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Abstract—The introduction of Dynamic Adaptive Streaming
over HTTP (DASH) helped reduce the consumption of resource
in video delivery, but its client-based rate adaptation is unable
to optimally use the available end-to-end network bandwidth.
We consider the problem of optimizing the delivery of video
content to mobile clients while meeting the constraints imposed
by the available network resources. Observing the bandwidth
available in the network’s two main components, core network,
transferring the video from the servers to edge nodes close to the
client, and the edge network, which is in charge of transferring
the content to the user, via wireless links, we aim to find an
optimal solution by exploiting the predictability of future user
requests of sequential video segments, as well as the knowledge of
available infrastructural resources at the core and edge wireless
networks in a given future time window. Instead of regarding the
bottleneck of the end-to-end connection as our throughput, we
distribute the traffic load over time and use intermediate nodes
between the server and the client for buffering video content to
achieve higher throughput, and ultimately significantly improve
the Quality of Experience for the end user in comparison with
current solutions.

I. INTRODUCTION

Video consumption over the internet has experienced a
continuous growth in the last few years and now accounts
for about two thirds of the total amount of global Internet
traffic. Its share is expected to increase to up to 79% by 2018
[1]. While video streaming services continue to raise their
popularity thanks to large availability of content and reduced
costs, Internet Service Providers are struggling to provide high
quality services to their costumers due to their inability to
allocate enough capacity to meet such demand, especially at
peak hours.

To adjust the demand to the network conditions, Dynamic
Adaptive Streaming over HTTP (DASH) has been introduced.
DASH let the client adjust the rate of the video stream by
monitoring the network conditions perceived by this stream.
DASH is a client-based rate adaptation, as the server is
stateless and the network is considered as a black box. The
client measures the end-to-end throughput between itself and
the server and modifies the rate accordingly.

While this approach has been incredibly successful and
DASH-like rate adaptation now accounts for most of the video
traffic (say, Netflix or YouTube), end-to-end rate adaptation
is suboptimal. Indeed, end-to-end monitoring measures the

lowest throughput of all the links in between the client and
the server, while the available bandwidth on these links varies
a lot.

As a simple illustrative example, consider the following
scenario of Figure [I} the client is connected to the server by
two links (say, a wireless link for the edge network, and a
wired link to the server). Both of the links’ bandwidth will
oscillate and in modern networks, both could be congeste(ﬂ
Therefore an end-to-end mechanism will yield the minimal
available bandwidth of each link. If for one unit of time,
the capacity of the wireless is 1 unit of transfer, while the
capacity of the wired link is 2, and for the next unit of time
the capacities are reversed, then the end-to-end mechanism can
only achieve a rate of 1.

However, inserting an intermediary node with storage ca-
pacity in between the two links could increase the throughput
significantly. In the illustrative example, during the first time
slot, the full capacity of the wired link could be used to
delivery 1 unit to the client and 1 unit to the intermediate
storage; in the second time slot, this extra stored unit can be
delivered over the air interface, for a total delivery of 2 units.
On average, the delivery is of 1.5 for each time slot, versus 1
in the end-to-end mechanism. While this example is simplistic,
and does not take into account rate adaptation, it shows the
benefit of a network-assisted content deliver mechanism. Here
we present an intermediated rate adaptation mechanism which
leverages the different time-varying capacities of the multiple
links in the network.

The goal of our work is to propose a novel infrastructural
approach to control the load on the network for clients with
quickly changing available capacity while maintaining high
quality experience for the end users. The experience is defined
as a set of quality metrics, such as average bitrate, temporal
variability and amount of rebuffering time. Our solution is
based on two key ideas: (1) to use local caches strategically
deployed into the access networks to decouple the transmis-
sion speed of the Internet long distance network from the
local access network and (2)to exploit the predictability of
future available infrastructural resources (at the core and edge

't is well known for instance that Netflix bandwidth is throttled inside the
network by operators with whom Netflix does not have a peering agreement.
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Fig. 1: Basic network representation.

wireless network) and the predictability of video requests to
distribute the load on the network of the video streams and
control the Quality of Experience for the end users.

The rest of paper is structured as follow: in Section [IIj we
will discuss our contributions in comparison to other related
works; in Section [III| we will present the network model that
we use to then design our solution; Section [[V| will provide a
detailed experimental analysis of our design through extensive
simulations and finally Section [V] will conclude the paper.

II. RELATED WORK

Bianchi [2] has considered the role of intermediate storage
in the content delivery, however in the context of ATM and
without rate adaptation. They did observe a similar benefit in
their application scenario. Since this work, Dynamic Adaptive
Streaming over HTTP (DASH) [3] has been introduced as a
standard for video streaming. It has been widely deployed by
many major video streaming services such as Netflix, Hulu,
and Youtube.

Letting the network assist in the delivery of the content
is related to the ideas of the Information-Centric Network
(ICN) architectures[4][S][l6] that have been proposed recently
to allow the network to be aware of content semantics. Some
have proposed to modify DASH over ICN, for instance in the
IRTF [7]]. [8] examines the interaction of DASH with ICN,
notes the potential issues, and identifies the synergies. [9]]
targets HTTP adaptive streaming (HAS) in Content-Centric
Networking (CCN) [4] for Scalable Video Coding.

[10] has looked at how to predict the request from the users
by looking a social interactions. Here, we use the natural
predictability that video streaming offers . [L1] describes a
web prefetching module running on the CDN main node (con-
troller) which downloads web contents that will be requested
in the future to the LAN CDN surrogates. Our work is different
as the time domain is much smaller and the prefetching utilizes
the bandwidth more dynamically. In addition, [11]] does not
specifically consider video contents. [12] tries to optimize the
utilization of the wireless channel to delivery buffered video
(i.e. streaming with availability of buffer at the receiving side)
conjunct with the minimization of the rebuffering time using
a bandwidth prediction model, but does not consider network
caching or adaptive video streaming.

[13] analyzes the potential benefits of CDN augmentation
strategies can offer for Internet video workloads using a dataset
of 30 million VOD and live sessions. It has also been observed
in [14][15] that fractions of viewers typically watch only the
first 10 minutes of video, around 4.5% of users are serial
early quitters, and 16.6% of users consistently watch video to

completion. This suggests that a user based prefetching policy
should be a natural extension for our work.

[[L6] proposes a Network-Friendly DASH (NF-DASH) ar-
chitecture for coordinating peer-assisted CDNs operated by
ISPs and the traditional CDNs. [[17] analyzes the waiting time
and network utilization with service prioritization considering
both on-demand fetching/caching and prefetching in a P2P-
assisted video streaming system. [[18] formulates the CDN as-
signment as an optimization problem targeting minimizing the
cost based on the QoE constraints to CDN servers at different
locations. [[19] shows by measurement the shortcomings of
today’s video delivery infrastructure and proposes a control
plane in the network for video distribution for global resource
optimization.

Hybrid P2P-CDN video streaming enhancements have also
been considered. That is, serving content from dedicated CDN
servers using P2P technology.[20][21] and telco-CDN (CDNs
operated by telecommunication companies, enabling users to
reach CDN caches that are closer) federation are two emerging
strategies. Telco-CDN federation can reduce the provisioning
cost by 95%. Using P2P can lead up to 87.5% bandwidth
savings for the CDN during peak access hours.

Proxy-assisted caching and prefetching has been widely
studied in the literature. Some approaches consider the quality
of the connections [22] and the usage of the client buffers [23]].
Approaches for transcoding proxy caching are also presented
in [24][25] in which the proxy caches different versions of
the content to handle the heterogeneous user requirements.
Prefix caching [26]] caches only the frames at the beginning to
minimize the average initial delay. Exponential segmentation
[27] divides the video object such that the beginning of a video
is cached as smaller segment. Lazy segmentation approach
[28]] determines the segment length according to the user
access record at the late time.

Proxy technologies have also been used to enhance QoE.
[29]] uses information about wireless channel quality at the
base station to provide QoE and fairness among clients.
[30] proposes WiDASH, a proxy for adaptive http streaming
over wireless networks that implements a quadratic linear
optimization problem to decide on the rate to use for each
user/segment while giving higher priority to lower video rates.

[28] discusses a segment-based proxy pre-fetching for
streaming delivery. [31] evaluates the 1-ahead, n-ahead, and
priority-based segment prefetching. The results show that if
the bottleneck link is between client and proxy, all prefetching
schemes achieve high cache hit rate after 2-3 client requesting
a video. On the other hand, if the bottleneck link is between
proxy and server, no prefetching helps. Our approach considers
the link between the cache and the server and makes a pre-
fetching decision accordingly.

III. NETWORK MODEL AND ARCHITECTURE

We build our system around the network model shown in
Figure [2] which follows the model presented in [2]]: in this
classical scenario, a clients connects to the Internet through
a local access network; the goal of the client is to retrieve



K Access Network

Orchestrator

Routing Fabric

Long Distance
Network

Access
Technology

Mobile DASH
Video Client

—

Local
Video
Cache

DASH
Video Server

Fig. 2: System model.

video contents from a remote server that can be reached by
traversing a long distance network. We focus on a scenario
where mobile devices are connected to the access network
through a wireless interface (or more than one); our system
is designed to be technology agnostic so both wifi or cellular
connectivity can be considered.

We base our video delivery model around the recently stan-
dardized Dynamic Adaptive Streaming over HTTP protocol. In
this protocol each video file is divided into segments of equal
duration encoded at different bitrates and all stored in one or
more webservers. The choice of using DASH as the underlying
technology for our system naturally derives from its popularity
that has been constantly out-growing other protocols over the
last few years thanks to its easiness of deployment as it relies
on the already available HTTP infrastructure of webservers,
proxies and caches. In a typical DASH system, a client inter-
ested in retrieving the video first has to retrieve from the server
a Media Presentation Description file that contains information
on the structure of the video, the available different bitrates for
the segments and at which location they are stored. Once this
step is completed, the client proceeds to sequentially download
consecutive video segments. When a new segment has to be
retrieved, the clients select an appropriate bitrate where the
decision is usually based on different factors such as recently
experience bandwidth [32] or current buffer size [33].

It easy to notice that this model heavily relies on the
ability of the client to estimate the available bandwidth and
general network resources, a task arguably very difficult under
normal network conditions [34], and even more complex under
wireless and mobile environments due to the high dynamicity
caused by time-varying fading, shadowing interference and
hand-off delays [35]], [[36]]. To combat these effects we propose
to move the adaptation logic where this information is more
easily accessible: into the network. In our system, a caching
system is made available strategically positioned inside at the
edge of the architecture. An orchestration system, that from
now on we will call the network controller and that could
be centralized or distributed implements the adaptation logic
by mean of periodically scheduling video segment requests
to temporarily store the corresponding video segments into
the cache; to do so, we assume that the controller, at the
beginning of a periodic time window of given size, schedules
the download of video segments to the available caches from
where the clients will the retrieve them from. The scheduling
process is based on two fundamental pieces of information to

which the controller has access:

e A general view of the network infrastructure resources
availability both in the core network and at the edge
network: as different studies have proved, it is indeed
possible to predict to a certain extent the variability
of users connectivity in wireless networks by either
exploiting movement predictability [37] or by recognizing
performance patterns [38]], which is even easier if done
from a convenient location inside the access network.

o Information on the client playback and buffer status:
assuming that the normal DASH client behavior is ex-
pected (i.e. sequential downloading of consecutive video
segments), the controller maintains a detailed view of
the current status of active video streams by tracking the
progression of the requested segments; this includes the
size of the video buffers available at each client and the
playback time.

While this description provides a general view of our
proposed architecture, we now analyze the details of each
protocol and algorithm implemented in our system; we start
from describing in Section how the basic DASH model
would be modified in order to exploit the new functionalities;
we then provide in Section details on the optimization
functions involved in the scheduling process and finally, Sec-
tion introduces the scheduling algorithm performed by
the controller.

A. System Protocols Progression

With the presented infrastructure we propose a solution
that integrates all the given components with the goal of
maximizing the Quality of Experience for the end users while
only exploiting the available resources made to the system
and without overrunning them. As previously introduced we
use the concept of a centralized controller that orchestrates
the necessary operations; while we present it as a centralized
solution, we claim that the same results could be obtained
with a distributed solution. Moreover, while we refer to this
orchestration system as the controller, we do not limit our
solution to Software Defined Networks: any technology able
to track HTTP requests can be applied; possible solutions
include the use of an HTTP proxy that manipulates the traffic
or obviously the use of a centralized SDN controller. Our
system uniquely relies on tracking and exploiting available
in-network resources (i.e. capacity and caches) and tracking
and eventually modifying HTTP requests from the clients. We
then abstract the required actions into three main steps.

1) Stream initialization. In order to initialize the streaming
process, each client has to request the DASH MPD file from
the server. The controller captures this requests and retrieve
the same information either by deep packet inspection of
the returned content or by requesting the same file from
the webserver. With this information, the controller obtains a
complete view of the video that can potentially be retrieved. To
simplify the description and our notation, we assume that each

video is composed by N segments sN = {s1,s2,....,sn5},



each of duration S seconds and available at A different
bitrates.

2) Bitrate Adaptation. Once the MPD file is retrieved, the
client can proceed to sequentially request the video segments;
while in a normal DASH setup, the client would be in charge
of selecting one of the available bitrates for each requested
segment, we leave this duty to the controller; this design
choice is justifiable by considering the fact that the controller
has the best possible view of the available resources, by
accessing infrastructure components and tracking the client
process through its issued requests; while it would be possible
to argue about the introduction of additional complexity into
the network, we argue that the complexity is sustainable if
the performance gains can justify it. The controller selects
among the different bitrates based on two main factors: status
of the video reproduction at the client (i.e. buffer size and
previous quality selection) and future availability of infras-
tructure resources; in particular we assume that the controller
has access to information regarding residual capacity available
in the network and bandwidth for any specific client for a time
window of size T' seconds.

3) Streaming process. Following the normal DASH model,
clients sequentially retrieve video segments by mean of issuing
HTTP requests. We differentiate from the original model by
having the clients to retrieve the video from the caching
system without the need of specifying any particular version of
the segment. This could be done using commonly exploited
techniques as for example: having the network controller to
modify the MPD originally retrieved replacing content URLSs
with locally resolvable ones or by transparently capture the
HTTP requests (e.g. if the controller is implemented as an
HTTP proxy) or 3) In order to meet the proposed goals the
controller divides the delivery path into two components: from
the server to the local caches available at the edge network
and from the caches to the client over the wireless link. The
controller uses the available information in the time slot of
size T seconds to provide in time delivery to the caches.

Additional details regarding the involved scheduling algo-
rithm will be provide in section but in order to do so,
we first need to introduce the Quality of Experience model
employed.

B. Optimization Function

1) QoE Model: We include in our model the following
typical key factors that play an active role in defining the QoE
for video streaming:

Average quality: multiple works have shown how the average
video quality can not be used as the sole metric in determining
the quality experienced by a user. Nevertheless, we still need
to have a way of factoring the proportional quality between
different available bitrates; for this reason we refer to previous
work [39] where has been widely proven that there is a direct
relationship between bitrate selection and quality governed by
logarithmic laws.

Temporal quality variance: different studies have proven
how representation switching can factor negatively against the
quality of experience; in particular, [39] found that only up to
0.5 quality switches per minute are considerable tolerable by
users, causing exponential increase on rate of abandonments
if these criteria are not met. Moreover, as suggested in the
ITU standard [40], human memory effects can distort quality
ratings if noticeable impairments occur in approximately the
last 10-15s of the sequence, exponentially decaying afterward,
causing past factors to relatively influence the current visual-
ized video.

Buffering time and ratio: it has been widely demonstrated
that frequency and length of video rebuffering highly affects
the perceived quality of a video stream where each event
increase the rate of abandonment and reduce the probability
of client return.

While the third factor negatively impacts the abandonment
rates from users, we will work with the initial assumption
that these events are occurring very infrequently; namely we
assume the available bandwidth always provide at least enough
resources to deliver the lowest quality video; a rebuffering
cost could then be introduced into our optimization function
to factor it into the scheduling algorithm.

We initially focus our attention on the first two points in
defining a model of the quality of experience perceived by a
client over a video session. First we we express the quality of
a video segment following the logarithmic law:

.

2y =al
q(riy7) = adn .

where 7 is the minimum quality available for the segment,
r; is the quality of the considered segment and « and f3
are specific factors that vary depending on the type of the
displayed content.

Taking into consideration the second factor, we define a
temporal quality variance penalty for two following video
segments selected at qualities ¢ (r;, ) and g2(r;,7) as:

v — n(q — gi-1);
—(gi — ¢i-1)

if ¢ > qi—1
if ¢; < gqi—1

where 1 and v positive factors that determines how much
changes impact the overall experience when a transition to
a higher or to a lower quality representation happens.

We finally formulate our quality model as the objective
function capturing the defined values, where for a sequence
of N segments selected at qualities g1 :

N

dlar) =D (ar —vr)

k=1

where v, = v(qF_,,)-

2) Cost Factors Considerations: We can include other
metrics in our model to account for the network incentives;
for instance, a network operator may have a peering agreement
such that it incurs a cost linear with the amount of bandwidth.
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Fig. 3: Example on how future knowledge can be used to
exploit residual capacity. (a) Provides the general scenario and
(b) its representation through cumulative downloaded data.

Therefore we can introduce a cost ¢y, = nr; with 77 some price
per unit of data transfer; also, there may be a cost associated
with the storage of data at the edge cache. Namely, if w(t)
is the amount of data in transit from the servers to the clients
which is stored on the edge cache at time ¢, we can introduce
a storage cost ¢, = Ky, we(t).

We can then subtract these costs from the utility to get a
joint objective which takes into account the QoE of the end-
user (or the benefit to the end-user as a potential revenue to
the operator) minus the costs associated with the system.

C. Rate and Streaming Algorithms

We model our system, introduced in Section [III} as a com-
position of four main blocs as shown in Figure 2} a web server,
that has complete availability of all the segments composing
the video; a long distance network, an access network that uses
a caching system in order to support the streaming process;
finally, a mobile client attached to the network through a
wireless interface. While more than one access interface could
be considered, we first focus our analysis on a single access
interface. Resources available on the two hops between the
server and the client are regulated by the available capacity
in the core network for the path connecting the server to the
access network where the caches are located, which we will
name the core network represented by a function ¢(t), and
by the throughput available to the client for the wireless link
giving the client access to the network, which we will name
the edge network represented by a function e(t).

Let us first introduce a supporting example to build intuition
behind the presented model. In contrast to current solutions
where the logic employed to perform the bitrate adaptation
process is based on estimation of available resources perceived
in the recent past, we consider a partially anticipative case
in which a finite window of future edge and core network
capacity variations are known beforehand. This information
is used by the network controller to schedule which video
segments to download in the upcoming future, by either
transferring directly the content from the server to the client,
or by using the available caches as support.

Assume that at time ¢, we know the evolution of the avail-
able capacities ¢y ;4w and ep ;4 w7, where W is the future
knowledge window size, and we do not know the capacity
beyond t + W. Consider the simple scenario represented in
Figure where W = 4 and c(t) is constant at 300kbps
and e(t) varies from a first 2 seconds period at 100kbps to
a second period at 500kbps. In this context a client wants to
retrieve a video divided in segments of size 2 seconds and
available at three different representations: 100kbps, 300kbps
and 600kbps. Initially the video buffer is empty, so let us
assume that the first segment of video will be downloaded at
minimum quality to reduce the startup wait time for the client.
This corresponds to downloading 200kbits of data which in
our example, given the initial bottleneck of the wireless link
will take 2 seconds to complete. Once this happens, the video
client has 2 seconds of video available for display and it
should try to download the next segment by this amount
of time otherwise a rebuffering event would occur (i.e. the
video client remains stuck waiting for more video data to be
available). We consider the amount of time until the moment
the next downloaded segment will be displayed its download
deadline t4. t; in our example will then occur at the time
of 4 seconds. In current scenarios, where downloads are
controlled by the client, only two representations would meet
the deadline: 100kbps (which would allow for more segments
to be downloaded) and 300kbps. In our anticipative case, we
know that even though the first download will be bandwidth
limited by the current bottleneck, we are actually under-
utilizing the network resources as 200kbps of unused capacity
have not been exploited during the first segment download.
As we are scheduling downloads in advance, when evaluating
the amount of time needed to download next segment we
consider the unused capacity as data that might actually have
been downloaded to the local caches. The actual amount of
data that could have been downloaded to a location in the
network (i.e. the caches) is easily calculated from considering
the cumulative versions of e(t) and ¢(t), that we will call E(t)
and C(t), as:

UC(t) = C(t) — E(t)

In our particular case, UC'(¢) is highlighted in black in Figure
and corresponds to 400kbits. Now we can assume that this
amount of data could have already been transferred close to
the edge network preventing the core network from being the
bottleneck in the second period. This difference can again be
noticed in Figure [3b} given that the amount of downloaded
data always corresponds to the minimum of the two functions
E(t) and C(t) (as a client can never download more than
what is allowed by the bottleneck in the network), at the time
of 2 seconds this would correspond to 200kbits. Assuming
no preemptive caching is applied, the amount of data that
could be downloaded in the second period is again delimited
by the minimum of the two lines and in this case it would
correspond to the plain line representing C(t). If we assume
that the core network has moved to the caches an amount of
data corresponding to the unused capacity, the minimum has



now to be taken between E(t) and the dotted version of C(t).
Our algorithm applies these concepts of deadlines and
evaluations of unused capacity to explore the state space of
valid combinations of segment bitrate downloads to select the
one in the time window that produces the highest QoE utility
value described in Section without ever occurring in
rebuffering events (hence always meeting the set deadlines).

Bitrate Selection Algorithm We now formalize the provided
concepts; we define the streaming process as a combination
of two tasks for each window of future knowledge: first the
controller schedules segments downloads given the available
predicted resources and the client reproduction status; second
the delivery of the segments to the the mobile hosts with use
of the edge caches. The core of the scheduling algorithm is
based on a recursive function performed at the beginning of
each time window as described in Algorithm [T} this function
searches for an optimal path (sequence of segment bitrates)
among all possible combinations. Starting from time ¢ and
given a potential bitrate j for the next required segment
with index ¢ determines the effect of such representation on
the download process and, once consumed the entire future
knowledge window, determines the QoE of the selected path.
The function calculates the download time for the given
segment using the available throughput and residual capacity
from previous steps. Each time the function is called from
the base algorithm, the starting residual capacity is assumed
to be zero. In recursive calls, the residual capacity in the
core network, if available according to the known cumulative
throughput functions C' and F, may be adjusted. As long as the
knowledge window limit is not reached, the recursion follows.
Once reached the end of the window (or potentially the end
of the video), the utility function value of the current path is
calculated and compared with the best path previously found
and only the better of the two is kept. In case a rebuffering
time event is detected, the path is declared invalid and the
function returns. Our algorithm can be summarized in four
main steps:

1) Avoid overrunning the client buffer by eventually wait-
ing until some space is created (lines 9 to 17).

2) Calculate the download deadline for the considered
segment (¢; 4) and evaluate given the previously accu-
mulated unused capacity if the deadline can be met by
calculating the amount of time necessary to transfer the
required data (¢;.); if not return the previously found
best path (lines 18 to 24).

3) If the future window has been consumed or the end of
the file is reached return the GREAT EST between the
current path and the previously best path based on their
utility value (lines 25 to 27 and lines from 35 to 37).

4) Otherwise recursively evaluate the same function for the
next segment (index ¢ + 1) over its possible representa-
tions. (lines 28 to 34).

After completing the recursive process, the sequence of seg-
ments with the highest QoE value is returned and the controller
can use it to instruct the other components on how to proceed

Algorithm 1 Path building algorithm
1: function FINDOPTIMALPATH(Z, j, UC, W,., B, D¢, Gpest)
2 // i - next segment index
3 // j - assumed bitrate of the next segment
4 // UC - available residual capacity
5: // W, - remaining time in knowledge window
6
7
8
9

// B video buffer available at client
// Dy time to complete displayed segment
// Gvest - current best path found

: if B == max_buffer_size then
10: wait until the end of current displayed segment
11: if D; > W, then
12: return GREATEST((pest, current_path)
13: else
14: reduce B by segment size
15: D, + segment size
16: end if
17: end if
18: UC' < increment given waited time
19: t; e < segment download time
20: if t;, c < Wr then
21: if ti,e > B+ D; then
22: // Rebuffering time > 0
23: return ¢p;
24: end if
25: if i == N then
26: // Reached end of video
27: return GREATEST(@pest, current_path)
28: else
29: Wy =Wy — e
30: update B, D; and UC given t; .
31: for all bitrates m do
32: FINDOPTIMAL-

PATH(i + 1, m, UC, W,., B, D¢, ®pest)

33: end for
34: end if
35: else
36: return GREATEST(¢pest, current_path)
37: end if

38: end function

(i.e. instruct the clients and the caches on how to proceed for
downloading the selected segments).

Interleaving windows. The main characteristic of our algo-
rithm is that it greedily tries to use as many resources as are
available in the time window without much consideration for
the following time slots. Since the QoE cost of switching to a
higher bitrate is lower than the cost of switching to lower
bitrates, the consequence of such behavior is the tendency
to select higher bitrates toward the end of the window to
consume the remaining capacity available. This is not always
the optimal path in the longer run, since it might be necessary
to choose a lower bitrate at the beginning of the next time
window, and thus suffer the QoE drop due to switching to a



lower bitrate immediately afterwards. To avoid this problem,
we consider an alternative solution: while we still apply the
same algorithm for the complete window of size W to select
the best path, we only apply the obtained optimal path until
an earlier moment W — ¢;, where t; is smaller than W. This
way we prevent a higher bitrate from being selected in the last
t; of the time window W, avoiding possible quality drops at
the beginning of the next window. After this is done, the new
considered window will start from time W — ¢;.

Cost analysis. The cost of the algorithm can be exponential if
the bandwidth considered is always bigger than video bitrate
(i.e. all possible representations could be downloaded). While
this obviously is an obstacle towards the deployment of this
algorithm, a set of simple measures and considerations can
be taken into account to have an effectively lesser actual cost
in real deployments: (1) as quality transitions (in particular
negative ones) negatively affect the final utility value, we can
set a limit on the number of these events; (2) if the bottleneck
bandwidth is always higher than a certain bitrate during the
duration of a time window, all video representations with lower
bitrate can be left out of consideration (3) in most cases the
total number of downloaded segments will be limited as the
window size is limited.

IV. SIMULATIONS

In this section, we evaluate the gains achieved by our
system and joint rate adaptation through a set of MATLAB
based simulations. In order to understand its potential, we
implemented the core logic of our system and compared it
to the behavior of common DASH implementations. While
different proprietary algorithms are used in some of the
available commercial solutions (e.g. Apple HLS, Adobe HDS,
etc.), we implement our baseline following the behavior in the
logic implemented by Netflix-like video services, which can
be summarized in two main characteristics:

o the DASH client downloads and keeps only video seg-
ments for the following ¢ seconds of playback at any
given time (i.e. the buffer size is limited by time, not
data space);

o the DASH client logic adapts video quality by a moving
average of the data rate estimates experienced on the
previous k segments delivered (we set k£ to 5 for our
experiments).

While it is easy to identify a wide selection of factors that
might affect the final results of our simulations, we try to fairly
compare the baseline with the two variants of our algorithm
by applying for each run the same conditions (i.e. evolution of
network infrastructure resources during the experiment time).
In the next two subsections we will describe the model used to
characterize these resources and the video data set employed
in our tests.

Video Dataset and QoE Model. For this set of simulations,
we used a video content of 5 minutes of length. The video
is divided into 2 second long segments, with each segment
available in three different bitrate representations (1 Mbps, 400

kbps and 100 kbps for the first case, 2 Mbps, 1.2 Mbps and
300 kbps for the second). While our system supports Variable
Bitrate for the the video segments, we use only constant
bitrates for these simulations (i.e. all segments at the same
quality level have the same size). The Quality of Experience is
calculated following the description provided in Section [[II-B}
using parameters: a« =1, =1, v=1=n=0.1.

System Resources and Network Model. In our simulations
we do not take into consideration availability of video seg-
ments at different servers; we use a single server that has the
desired video content available at all times. Moreover, we do
not consider any limit in the cache size of the intermediate
nodes. We provide results using two different network models:

o first, we model the available network bandwidth as two
finite-state, discrete-time Markov chains, where transi-
tions occur at constant times, every 2 seconds, and
transitions occur only between the two nearest states; this
is done to try to capture slow variations attributable to
client mobility (for the wireless links) and evolution in
congestion for the core network. These Markov chains

are:
0.5 0.5 0.0 0.0 0.0 0.0 100 T
0.33 0.33 033 0.0 0.0 0.0 300
0.0 033 033 033 00 0.0 500
Py = Ry =
0.0 0.0 033 033 033 0.0 700
0.0 0.0 0.0 04 0.4 0.2 900
0.0 0.0 0.0 0.0 0.7 0.3 12300
0.5 0.5 0.0 0.0 0.0 0.0 700 ]
0.33 033 033 0.0 0.0 0.0 900
0.0 033 033 033 0.0 0.0 1100
Po = Re =
0.0 0.0 033 033 033 0.0 1100
0.0 00 00 033 033 0.33 1100
0.0 0.0 0.0 0.0 0.5 0.5 11300

where Py represents the transition matrix for the wireless
access network where for each state the corresponding
bandwidth is shown in Ry (expressed in kbps); the same
values are shown for the core network in P and Rc.

o second, we use a real cellular trace, collected and pre-
sented in [41]. This trace consists of multiple days
worth of data collected in a real metropolitan envi-
ronment in a European city, using a HSDPA modem
while commuting with public transportation. The core
network is modeled similarly to the previous case,
using the same transition matrix but with the fol-
lowing values for the available throughput: Ro =
[1000; 1200; 1400; 1600; 1800; 2000]7".

Results. We evaluate our system under two varying factors:
video buffer size available to the DASH client and window of
future knowledge of available bandwidth at the two analyzed
network components. Figure [ collects all the results obtained.
For each of the data points represented, we repeated the
experiment 5 times and collected the average result. This does
not apply for the baseline in Figures fg| and [4h] as the future



5 5
210 5510 210 610
Baseline -- Baseline ---- Baseline
200 ——Normal —_ e |——Normal — ~ ——Normal
. Interleaved g 5 //——' Interleaved 200 855 Interleaved

190 a - ) N 8
2 </ =< 8190 =<
S0l \/ §45 = g5
> g =180 g
2170 =
= o 4 = o 45
5 160 g 444444 5170 g

>35F e > 4
150 < 160 Z
140 3 150 35—
0 40 60 80 0 40 60 80 5 15 5 15

20 20
Client Buffer Size (s) Client Buffer Size (s)

(a) Utility value with varying buffer (b) Average bitrate with varying

10 10
Future Window (s) Future Window (s)

(c) Utility value with varying future (d) Average bitrate with varying

size buffer size window size future window size
205 810" 205 o x10°
A ---- Baseline ---- Baseline = ---- Baseline
200 \ ~—Normal — ~—Normal 200 —_ ~—Normal
/ Interleaved 27 Interleaved 28 ) Interleaved
195 g - 195 g
@ = @ =
8100] ~/ . 26 S1e0 rY
~ © © ©
> 185 ~ £ > 185 £6
>
= 5 =
S180 % =180 ag)) s
175 ] 4 175 ]
L > >
PT0) M ] 700 b <4
165 3 165 3
0 60 80 0 40 60 80 5 15 5 15

20 40 20
Client Buffer Size (s) Client Buffer Size (s)

(e) Utility value with varying buffer (f) Average bitrate with varying

size buffer size

10 10
Future Window (s) Future Window (s)

(g) Utility value with varying future (h) Average bitrate with varying

window size future window size

Fig. 4: Simulation results. Figures a-d provide results for a Markov chain based wireless model, while Figures e-h use real

world traces collected in an urban environment.

window size can vary only for our algorithms; for these cases
we used a single data point using client buffer size of 20
seconds. In general, the results confirm the overall benefit of
our system with gains of at least 15% points in the utility value
for both our algorithm versions. This not only corresponds to
a more stable experience (as variations, in particular decreases
in quality, strongly affect the final QoE value), but also in a
higher average bitrate quality for all the experiments analyzed.

As expected, the buffer size available for the clients is
not a major influencing factor for the analyzed use case, as
neither algorithm uses the buffer size information to modify
its adaptation logic; we expect this parameter to gain more
importance for longer videos, where a low bandwidth period
might be better compensated by accumulated buffer.

More interestingly, we can notice that increasing future
knowledge window size also increases the computational cost
of schedule delivery time deadlines, since there are now longer
periods of time that are considered in the calculation. The
achieved gains in this case might not justify the additional
processing time costs.
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client experiment of the first analyzed case. This value enables
us to understand the resource cost of running our system,
and is of particular interest to service providers that would
implement such a caching scheme as scalability is directly
affected by the consumed resources. The amount of video data
buffered at the cache nodes using our algorithm ranged from
0 up to 365kB, meaning that it would scale well for larger
videos and higher number of clients and not impose a high
resource cost for the service provider.

V. CONCLUSIONS

In order to optimize delivering video content to clients, we
have incorporated the knowledge of network throughput in
a short future time window. Our model is based on DASH,
that is now used in most major video streaming services,
and in comparison with DASH it improves the usage of the
available end-to-end throughput between the server and the
client. Instead of having the entire network throughput equal to
the bottleneck of the used network path, we optimize the video
delivery method, utilizing the intermediate nodes between the
server that has the whole video content available, and the
client, as an intermediate video content cache. Using this cache
enables us to increase the effective throughput in certain parts
of the network path. In times when the core network has higher
throughput than the edge network, we increase the cache, and
then use the cached content in periods when the edge network
is faster.

We evaluated the gains achieved by using our method with
a set of MATLAB simulations. We implemented our algorithm
and compared it with the behavior of DASH implementations
against synthetic and real throughput traces. Our evaluations
demonstrate that our method of video delivery improves the



Quality of Experience for the end user by keeping the bitrate
more stable and achieving significantly higher average bitrates
than the benchmarks. While it does introduce some additional
costs for the content provider, we claim that the resource costs
are minimal, and the achieved gain outweighs the computa-
tional costs.
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