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Abstract—In the next few years, important developments are
expected in the Intelligent Transportation Systems (ITS) area.
One of the key issues enabling future solutions is achieving an
effective integration between mobile apps and vehicles. Such
integration can be efficiently achieved on all existing vehicles
by relying on the On Board Diagnostic (OBD-II) interface.
This allows obtaining critical information such as speed, fuel
consumption, gas emissions and system failures. In this paper
we propose a vehicle emulation platform, called VEWE, that
allows developing and testing OBD-II aware applications. The
advantages of this approach include: avoiding the need for a
real vehicle, allowing to easily generate realistic vehicle param-
eter patterns, and supporting emulated GPS functionality. We
evaluate our platform by conducting a performance analysis
in terms of OBD-II response times and channel capacity when
relying on a Bluetooth adapter. We compare our results with
respect to those obtained in real vehicles, and demonstrate that
our VEWE platform behaves similarly to realistic on board
devices, thereby providing a complete and reliable platform for
smartphone application development.

Index Terms—OBD-II; emulation; Bluetooth; application de-
velopment; performance evaluation.

I. INTRODUCTION

The Intelligent Transportation Services (ITS) envisioned by
the research community rely on efficient vehicular commu-
nications as the keystone upon which to build a plethora of
services, including accident alerts, traffic congestion updates,
infotainment, etc. Nevertheless, the slow process of standard-
ization and the adoption of new technologies by the vehicle
manufacturers requires taking a pragmatic approach, seeking
alternative solutions that allow to, at least, partially meet the
goals of these future systems and services. In this scope,
the widespread adoption of high-performance smartphones
emerges as the candidate solution to make vehicles “smarter”
if an efficient integration between both is achieved with low
costs.

The On Board Diagnostics (OBD-II) [1] standard, intro-
duced in 1994, has recently become an enabling technology
for in-vehicle applications due to the appearance of Bluetooth
OBD-II connectors [2]. These connectors enable a transparent
connectivity between smartphones and the different Electronic
Control Units (ECUs) available in the vehicle.

By combining smartphones with OBD-II devices, endless
possibilities in terms of novel services and applications arise,
including the detection of vehicle faults and interacting with
the manufacturer to solve them, developing applications to

automatically analyze driver behavior and suggest corrective
actions when necessary, or providing georeferenced data about
speed, CO2 emissions, or other relevant parameters.

Currently, it is already possible to find several smartphone-
based applications that rely on OBD-II communications [3].
However, the development of these applications has a high cost
since the developer has to deal with real ECUs from different
manufacturers in order to test and debug the applications,
usually requiring taking the vehicle for short test trips. To
avoid this requirement, and to speed-up the development
process, in this paper we propose VEWE!, a Vehicle ECU
Wireless Emulator that includes map-based mobility modeling,
and a simulated engine ECU accessible through a wireless
interface. The functionality provided by VEWE allows the
developers to test their OBD-II based smartphone applications
as if driving a real vehicle. To make sure that VEWE is able to
adequately emulate an OBD-II connection, we perform a set
of experiments to assess the performance of Bluetooth-based
OBD-II connections on real vehicles, and then use them to
validate the behavior of our platform. Experimental results
in terms of end-to-end request capacity and per-request delay
show that VEWE is able to accurately emulate an OBD-II
connection, as intended.

This remainder of this paper is organized as follows: in
section II we present some related works, evidencing how
our work differs from previous ones. The VEWE solution is
introduced in section III, and technical details are provided in
section ??. Experimental results are then presented in section
IV. Finally, section V presents the main conclusions of this

paper.

II. RELATED WORKS

Currently we can find a broad range of smartphone appli-
cations able to communicate with a vehicle’s ECU to provide
enhanced services to drivers in the scope of the Intelligent
Transportation Systems (ITS) area.

In a first group of solutions we can find simpler approaches
where the goal is basically to provide the user with a graphical
display of the different parameters obtained through the OBD-
II interface. Examples of such applications include Torque [4]
and the one proposed by Teng et al. [5].

! Available for download at: http://www.grc.upv.es/Software/vewe.html



A second group of solutions address road security and
inter-vehicle communications. In this context, Laskowski et
al. [6] proposed a rapid prototyping environment targeting
emerging data-intensive telematic and control applications.
Zaldivar et al. [7] proposed an Android-based application that
monitors the vehicle through the On Board Diagnostics (OBD-
II) interface, being able to detect accidents and send predefined
notifications. DriveAssist [8] is a solution for Android smart-
phones that allows to visualize traffic information originating
from both Vehicle-to-X (V2X) communications and central
traffic services (CTSs).

A third group of solutions focuses on monitoring relevant
data in vehicles. Tahat et al. [9] proposed such a solution,
which monitors the vehicle’s fuel consumption and other vital
electromechanical parameters; SMaRTCaR [10] goes a step
further by interacting with sensors on board and in the vehicle
surroundings.

A fourth group of solutions uses OBD-II retrieved param-
eters to indirectly monitor the driver behavior. Proposals like
Artemisa [11] and Driving coach [12] assess the driver’s
driving style from the standpoint of fuel. More recently,
Meseguer et al. proposed DrivingStyles [13], a solution able
to determine the type of road where the driver is circulating,
as well as his driving habits.

The aforementioned research works highlight the different
areas where there is a clear interest in developing smartphone
applications that interact with vehicles through the OBD-II
interface. Nevertheless, developers should perform frequent
test driving to evaluate their proposals, which is expensive
and time consuming. The platform presented in this paper
attempts to simplify and accelerate development by allowing to
jointly emulate OBD-II communications and geopositioning.
To the best of our knowledge, this is the first emulation tool
of vehicular mobility over real maps offering (i) access to
the engine ECU through OBD-II along with (ii) access to
geolocation information, all data being provided in a consistent
and coherent manner to resemble real-world behavior.

III. VEWE: VEHICLE ECU WIRELESS EMULATOR

VEWE is a solution developed to simulate vehicular be-
havior. It follows a client-server paradigm where an Android-
based client application queries a Java-based server to retrieve
a vehicle’s ECU parameters through a Bluetooth OBD-II
interface (see figure 1). By using VEWE, the developers of
OBD-II based smartphone applications are able to test them
as if they were moving in a real vehicle, thereby speeding up
the development time and lowering costs.

The VEWE platform is composed of the VEWE server,
running on a standard PC, and the GPSEmulator, an optional
application running on an Android client.

The VEWE Server is the main Java application, being
responsible for simulating the behavior of a moving vehicle,
its engine Electronic Control Unit (ECU), and its location. For
this endeavor it relies on different components: (1) Vehicle
Mobility Simulator, (2) Map Manager, (3) Engine ECU, and
(4) an OBD-II Emulator.
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Figure 1: VEWE architecture.

Concerning the Vehicle Mobility Simulator (1), it is respon-
sible for simulating a real vehicle, and dynamically determin-
ing the value of all relevant parameters. The Map Manager
(2) retrieves the actual street map from the OpenStreetMap
platform [14], and dynamically updates the vehicle’s position
on screen. The Engine ECU (3), it is a component used to
store the value of all relevant PIDs being simulated, which
can then be retrieved through the OBD-II interface. Finally, the
Bluetooth OBD-II interface emulator (4) creates and maintains
the OBD-II Bluetooth connection.

Besides the VEWE server application described above, our
solution also includes an Android component (GPSEmula-
tor) used to emulate a (fake) location on Android systems.
Together, the VEWE server and the GPSEmulator provide
a complete test system for Android-based mobile vehicular
applications.

Below we provide details about the vehicle simulator, the
emulation of GPS coordinates, and the OBD-II parameter
database.

A. The vehicle simulator

The vehicle simulator is a key element in the VEWE Server,
being responsible for modeling vehicle mobility according
to the user input, the vehicle characteristics, and the terrain
profile. To that purpose it relies on the acceleration calculator
module which, by taking into account the different forces af-
fecting the vehicle’s mobility - traction, friction, aerodynamic
and gravity - determines the acceleration value (see figure 2).
Based on the acceleration value, it then updates the vehicle
position on the map, as well as the desired parameters on the
engine’s ECU (e.g. speed, RPM, gear).

Real-time updating of the vehicle position on the map
provides the user with a feeling of control over the simulated
vehicle using the joystick available on screen. Notice that, by
modifying the vehicle characteristics element, different types
of vehicles can be modeled.

B. Emulating GPS coordinates

The Map Manager component obtains updated vehicle
coordinates from the vehicle simulator described above. In
particular, vehicle positions are updated by taking as reference:
(i) the current vehicle position, (ii) the orientation, and (iii)
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Figure 2: Overview of the vehicle simulator.

the distance traversed; the latter is calculated by combining
the vehicle’s speed with the inter-sample times.

The Map Manager component is able to provide geoposi-
tioning information to external applications through a Blue-
tooth channel. In our framework, we developed an Android
application whose only purpose is to generate fake positions
based on the information retrieved from the Map Manager
via Bluetooth (see Figure 3). This application, called GPS
Emulator, uses the mock location functionality provided in the
Android API to introduce the fake locations into the system;
to avoid interferences, it also cancels all other sources of lo-
calization information, including GPS, WiFi, or cellular-based
positioning. This way, all running applications that register for
localization services will receive the mock locations generated
by the VEWE Server Map Manager component.

C. Engine ECU and emulated OBD-II interface

Providing an emulated OBD-II interface accessible via
Bluetooth is one of the main goals of the VEWE platform.
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Figure 4: Structure of the OBD-II parameter database.

Similarly to the system deployed in a real vehicle, our OBD-II
interface allows retrieving parameters from the different ECUs
made available by the vehicle. In our platform, we model the
engine ECU, since it is the one managing all the OBD-II PIDs
that can be retrieved by users.

In order to retrieve the actual PID values, the OBD-II layer
communicates with the Engine ECU module. Figure 4 shows
the structure of the OBD-II database used, where the Engine
ECU handles a data structure capable of storing all the vehicle
parameters (OBD-II Codes) as well as the AT parameters.

As shown in Figure 5, the OBD-II emulator is able to
maintain a serial connection with a client, and adequately
process AT commands and PID requests, as would occur
when using real on board OBD-II devices. The requested
PIDs are then retrieved from the engine ECU. The OBD-
IT interface emulator converts the retrieved values to the
appropriate format for delivery through the serial port.

To avoid that application developers experience a per-
formance not comparable to real-life OBD-II devices, it is
important for VEWE to resemble the behavior of OBD-II
communications in vehicles. Notice than, when using a real
OBD-II adapter, two different delays are involved: (i) the delay
associated to serial mode communications using the ELM327
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Figure 5: Structure of Bluetooth OBD-II emulator module.

interface [15], and (ii) the delay associated to Bluetooth
communications using RFCOMM, which provides serial port
emulation over the Bluetooth channel. Since the Bluetooth
RFCOMM connection is common to both VEWE and real
OBD-II devices, only the serial communication between the
OBD-II connector and the engine ECU remains, and should
be modeled independently. To this purpose, VEWE uses a rate
controller to constrain the message reply rate (see Figure 5).
This rate controller connects to the ELM327 emulation core,
and it is able to model serial port transmission at 115.2 Kbit/s
by adapting the Bluetooth output data rate to this transmission
speed.

Equation 1 describes the total delay (D) introduced by the
serial port communications:

Dtotal = th + Dprop (5) (1)

where Dy, refers to the transmission delay, and D,
refers to the propagation delay. In a vehicular environment
the propagation delay will be insignificant compared to the
transmission delay (Dp.op << Dyg). Thus, we focused the
modeling efforts on the latter.

Equation 2 shows how to calculate the delay associated to
the transmission process:

L
Dy, Rap (s) 2)
where L is the total message size (in bits) according to the
protocol used, including headers and trailers, and Rgp is the
transmission rate over the serial port.

In the scope of VEWE, we adopted a byte-counting leaky
bucket to shape traffic in order to have a regular flow of
messages. In particular, we adopt the Leaky Bucket Algorithm
as a Queue approach described by Tanenbaum [16], where
the clock tick rate is adjusted to match the serial port speed,
and the bucket size is set to 64 KB, large enough to prevent
message dropping in most cases. As shown in section IV, this
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Figure 6: Analysis of the capacity of the OBD-II channel when
requesting PIDs of different lengths.

strategy allows to accurately shape traffic, providing a message
rate quite similar to that of a real system.

IV. PERFORMANCE ASSESSMENT AND PLATFORM
VALIDATION

In this section we evaluate the performance achieved when
retrieving information through a Bluetooth-enabled OBD-II in-
terface. We characterize the system behavior when attempting
to make ECU requests from the smartphone, comparing the
results achieved with a real vehicle to those provided by the
VEWE platform. The vehicle used for the real tests was a Kia
Sportage 1.6 Gdi (2011), which has a CAN bus type 2.0A
[17].

We start our analysis by determining the behavior of the
system in terms of channel capacity when varying the size of
the message carried in the data field of CAN frames.

Figure 6 shows the message arrival ratio when increasing
the number of PID requests per second. We find that, when
more than 18 PID requests per second are issued, the system
collapses, and so the number of replies is drastically reduced.
This is expected as the limited channel capacity prevents
delivering more replies, meaning that in real systems it makes
no sense to increase the number of requests beyond this
threshold. We also show that the size of the different PIDs
requested does not significantly affect performance, being the
behavior similar for all sizes. Notice that the message header
and trailer used in CAN frames reduces the overall impact of
the message carried in the data field.

Figure 7 shows the saturation behavior when comparing
the results obtained using a real OBD-II device against
those provided by VEWE. It is noticeable how the OBD-II
communications performance causes the reply rate to drop
beyond the upper limit supported by the serial channel (18
requests per second). Beyond that upper limit, the number of
reply messages per second becomes slightly erratic, actually
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when testing with different message sizes.

going below the maximum value supported. In the case of
VEWE, even though the station emulating communications
has enough CPU power to reply to the requests, and despite
the Bluetooth channel offers more than enough bandwidth, we
found that the leaky bucket traffic shaping approach described
in section ITI-C works effectively, avoiding that the number of
replies provided by the server increases above 18/20 messages
per second, thus resembling a real system. Notice that the
performance of VEWE does not collapse when the number
of incoming requests per second becomes high since the
computing power of the desktop PC used to run VEWE is
more than enough to process such requests, contrarily to the
ELM327 chip located inside the OBD-II connector, which has
quite limited resources.
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Figure 9: Frequency histogram for the response time.

Focusing on the response times, Figure 8 shows the behavior
when requesting PIDs with different sizes. In particular, we
retrieve PIDs corresponding to sizes 1, 2 and 4 bytes, thus
covering all typical possibilities for standard PIDs. Results
show that, in general, the range of values is usually the
same. Typical values are usually greater than 50ms, and lower
than 165ms. Only in rare occasions do delay values grow
beyond 200ms, never surpassing 240ms. Overall, Figure 8
highlights that, although some differences are detected, the
user can expect a same delay independently of the size of
the PID requested. This occurs because most of the end-to-
end delay jitter is introduced by the Bluetooth channel, which
is prone to introduce more time variability when processing
messages [18].

Finally, Figure 9 shows the average response time his-
togram. Notice that one of the main goals of the OBD-II



emulation system introduced by VEWE was making the delay
experienced by smartphone applications to be similar to that
achieved using real OBD-II devices.

We can see that the VEWE platform provides a similar
behavior, having a similar range of values, the same mode and
a very similar skew compared to those values achieved using
a real vehicle. Such results also confirm the adequacy of using
a leaky bucket of the byte-counting type to delay messages,
thus accounting for the transmission delay associated to the
ELM327 serial connection.

From the application development perspective, the OBD-
II communication characteristics of VEWE resemble that of
a real vehicle in terms of both (i) maximum number of
PID requests served per second and (ii) delay distribution
associated to response times, thereby being validated for its
target purposes.

V. CONCLUSIONS AND FUTURE WORK

Future ITS systems are expected to enable novel services
and solutions in vehicular environments, providing drivers with
updated information about weather, road conditions, traffic
jams and accidents, among others. Similarly, vehicles also
contribute to global solutions by sensing the driver, the road,
and the different vehicle parameters, which can be delivered to
a central server for information fusion/data mining purposes.

Nowadays, a growing number of researchers is making
novel contributions to this field by integrating smartphones
with vehicles, which typically relies on wireless OBD-II in-
terfaces to act as a bridge between both. However, developing
such solutions is costly and time consuming, typically requir-
ing test drives to properly debug and tune the functionality
of the applications being developed. In this paper we provide
an efficient solution to this problem by introducing VEWE,
a novel platform able to emulate a Bluetooth-based OBD-II
connection, along with the GPS coordinates of the vehicle.
VEWE allows the developer to control the mobility of the
vehicle, as well as all OBD-II parameters required during the
course of application development.

One of our key requirements was for VEWE to resemble
the behavior on board OBD-II devices. To achieve this, we
have modeled the serial port communications provided by
the ELM327 integrated circuit using a byte-counting leaky
bucket to shape traffic. Experimental results have validated
our approach, showing that VEWE behaves quite similarly to
real OBD-II devices in terms of channel capacity and delay
introduced.

Since currently there is no similar tool available for the
research community, the proposed solution is expected to
boost application development in the ITS area, reducing the
development effort and costs.

As future work we will make a wider analysis in order to
determine the performance differences associated to different
vehicle manufacturers and different OBD-II interfaces, trans-
lating those differences to our VEWE platform.
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