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Abstract—We analyze the conditions in which offloading com-
putation reduces completion time. We extend the existing litera-
ture by deriving an inequality (Eq. 4) that relates computation
offloading system parameters to the bits per instruction ratio of
a computational job. This ratio is the inverse of the arithmetic
intensity. We then discuss how this inequality can be used to
determine the computations that can benefit from offloading as
well as the computation offloading systems required to make
offloading beneficial for particular computations.

Index Terms—Cloud computing, mobile cloud computing,
communication, networks, cloud resource provisioning.

I. INTRODUCTION

Computing as a utility offers computation as a service over
a communication network in much the same way that the
electrical utility offers electric power as a service over a
power distribution network. Several advances have occurred
in recent years to make computing as a utility commercially
viable. These include advances in computing resource vir-
tualization/isolation, advances in high-bandwidth/low-latency
communication, and increasing economies of scale for large-
scale computing facilities. Cloud computing [1], [2] is a
recent buzz word that encompasses computing as a utility.
Many computing scenarios benefit from computing as a utility,
such as those where the computing demand is elastic or
unpredictable. However, one of the most compelling uses of
computing as a utility is to enhance the capabilities of edge
computing devices [3], [4] such as smart phones, tablets,
wearable computers, smart objects (e.g., smart appliances and
furniture), and cyber-physical systems (CPS). Edge computing
devices can be empowered by computing as a utility, through
remote execution, to execute real-time applications that would
not be possible on the edge device itself in the desired time-
frame. The act of remote execution on a so called “cloud
resource” is often referred to as computation offloading [5]
or cyber-foraging [6]–[8].

The computing devices that provide the computation of-
floading service to edge computing devices can exist not only
in a remote data center but in locations much closer to the
edge. These locations may be within the same room, at an
Internet access point, or inside an Internet Service Provider
(ISP) point-of-presence (PoP). These various locations provide
a tiered computing structure, see Figure 1, whereby cloud
computing resources can be found at varying distances from
the edge computing devices.

Recent research activities have produced a variety of pro-
gramming frameworks and systems that make computation
offloading possible. Spectra [9] and Chroma [10] were seminal
computation offloading systems that were followed up by
several others (e.g., Slingshot [11], MAUI [4], Cuckoo [12],
CloneCloud [13]). Clearly, mechanisms to facilitate compu-
tation offloading have received significant attention from the
research community. A recent survey on computation offload-
ing [14] identified two objectives for computation offloading:
(1) reduce execution time, and (2) shift energy consumption.
The survey also identified two classes of decision to be made:
(1) what computation to offload, and (2) where to offload
computation.

The decision regarding what to offload is generally referred
to as the partitioning problem and many techniques have been
proposed and evaluated [15]–[31]. Applications are partitioned
into components and a binary decision is made whether to
offload a component or not. The data exchanged between
the application components is considered when making the
decision to offload each component.

Much of the literature related to deciding where to offload
focuses on the binary decision of whether to offload or not,
which is similar to the decision of what to offload. Some of
the analysis developed is static and provides rules of thumb
regarding the conditions in which offloading computation
is favorable [32], [33]. The general consensus is that it is
beneficial to offload computation if there are large amounts
of computation and only a small amount of data that needs
to be transmitted over a communication network. Most of
the systems mentioned above that facilitate computation of-
floading (e.g., MAUI, Cuckoo) indeed included a computation
offloading decision algorithm that decided whether to offload
a computation or not (i.e., the binary decision). For example,
MAUI [4] contains a binary decision algorithm that is the
solution of a binary integer linear mathematical program
with an objective function to minimize energy consumption
subject to a particular completion time constraint. The decision
algorithm utilizes historical energy consumption and network
throughput data and executes on the offload target to avoid
burdening the mobile device.

In this paper we extend the literature that analyzes when
offloading reduces completion time. We derive an inequality
that compares offloading system parameters to computational
job parameters to determine when offloading would reduce
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Fig. 1. A five tier computation offloading system: (1) “plug computers” in certain rooms of a home (dual-core ARM systems) plugged into power outlets,
(2) server access points that are a combined wireless access point and multiprocessor/multi-core computer, (3) small racks of computers attached to light
posts in the community, (4) large racks of computers alongside racks of telecommunications switching equipment in telecom points-of-presence, (5) remote
data center (e.g., Amazon Web Services).

completion time. The computational job parameters we use
form a ratio that is related to the arithmetic intensity of a
computation [34].

A. Overview

In Section II we present the system model that we use in
our subsequent analysis. In Section III we present our analysis
of the conditions in which computation offloading can reduce
execution time. Finally, in Section IV we conclude with a
summary of our findings.

II. SYSTEM MODEL

The system under study consists of a client device that
produces computational jobs that can either be executed locally
or offloaded for execution on one of several cloud resources.
The cloud resources are distributed spatially in a network
at varying numbers of hops from the client device. If the
job is executed locally, the completion time is the time to
execute all of the instructions of the job at the execution
rate of the local computing device (i.e., computation time).
If the job is offloaded, the completion time is the time to
execute all of the instructions of the job at the execution
rate of the selected cloud resource (i.e., computation time)
plus the time to transmit the input and output data through
the network (i.e., communication time). In our analysis, we
consider the memory access times to be similar between the
local computing device and the cloud resources. This is a
reasonable assumption given the well documented processor-
memory performance gap [35]. We now present our models
for computation time and communication time that compose
our model of completion time.

A. Computation time

Let C be the size of the computational job (instructions),
e be the execution rate of the local computing device (in-
structions/sec), and E be the execution rate of that particular
compute resource (instructions/sec). The computation time for
the computational job executed locally is ξ = C

e and ξ = C
E

if it is executed on a particular cloud resource.

B. Communication time

We use a per-hop model of communication time that incor-
porates the generally accepted categories of delay incurred at
each hop [36]: (i) processing, (ii) queueing, (iii) transmission,
and (iv) propagation delays. Let S be the size of the packet
(bits), α be the processing delay at a hop in a network (sec),
β be the queueing delay incurred at that hop (sec), γ be
the rate of the transmission channel at that hop (bits/sec), l
be the length of that hop (meters), and c be the speed of
light (meters/sec). Then, the time required to transmit a packet
across one hop in the network is ψ = α+ β + S

γ + l
2
3 c

.
Let h be the number of hops along the path that a packet

traverses from its source to its destination. Ignoring the neg-
ligible processing and propagation delays, we transform the
equation above to characterize the end-to-end communication
time as ψ =

∑h
j=1

(
β(j) + S

γ(j)

)
.

Now, consider the transmission of a file that is larger than
the maximum allowable packet size. In this case, the file is
transformed into a packet train: several maximum-size packets
followed by a remainder packet that can be up to the maximum
size allowed. As individual packets in the packet train are
transmitted through several hops in the network, packet trans-
mission can occur in parallel. To model the communication
time considering the effect of parallel packet transmission, we
consider: (1) the time to transmit the entire file through the
bottleneck transmission channel, and (2) the time to transmit
the last packet in the packet train through each hop. Let F be
the size of the file (bits) and N be the size of the last packet in
the packet train. Then the communication time for the entire
file is

ψ =
F

min{γ(j),∀j}
+

h∑
j=1

(
β(j) +

N

γ(j)

)
.

C. Composite completion time model

Let x be the completion time, I be the size of the input
data (bits), and O be the size of the output data (bits). If the
computational job is executed locally, the completion time is:



x =
C

e
.

If the computational job is executed on a particular cloud
resource, the completion time is:

C

E
+

(I +O)

min{γ(j),∀j}
+

h∑
j=1

(
β(j) +

N

γ(j)

)
.

D. Useful ratios

The following two ratios are useful for our computation
offloading analysis.

The computing-to-communication ratio (CCR) is the ratio
of the computation time to the communication time. Using the
symbols above,

CCR =
ξ

ψ
.

The remote-to-local ratio (RLR) is the ratio of the cloud
resource execution speed to the local execution speed. Again,
using the symbols above,

RLR =
E

e
.

III. WHEN TO OFFLOAD COMPUTATION?

To favor remote execution (or computation offloading) for
reducing completion time, the following inequality must hold
true:

C

e
>

C
E

+
(I +O)

min{γ(j),∀j}
+

h∑
j=1

(
β(j) +

N

γ(j)

) . (1)

We now manipulate this inequality to derive useful insight
into computation offloading system design. To ease manip-
ulation of this inequality, we let H represent the hop-by-hop
network delay that is agnostic to the job size or the data size, F
be all of the data to be transferred over the network (input and
output), and Γ represent the transmission rate of the bottleneck
link in the network. We now isolate the RLR on the left hand
side of the inequality.

C

e
>

[
C

E
+

(
F

Γ
+H

)]

C

(
E

e
− 1

)
> E

(
F

Γ
+H

)
(2)

E

e
>

(
F
Γ +H

)
C
E

+ 1;
E

e
>
ψ

ξ
+ 1

RLR >
1

CCR
+ 1 (3)

After isolating the RLR on the left hand side, we have
the inequality shown in Eq. 3. That inequality shows there
is a nearly inverse relationship between RLR and CCR.
To visualize the implications of this inequality we tabulate

TABLE I
RLR VALUES REQUIRED FOR OFFLOADING TO BE FAVORABLE FOR

SEVERAL CCR VALUES.

CCR RLR
1e-6 ≈ 1e6
1e-3 1001
0.01 101
0.1 11
1 2

1e3 1.001
1e6 1.000001

TABLE II
INSTRUCTIONS PER SECOND RATINGS FOR SEVERAL PROCESSORS.

Processor IPS
MSP430 16x106 [37]

A9 3.6x109 [38]
Celeron 6.43x109 [39]
Core i3 36.8x109 [40]
Xeon 136.20x109 [39]

the RLR value required to make offloading favorable for
various values of the CCR; see Table I. A CCR of 1x10−3

requires cloud resources to be more than a thousand times
faster than the local computing device. A CCR of 1x10−6

requires the cloud resources to be a million times faster! To
obtain a sense of practical RLR values, we have compiled
the instructions per second (IPS) ratings of two embedded
processors that represent the low end (Texas Instrument’s
MSP430) and the high end (Apple’s A9) of the spectrum of
the embedded processors deployed in handheld devices. To
complete the RLR computation, we have compiled the IPS
ratings of a laptop-class processor (Intel’s Celeron), desktop-
class processor (Intel’s Core i3), and a server-class processor
(Intel’s Xeon). See Table II for these IPS ratings.

Using the IPS ratings shown in Table II we compute the
RLR value for each pair of handheld and laptop/desktop/server
class processor. These RLR values are shown in Table III.
We see the RLR values range from 1.79 for an A9 processor
offloading to a Celeron processor (CCR must be greater than
1.27 to offload) up to 8512.5 for an MSP 430 processor
offloading to a Xeon processor (CCR must be greater than
1.1x10-4 to offload).

Equation 3 leads one to, at first glance, think that if we
increase the RLR value by let’s say increasing the execution
speed of the remote resource (i.e., increase E) this will make
computation offloading beneficial for more applications as
characterized by their CCR value. However, if we look back at

TABLE III
CPU RLR VALUES

aaaaaaa
Local

Remote Celeron i3 Xeon

MSP430 401.875 2300 8512.5
A9 1.78611 10.222 37.833



the presentation of this inequality specifically in Eq. 2 we see
that increasing E will increase both sides of the inequality.
Therefore, increasing E does not make offloading favorable
for more applications.

To gain clear insight into how system parameters should be
manipulated to increase the number of applications that benefit
from computation offloading we need an inequality with job
parameters on one side of the inequality and computation of-
floading system parameters on the other side of the inequality.

Starting from the original simplified inequality in Eq. 2 we
take steps to move the offloading system parameters to the left
hand side.

C

(
1

e
− 1

E

)
>

(
F

Γ
+H

)
;CΓ

(
1

e
− 1

E

)
> (F +HΓ)

Γ

(
1

e
− 1

E

)
>

(
F

C
+
HΓ

C

)
; Γ

(
1

e
− 1

E
− H

C

)
>
F

C

If we consider an uncongested network so that H is negli-
gible,

Γ

(
1

e
− 1

E

)
>
F

C
. (4)

The ratio of job parameters on the right hand side of this
inequality is the inverse of the arithmetic intensity or the bits
per instruction of the computational job. This context differs
from the common usage of the term arithmetic intensity in that
we are referring to bits that would be communicated over the
network and not bits that would be read/written from/to the
memory system. The left hand side represents the capacity of
the offloading system to consume bits and instructions; at the
bottleneck link rate Γ and the cloud resource execution rate
E compared to the local execution rate e, respectively.

A. F
C values from TACC workload data

We obtained computational workload data from the Texas
Advanced Computing Center (TACC) in Austin, TX. The
data was provided by the Director of High Performance
Computing, Dr. Bill Barth. The trace contains records of
78,176 computation jobs of 1,159 different applications. It
provides information such as: 1) job ID, 2) application name,
3) job size, 4) bytes written, 5) bytes read, and 6) execution
time. We use this data along with some assumptions about
the execution speed of TACC resources to derive the F

C
for recognizable applications. Table IV shows the minimum,
average, and maximum of the derived values of each data point
in the workload data set for recognizable applications.

B. Determining when offloading is beneficial

We can use the inequality of Eq. 4 along with the inverse
arithmetic intensity values (i.e., FC ) to determine when offload-
ing is beneficial. To assist in this comparison we compute
the values of

(
1
e −

1
E

)
for various combinations of local and

remote processors. See Table V for these values.

TABLE IV
BITS PER INSTRUCTION FOR SEVERAL TACC WORKLOAD APPLICATIONS.

App Name min ave max
namd2 1.61x10-7 4.45x10-5 1.01x10-3

lmp stampede 1.36x10-7 6.60x10-6 9.53x10-4

vasp ncl 1.43x10-7 6.56x10-6 2.86x10-4

cosmomc 2.34x10-7 5.61x10-6 4.84x10-4

charmm 1.42x10-7 9.32x10-6 7.34x10-5

nwchem 1.01x10-6 7.06x10-5 1.80x10-4

fvcom 3.36x10-6 2.17x10-4 2.27x10-3

mdrun mpi 1.66x10-7 8.18x10-6 1.08x10-4

siesta 1.47x10-7 9.81x10-6 5.29x10-5

TABLE V
REMOTE TO LOCAL EXECUTION RATIO

(
1
e
− 1

E

)
aaaaaaa

Local
Remote Celeron i3 Xeon

MSP430 6.23x10−8 6.25x10−8 6.25x10−8

A9 1.22x10−10 2.51x10−10 2.70x10−10

Using this data we can see that if we are offloading from
an MSP430 processor to an Intel Celeron processor through a
network with a 1 Kbps bottleneck link rate, applications with
inverse arithmetic intensities less than 6.23x10-5 will benefit
from offloading with respect to a reduction in completion
time. Looking at Table IV we see that a large number of
the scientific applications from the TACC workload data
will benefit from offloading in this scenario. If we increase
the bottleneck link rate to 1 Mbps, then inverse arithmetic
intensities less than 6.23x10-2 benefit from offloading; now
all of the scientific applications listed in Table IV benefit from
offloading.

If we offload from Apple’s A9 to an Intel Celeron through
a network with a 1 Kbps bottleneck link rate then applications
with inverse arithmetic intensities less than 1.22x10-7 benefit
from offloading. If the bottleneck link rate is increased to 1
Mbps, then inverse arithmetic intensities less than 1.22x10-4

benefit from offloading.
This style of analysis using our inequality from Eq. 4

can be utilized to determine which computations can benefit
from a particular offloading system or what offloading system
is required to make offloading beneficial for a particular
computation.

IV. CONCLUSION

We have derived an inequality that relates computation
offloading system parameters to the arithmetic intensity of
a computation (see Eq. 4). This inequality can be used
to determine which computations benefit from computation
offloading w.r.t. reduction in completion time for a particular
computation offloading system. This inequality can also be
used to determine the computation offloading system required
to permit certain computations to benefit from offloading. See
Section III-B for some examples of this type of analysis using
our inequality.



Future work should tabulate the arithmetic intensities for
various computations and use these values to identify which
computations can benefit from practical computation offload-
ing systems.
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