦ per 100 ms. These values are taken from Table 3.2 to
represent different user activities.

For different drop-off thresholds the re-beamforming percentage and the
mean received power were calculated along the route. We use the total
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number of points along the angular route to normalize the number of re-
beamformings, such that a re-beamforming percentage is obtained. This
was run 100 times to obtain a statistically significant mean and standard
deviation, as shown in Figure 5.4.
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Figure 5.4: RWPM of scenario 1 without blockage effects and PRth =
−70 dBm. Different drop-off thresholds are plotted against (a) the re-
beamforming percentage and (b) the mean received power.

At every point along the route it is evaluated if the power has dropped
by PDth. In case it has dropped by PDth, the prediction method is initiated
and the next beam is predicted, or re-beamforming is applied when using
no prediction. If the power still reaches the re-beamforming threshold PRth,
the re-beamforming procedure is applied anyways. This may happen due to
either switching to an incorrect beam, blockage or the fact that the current
power combined with PDth is simply lower than PRth.

From Figure 5.4a it can be seen that only 0.1% re-beamforming is needed,
using sensor prediction at PDth = −5 dB. Using no prediction the re-beam-
forming percentage increases to 6.8% for the same PDth. Thus in the RWPM
for scenario 1, the overhead due to re-beamforming is up to 68 times lower
if sensors are used, as compared to using no predictions. For higher drop-off
thresholds (PDth = −3 dBm to −1 dBm) beam switching is triggered too
often, increasing the re-beamforming percentage for all prediction methods.

The trade-off can be seen when looking at the mean received power along
the route, as shown in Figure 5.4b. The mean received power of sensor
prediction is almost equal with using no prediction for PDth = −10 dBm to
−4 dBm, whereas the signal power for simple prediction is always below no
prediction and sensor prediction.

The previous results only show what happens when no blockage occurs,
or if the blockage is immediately resolved by using NLOS beam paths and
reflective surfaces. The results differ under the influence of blockage, since
blocked signals encounter 20-30 dB more attenuation [13]. Thus these same
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simulations were done, however now with the effects of body blockage. When
the user’s back is turned to the AP, we assume the user is standing in
between the device and the AP, resulting in a blocked link and thus lowering
the received power by 30 dBm. The width of this body blockage was assumed
to be 30◦ in angular terms. The results of the RWPM simulation with
blockage are shown in Figure 5.5.
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Figure 5.5: RWPM of scenario 1 with blockage effects and PRth = −70 dBm.
Different drop-off thresholds are plotted against (a) the re-beamforming per-
centage and (b) the mean received power.

Comparing Figure 5.4 to Figure 5.5 it can be seen that blockage has a
substantial effect on both graphs. At every instance, whenever the signal is
blocked, re-beamforming is attempted. Since no appropriate beam link can
be found in the case of blockage the power remains low. At the next instance
re-beamforming is attempted again until the signal is no longer blocked. This
results in an increase of the re-beamforming percentage by 12-13%, while
the mean received power is lowered by 3-3.5 dBm. Interestingly enough the
curves of both graphs do not change, only the vertical alignment is changed.

Scenario 2: walking and turning

This scenario also generated 100 random waypoints in the room, where the
drop-off threshold was plotted against the re-beamforming percentage and
the mean received power. No blockage effects were added, as the results
would only differ by a vertical displacement, as was the case for scenario
1. The re-beamforming percentage was again obtained by normalizing the
number of re-beamformings by the total number of points along the walked
and angular route. This too was run 100 times to obtain a statistically
significant mean and standard deviation as shown in Figure 5.6.

Figure 5.6a shows the same trend as can be seen in scenario 1, where
sensor prediction has the lowest re-beamforming percentage. The minimum
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Figure 5.6: RWPM of scenario 2 without blockage effects and PRth =
−70 dBm. Different drop-off thresholds are plotted against (a) the re-
beamforming percentage and (b) the mean received power.

re-beamforming percentage of 0.8% is obtained at PDth = −10 to −5 dBm
using sensor based prediction. As it was with scenario 1, for higher drop-off
thresholds (PDth = −4 dBm to −1 dBm) beam switching is triggered too
often, increasing the re-beamforming percentage.

A noticeable difference between scenario 1 and 2 is seen in Figure 5.6b,
where no prediction and sensor prediction no longer have the same mean
received power for lower drop-off thresholds. Instead a difference of ±2 dBm
mean received power can be observed between no prediction and sensor
prediction. This is probably due to sensor prediction not choosing the op-
timal beam-pair, but still staying above the re-beamforming threshold PRth.
Whereas no prediction continuously re-beamforms, which resets the current
beam-pairs to the optimal beam-pairs, thus achieving a higher mean received
power.

5.2.3 Single route verification

To verify the simulations, both scenarios are also performed in the real world,
only on a smaller scale as compared to the RWPM. For both scenarios a
simple route is created, as shown in Figure 5.7. In Figure 5.7a the rotations
are shown for scenario 1, where the user is standing still and turning. The
involved rotations are: [0◦ → 90◦ → −135◦ → −90◦ → 0◦]. For scenario
2, the user is walking along a route, starting at [x, y] = [1, 1], as shown in
Figure 5.7b.

As already stated, to predict the next beam sector, it is assumed that
the direction of the user with respect to the AP can be measured directly
using the azimuth angle of the device given by the orientation sensor. The
sensors were all set to the fastest sampling rate, as is shown in Table 3.1.
The sensor data from the user and the received signal strength values from
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Figure 5.7: The single routes for (a) scenario 1 and (b) scenario 2.

RPS are then combined in Matlab.

Scenario 1: stationary and turning

This route is defined as standing in one spot ([x, y] = [2, 2]) and turning
to multiple different directions as shown in Figure 5.7a. For this scenario
we chose PDth = −3 dBm, without any body blockage. The received power
for the three prediction methods is shown in Figure 5.8. Re-beamforming
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(b) Simple prediction.

0 100 200 300 400 500 600
−80

−75

−70

−65

−60

−55

−50

−45

−40

Angular distance (degrees)

R
e

c
e

iv
e

d
 p

o
w

e
r 

(d
B

m
)

 

 
Received power using sensor prediction

Re−beamforming points

(c) Prediction using sensors.

Figure 5.8: The received power for the three prediction methods, along
the route of Figure 5.7a, without blockage and using PDth = −3 dB and
PRth = −70 dBm.

needs to be done if a switch is made to a wrong beam sector or if the re-
beamforming threshold is reached. These locations are indicated with a red
star in Figures 5.8a to 5.8c.

Using no prediction, re-beamforming is performed every time the power
drops by PDth, resulting in 28 re-beamformings as shown in Figure 5.8a.
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Next to that in Figure 5.8b, three re-beamformings are required to sustain
the beamformed link, once for every time the turning direction changed
(not including the start). And finally Figure 5.8c shows no re-beamforming
is needed when sensor prediction is employed. This confirms the trend of the
RWPM simulations, that the re-beamforming percentage is lowest for sensor
prediction, and the mean signal strength is lowest for simple prediction due
to the sudden power drops.

Scenario 2: walking and turning

Using real measured sensor data along the route shown in Figure 5.7b, the
three sensors (accelerometer, gyroscope and azimuth orientation) are plotted
in Figure 5.9. Figure 5.9a shows the accelerometer data, where the steps
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Figure 5.9: Measured sensor data along the route of Figure 5.7b, where (a)
shows the accelerometer data, (b) the gyroscope data and (c) the azimuth
orientation.

of the user correspond to the pulses from the accelerometer’s Z-axis. The
turning points of the route can be seen from the gyroscope’s pulses along the
Z-axis in Figure 5.9b, and also directly from the device’s azimuth orientation
in Figure 5.9c.

The k-NN activity recognition algorithm is applied using these sensor
values, the results of which are shown in Figure 5.10. The parameters of
the k-NN algorithm were chosen to be k = 3 with a window size of 0.1 s to
achieve the fastest reaction. Again the importance of window size is shown
in both Figures 5.10a and 5.10b. Figure 5.10a uses a window size of 0.1 s,
and shows that walking and turning are both generally identified correctly,
however some erroneous hops are made between the recognized activities.
In contrast, Figure 5.10b uses a window size of 0.5 s and does not show these
small hops. Thus a window size of 0.5 s may be more accurate, however there
is an increased delay before the activity is recognized. The time stamps on
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Figure 5.10: The identified activities using k-NN with k = 3 and a window
size of (a) 0.1 s and (b) 0.5 s, using the sensor values from Figure 5.9.

the graphs indicate that using a window size of 0.5 s increases the delay in
the range of 0.2 s to 0.5 s. To see how quickly a window size of 0.1 s is able to
identify the angular movement, time stamps are also placed in Figure 5.9c.

As was done for scenario 1, the received power of the three prediction
methods was also calculated for the route of scenario 2, as shown in Fig-
ure 5.11. Again we chose PDth = −3 dBm, without any body blockage.
Using no prediction as seen in Figure 5.11a, re-beamforming has to be per-
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Figure 5.11: The received power along the route of Figure 5.7b, without
blockage and using PDth = −3 dBm and PRth = −70 dBm.

formed 28 times along the route. In contrast Figure 5.11b shows only 14
re-beamformings are required along the route when using the simple predic-
tion method. The number of re-beamformings along the route is reduced
to 4 if the sensor prediction method is employed, as shown in Figure 5.11c.
These results also confirm the trends which were obtained from the RWPM
setup.
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Three methods for predicting the next beam direction of both STA and
AP were analyzed. The first method was using no prediction, which usu-
ally achieved the highest average received power, at the high cost of re-
beamforming often. The second method consisted of using the previous and
current beam/sector to predict the next beam/sector. Results indicated
that it performed worse than no prediction w.r.t. average received power,
but that it performed better w.r.t. number of re-beamformings. The last
prediction method uses sensor data available to modern devices to predict
the next beam-pair. The sensor prediction method has the lowest number
of re-beamformings and still manages to maintain a good average received
power.
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Chapter 6

Conclusion

The unprecedented increase in the number of wireless communication devices
and the emergence of new bandwidth hungry multimedia applications re-
quire multi-Gb/s connectivity. The availability of large amounts of band-
width in the 60 GHz frequency band has made it a promising candidate
for short-range high-speed communication. To combat the high free-space
path loss at 60 GHz, directional antennas are used to confine signal power
in the desired direction. Unfortunately, directional links are prone to link
outage due to user movement. User movement introduces translational,
rotational or blockage errors in 60 GHz networks which can cause beam mis-
alignment when directional antennas are used. Using commonly available
sensors in mobile devices, it is possible to identify and predict the movement
and quickly realign the beams without disrupting the connection. This work
takes the first steps to incorporate sensor data as a means of improving net-
work performance.

To identify the movement causing the error, two classification algorithms
were tried; one based on k-NN and one based on HMMs. A trade-off between
window sampling time and accuracy was observed for both classification
algorithms, where most success was achieved with the k-NN algorithm.

Sensors were employed to predict the movement of users in a 60 GHz
network before the communication link is lost. Simulation results showed
sensor-based prediction can significantly reduce the number of beam searches
and thus lower the MAC overhead. This was verified by using real-life sensor
data applied to a generic route.

6.1 Limitations

As is the case with many works, this thesis too has its limitations. First of
all, the IEEE 802.11ad standard has no fields wherein the sensor data can
be transmitted. This means either the PHY or MAC data fields need to
include the sensor data.
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Furthermore, we assumed the user’s device only has an antenna pattern
in the azimuth plane, thus the beam stretched the whole elevation plane.
It was also assumed the user’s movement direction could be measured by
the azimuth angle of the device. Both these assumptions were made for
simplicity’s sake, and thus might not be an accurate representation of reality.

A lot of parameters were used during this research. Depending on the
parameter, it can impact the results either drastically or almost not at all.
As such this work does not list all the possible outcomes for employing
sensor based movement identification and prediction in 60 GHz networks.
However an attempt was made to create a generic environment, covering
many possible scenarios.

As was already discussed the sampling rate of current smartphone sensors
are limited by manufacturers, presumably to limit energy consumption.
However, faster sensor sampling allows for faster and more accurate activ-
ity recognition, lowering the number of re-beamformings, and thus improves
link stability.

6.2 Future work

Many research directions are possible within this work, hence many areas
were not explored. Some suggestions for future work are given below.

Sudden drops in power were observed when switching to an incorrect
beam-pair. We believe this can be improved upon by using a quick beam-
pair test, to rapidly see if the predicted beam-pair is capable of sustaining
the link. Furthermore, both the AP and the user’s device switch beams at
the same time when a dip in signal power is observed. This might not be
ideal and can be improved upon by using some sort of alternating algorithm
such that the change in signal power is more subtle.

The effects of blockage were investigated; however this was not done in
detail, due to time restrictions. Future work may focus on blockage effects,
other than blockage due to the user’s body. Also an emphasis may be put
on how sensors can assist in using NLOS paths to help recover a blocked
link.

Lastly, energy consumptions were not measured. It is reasonable to as-
sume that sensor-assisted movement identification and prediction will con-
sume additional energy, especially if the sensors are sampling at high fre-
quencies. Thus further research is required for sensor-assisted 60 GHz com-
munication on the area of energy consumption.
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