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Abstract—Efficient design of networks topologies is
challenging, especially with the arrival of the virtualization in
these last years. In this paper, we deal with the Capacitated
Network Design Problem (CNDP) with modular link capacities
to design minimum cost network while satisfying the flow
demands. We propose a two levels Genetic Algorithm (GA)
based model that can deal with several variations of CNDP. Our
proposition defines a new encoding scheme to treat the modular
case. Extensive simulation results on Atlanta, France and
Germany network instances show that the proposed algorithm is
much more efficient than the Iterative Local Search algorithm.

keywords: Network Design Problem; two level optimization;
Genetic algorithm; Modular capacity; Multicommodity flow
problem.

I. INTRODUCTION

To save resources (routers, optical fibers, etc.) networks
should be efficiently designed. Diverse networks models were
then defined and used to represent a wide range of issues
in transportation, telecommunications, logistics, production
and distribution networks. All these models consider a graph
composed of nodes and edges (optical fibers, cables, etc). For a
better use of these resources, networks designers should solve
the modular Capacitated Network Design Problem (CNDP)
which consists of selecting edges and the optimal capacities
to allocate to route a set of commodities between a source and
destination pairs. Each edge of the graph has a potential set
of module capacities with their associated costs, a fixed cost
that is incurred only if the edge is selected, and a routing cost
which is proportional to the amount of flows along the edge.
Each commodity is defined by an origin and a destination node
and the amount to be routed. The objective is to minimize three
criteria: edge cost, modules and routing. These capacitated
network design problems are NP-hard and very difficult to
solve in practice. The CNDP is a particular case of the well
known Multicommodity Network Design problem (MNDP),
in which we distinguish an important number of special cases
and extensions [1]. The most studied ones are:

• The unsplittable variant where the flow of each com-
modity is required to follow one route between the
origin and the destination, which increases the diffi-
culty of the problem [2].

• The expansion variant, where some edges already
have an existing capacity.

• The fixed charge MNDP [3][4] in which the link
capacities are known. Solving MNDP consists to de-
termine the set of edges that should be opened in the
final topology.

• The capacitated MNDP, where the number of modules
to install on the edges are modeled by integers [1]

• The Network Loading Problem (NLP), where the
number of module types is limited, each one with a
given unit cost and capacity.

Various heuristics and exact approaches have been developed
for designing capacitated networks. However, the heuristic
approaches are more likely to be trapped in local optima, while
the exact approaches are applied only to small or medium
size problems. Due to the weaknesses of the two approaches
and the increasing popularity of metaheuristic approaches, we
have witnessed many metaheuristics being applied to network
optimization problems. In this paper, we propose a novel meta-
heuristic that is based on Genetic Algorithms (GAs), which
has extensively been used to solve many difficult combinatorial
optimization problems in industrial engineering and operations
research. Genetic algorithms are one of the most powerful
and broadly applicable stochastic search and optimization
techniques and have achieved great advancement in related
research fields, such as network optimization, combinatorial
optimization, multi-objective optimization, and on so on. Our
contribution consists on an efficient two level evolutionary
algorithm that uses the GA and the Linear Programming (LP)
to solve a general model that can deal with diverse variants
of capacitated network design problems. We define a Modular
Implicit Encoding (IME) to encode individuals which is a very
flexible encoding scheme.

The remainder of this paper is structured as follows: related
work is introduced in section 2, notations and mathematical
formulation of the addressed problem are given in section
3. Section 4 describes and explains in details our proposed
algorithm. Experimental results are discussed in section 5
where we compare our proposition against Iterative Local
Search (ILS) technique. Finally, section 6 concludes the paper.

II. RELATED WORK

Capacitated Network Design Problem is one of the major
research area in network optimization. It is related to two
issues: Network Design Problem (NDP) and Network Loading
Problem (NLP). In the NDP, the goal is to identify the net-
work topology by selecting routers and links that interconnect



them. Thus, the objective function aims to minimize the total
constructive cost under some topological constraints. In this
class of problems, the flow is not modeled, consequently it
is considered as uncapacitated. In the NLP, it is assumed
that the topology is already established. Thus, solving NLP
consists to search for the set of resources to allocate for
the network components. These problems are complementary.
Generally, NDP and NLP are solved separately though they
are combined together in some cases. One can say that most
of network optimization problems can be seen as a kind of
(1) NDP, (2) NLP or (3) a combination of both where the
objective and the constraints may differ from one problem to
another: connectivity [5] [6], limited budget [7], hop limit [8]
[2], delay [9] [10], reliability [8] [9], and survivability [10].
The NLP in capacitated or uncapacitated case and with both
single or multiple facilities is a special case of the well known
Multicommodity Network Design Problem (MCND). Previous
works on this problem can be classified as:

• Uncapacitated network design problems where on
each link of the network, it is only possible either to
open the link with infinite capacity and a given fixed
cost, or the cost is zero and no capacity is available
[11].

• Single facility capacitated network loading problem
where, the capacity can be done by installing on each
link an integer unit of a given basic facility [12].

• Two facilities capacitated network loading problems
where the capacity can be achieved by means of two
types of modules, each capacity has a specific cost
citerefKerivin.

• Multi-type facility capacitated network loading prob-
lems where various types of capacities can be installed
on each link, each facility has a specific cost [7].

The early works on capacitated modular network problems
were focused on the approximation methods. These methods
define residual capacity and cut-set inequalities for single com-
modity and multicommodity cases on directed, undirected and
bidirected link models [13][14]. Since these works consider
that the underling network is established, they focus only on
the determination of the facilities allowing the accommoda-
tions of flow demand. Their effectiveness depends on the size
of the problem instance.
With the appearance of metaheuristics, both the NLP and
the NDP have attracted some attention. The authors benefit
from their efficiency to deal with more complex variants
with real size instances. In [15], the author compared several
neighborhood structures to solve the uncapacitated facility
location problem. In [10], the authors proposed an evolutionary
approach for capacitated network design considering cost,
performances and survivability. The objective is to minimize
network cost and packet delay. Kleeman et al. [9] used an
evolutionary algorithm to solve multicommodity capacitated
network design problem with an objective function optimiz-
ing costs, delay, robustness, invulnerability and reliability. A
tabu search heuristic algorithm with real costs on facilities
is developed in [16]. A firefly algorithm is proposed by
Ragheb et al [7], they combined facility location and network
design problem with multi-type of capacitated link and limited
budget on facilities. Contreras et al. [17] presented a unified

framework of general network design problems which combine
location decision and network design decision.

III. MATHEMATICAL FORMULATION

Let G = (V,E) be an undirected network where V is the
set of vertices and E is the set of undirected edges. Let K be
the set of commodities. For each one k ∈ K, P k is the set
of paths associated to commodity k, and dk the flow demand
of commodity k. Let fij be the fixed cost of including edge
(i, j) in the network, rij the unit variable flow cost on (i, j),
and pij the pre-installed capacity on the edge (i, j).
The formulation of CNDP is shown below:
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This formulation is a mixed integer linear program which
uses three types of variables: the first type is a binary design
variable, which is defined as yij = 1 if (i, j) is included in
the network and yij = 0 otherwise. The second type is a
continuous path flow variable xk

p , which represents the amount
of flow of commodity k routed on p ∈ P k. The third type is
an integer allocation module variable, which is defined by nl

ij .
It represents the number of module type l allocated on edge
(i, j), where L is the set of potential modules. Each l ∈ L is
characterized by a capacity ml and an installation cost clij . A
positive capacity of edge (i, j) implies that it is used to route
demands in the two directions: from i to j or from j to i. This
formulation corresponds to a general model that can deal with
several variants of capacitated network design problems.

The objective function correspond to the sum of the
variable flow costs of commodities, the fixed costs of edges
and the allocated module costs. These costs are relative to
the problem that we deal with and are not all aggregated in
some cases. For instance, the fixed charge problem MNDP
includes only the edge costs. The modules and routing costs
on edges are nil. Constraints (1) consist of flow conservation
equations, which represent the fact that the sum of path flows
of commodity k is equal to the demand. Constraints (2) provide
the capacity constraints, which prohibit flowing if the edge is
excluded, yij = 0, and allow for flow up to the edge capacity



if the edge is included, yij = 1. Constraints (3) provide the
forcing constraints, which prohibit flowing commodity k if the
edge is excluded, and allow for flow up to the demand if the
edge is included. Constraints (4) and (5) express respectively
the binarity and the non-negativity of variables decisions.
Constraints (6) show that the modules facility are allocated
in a discrete amounts.

Recall that when the edges and the modules are fixed
and known (i.e. ȳ, n̄ is already determined) the path based
formulation of CNDP becomes a Capacitated Multicommodity
Flow Problem (CMFP) that is solvable in polynomial time and
formulated bellow:
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A solution to the CNDP can be viewed as a binary assignment
(ȳ) to each design variable, an integer vector assignment (n̄)
to the allocation module design variables and the optimal
flow of the corresponded multicommodity minimum cost flow
problem x∗(ȳ, n̄). So the objective function value associated
to a solution (ȳ, n̄, x∗(ȳ, n̄)) is the sum of the fixed cost of
the open edges in (ȳ), the cost of the modules allocated (n̄)
and the objective function value of the CMFP associated to
x(ȳ, n̄)∗.

In the next section, we use the genetic algorithms to explore
different potential solution areas by choosing various vector
values (ȳ, n̄). Then, we apply the CMFP model (the above
linear program) to solve CNDP.

IV. GENETIC ALGORITHM FOR CNDP

Genetic algorithms introduced by Holland [18], are based
on the mechanics of natural selection and natural genetics.
They start with an initial set of random solutions, called
a population. Each individual in the population is called a
chromosome, representing a solution to the problem. The
initial population evolves through successive iterations, called
generations. A measure of fitness defines the quality of an
individual chromosome. In each generation, chromosomes are
evaluated by a fitness function, also called an evaluation
function. After a number of generations, highly fit individuals,
which are analogous to good solutions to a given problem, will
emerge. Genetic algorithms consist of five components:

1. A method for encoding potential solutions into chro-
mosomes;

2. A means of creating the initial population;
3. An evaluation function that can evaluate the fitness

of chromosomes;
4. Genetic operators that can create the next generation

population;

5. A way to set up control parameters; e.g., population
size, the probability of applying a genetic operator,
etc.

A. Individual representation

In the design of genetic algorithms, the encoding is the
most important task. There are some methods to encode each
individual in a population, such as binary encoding, integer
encoding, etc. In this paper, we define a new encoding method
called IME (Implicit Modular Encoding) that is relative to
our modular case. An individual built by IME is shown in
figure 1. Each individual I is a matrix In,m, where n and m
corresponds to the number of modules and to the number of
edges respectively. Hence, I[li][ej ] gives the number of module
types li allocated on edge ej .
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Fig. 1: Individual with Implicit Modular Encoding

Our encoding represents the decision vector n and
implicitly the decision vector x. For example, the case of
one module type, T [l1][ei] = 2, means that we allocate two
modules on the edge ei. Thus, we implicitly deduce that edge
ei exists in the final topology. However, edge ej will not
be opened in the final network since T [l1][ej ] = 0. When
multiple types of modules are allowed, the edge exists if at
least one module is allocated on it, i.e:{

xe = 1 if
∑n

li=1
T [li][e] > 0

xe = 0 otherwise

B. Initial population

The initial population is generated according to the algo-
rithm depicted in figure 2. There are two ways to generate an
initial population; random initialization and heuristic initial-
ization. In our case,we used the heuristic one. We started with
an initial feasible solution, which is obtained by an Iterative
Local search (ILS) algorithm [19]. We encoded this solution
according to IME and we considered it as the initial individual
I0. Then, we apply some perturbation on I0 (by deleting one
module) to generate other individuals, wherein there are some
not feasible. For each new generated individual, we used the
LP solver (CPLEX optimizer) to check for the existence of
feasible flows. An individual is added to the initial population
if feasible flows are determined.



Algorithm 1 InitialPopulation

Inputs: S0 , K
Local variables: P0

P0 ←− ∅
Generate initial individual I0 throughout encoding ILS solution
with IME encoding
P ←− I0

foreach module {ln ∈ L} do
foreach link {em ∈ E} do

if I0[ln][em] > 0 then
Generate new individual I

′ ←− I
I

′
[ln][em] = I0[ln][em]− 1

if (CplexSolver(I
′
,K) == True) then

Add individual I
′

to P0

end
end

end
end
Return P0

Fig. 2: S0 is the ILS solution, K is the set of flow demands. P0 is the initial
population. L is the set of capacity modules. E is the set of links. I0 is the
initial individual. I

′
is the new individual. CplexSolver() is the procedure

that solve the MCFP on the network represented by individual I
′
, returns

True if it find a feasible flow.

C. Fitness function

The fitness function corresponds to the objective function
of CNDP. It is computed as the sum of the allocated module
costs, the fixed edge costs and the routing costs. Note that the
first two costs are deduced from the individual representation
whereas the routing costs are given by solving the CMNP
linear program.

D. Genetic operator

We randomly chose two integers (0 < x1 ≤ x2 ≤ m) and
two individuals (I1 and I2) in the current population. Then, we
used two-point crossover operator to generate new individuals
(see figure 3). Typically, a new individual Inew is generated
by selecting the modules of edges in [e1, ex1 [∪[ex2 , em] from
I1 and [ex1 , ex2 ] from I2.

E. The genetic algorithm

After explaining and detailing the basic components of our
proposed genetic algorithm, we describe below its operation
(see figure 4 for instructions). In our algorithm, we first ini-
tialize the population through InitialPopulation() procedure.
Then N successive populations are generated by applying the
two-point crossover operator (Crossover()).

I1 I2 

Inew 

x1  

 

x2  

 

Fig. 3: Individual with Implicit Modular Encoding

Algorithm 2 Genetic-Algorithm

Inputs: S0, K
Local variables: i, P , Gbest
P ←− InitialPopulation(S0,K)
Gbest←− best individual in the population P
Termination←− false
while ! Termination do

i←− size of population P
while i < Max-Size do

(I1, I2)←− RandomSelection(P)
(x1, x2)←− RandomSelection(P-size)
(x1, x2)←− Order(x1, x2)
Inew ←− Crossover(I1, I2, x1, x2)
if (CplexSolver(Inew,K) == True) then

Add individual Inew to population P
Update Gbest
i ←− i+1

end
end
P ←− CleanPop (P)
Update(Termination)

end
Return Gbest

Fig. 4: S0 is the initial solution, K is the set of flow demands. Gbest is
the best value . P is the current population. MaxSize is the fixed size of the
population. I is the individual. CplexSolver() is the procedure that solves
the CMFP on the network represented by individual I

′
. It returns the value

True if it founds a feasible flow.

As said previously, only individuals allowing a feasible
multicommodity flow solution are added to the current popu-
lation. This is verified by the running of CplexSolver() pro-
cedure. The best solution Gbest is updated at each generation
and returned when the termination condition is satisfied.
CleanPop() procedure allows to switch from one population
to another by selecting individuals from the first population.
It is based on elitist strategy. The algorithm stops its running
after a fixed number of generations or when the result is not
improved after a certain number of generations.



V. RESULTS

In our experiments, we used three real world instances of
network topologies including Atlanta, France and Germany50.
All can be downloaded from http : //sndlib.zib.de [20]. We
followed the model filter specified in table I. The population
size is 50 and the number of generations is 15.

TABLE I: The model filter

Demand model Undirected demand (U)
Link model Undirected links (U)
Link capacity model Modular link capacities(M)
Fixed-charge model No fixed-charge cost (N)
Routing model Continuous (C)
Admissible path model All paths (A)
Hop limit model No hop-limits (N)
Survivability model No survivability (N)

Each instance is characterized by the number of nodes |V |, the
number of potential links |E| = m and the number of traffic
demands |K|. Table II summarizes the instance specification
details. We classify them into two categories; instances with
Single Facility allocation (SF) and instances with Two Facili-
ties allocation (TF). The set of capacity modules L differs from
one network instance to another. The allocation cost MCost is
variant on links and it is fixed, however, in France instance.
Atlanta instance assumes a Pre-installed capacities pij on their
potential links with a unit routing cost rij . See [20], for more
details on the filter model and on the setting parameters.

TABLE II: The Instance Setting Parameters

Problem Instance |V | |E| |K| Nbr L MCost pij rij

Atlanta 15 22 210 TF 1000, 4000 variant yes yes
France 25 45 300 SF 2500 fixed no no
Germany50 50 88 662 SF 40 variant no no

In table III, ILS and GA corresponds to the solutions ob-
tained by iterative local search algorithm and genetic algorithm
respectively. We examine the quality of a given algorithm A
(A could be GA or ILS) by computing its optimality gap (see
equality 10) that is defined as the ratio between the difference
of the A’s cost and the Best Solution (BS) cost. Note that BS
corresponds to the best solutions published in [20].

GAP (A) = {Cost(A)−Cost(BS)}/Cost(BS) ∗ 100 (10)

TABLE III: The ILS and GA solutions

Instance BS ILS Gap% GA Gap%
Atlanta 86492550 92904547 7.41 87959303 1.69
France 20200 21400 5.94 20600 1.98
Germany50 645520 719060 11.39 667840 3.45

As depicted in Table IV, GA is better than ILS since it
determines solutions more close to the optimums than those
of ILS. Concretely, the mean gap obtained with ILS is 3.5
times higher than the mean gap obtained with GA. This can

Fig. 5: Atlanta network

Fig. 6: France network

be explained by the exploration of multiple solution areas with
GA while ILS determines only a local minimum.

Figures 5, 6 and 7 show the allocated capacities and
their usage for Atlanta, France and Germany50 networks
respectively. We compared the total installed link capacities,
the total working capacities and the total unused capacities for
BS, ILS and GA solutions. We remark that the total installed
link capacities in ILS and GA are more larger than the BS
ones. This justifies the cost gap. On the other hand, ILS
uses much more working capacities than BS because ILS
wastes module resources. Indeed, instead of splitting flows and
exploring the small unused capacities on links, ILS routes the
majority of demands on single shortest paths. With GA, the
CPLEX optimizer try to exploit the residual quantities on the
allocated modules to route flows. This leads to a bifurcation
of demands on multiple paths that could be arbitrary long
(although routing costs slightly limit the path lengths).

VI. CONCLUSION

In this paper, we proposed a two level evolutionary ap-
proach to solve several special cases and variants of the capac-
itated network design problem. Our algorithm has two levels,
the higher one is the genetic algorithm, that deals with the link
selection and the modules allocation decisions. The lower level
is the LP solver (CPLEX optimizer), which fixes the routing
decision by searching for a feasible flow according to the



TABLE IV: Working and Unused capacities

Atlanta France Germany50
Instance BS ILS GA BS ILS GA BS ILS GA

Total installed link capacities 294000 307000 300000 252500 270000 257500 7200 8000 7440
Total working flow 282338.50 281188 284503 246938 237952 240351 7140 7024 7265.83
Total Unused flow 11661.5 25812 15497 5562 32048 17149 60 976 174.17

Fig. 7: Germany50 network

network configuration made in the higher level. For efficiency,
we rigorously defined the main components of the genetic
algorithm. The initial solution is generated by an iterative
local search algorithm, which is combined with an heuristic
procedure to construct the initial population. To better explore
the solution space, we defined a very flexible and meaningful
encoding scheme called IME (Implicit Modular Encoding),
two point crossover operator and an elitist population strategy.
The results are very satisfactory. Indeed, the basic idea of
combining genetic algorithms and linear programming for
solving the problem in two levels is effective. Simulations
show that our two level approach is better than the iterative
local search approach since it determines solutions close to the
best known ones.
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