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Preface

Loop Multitrack Recorder is a project that I first started working on in a summer course
offered at California State University Northridge called Introduction to Software Engineering.
When the course ended, I found that I really enjoyed working on the project so I continued working
on the project for fun. A year and a half later, the project now allows you to enjoy most features
that you would expect from a mobile recording app (graphical sound editor, apply effects,
undo/redo, import/export to Google Drive or the device, etc.). The newest feature, for which this
thesis primarily concerns, involves creating a “Jam Session” where multiple users can get together
to record sounds on their own devices in a synchronized and collaborative manner. For screenshots
and more information about the app please visit Loop Multitrack Recorder [1] or search “Loop
Multitrack Recorder” on an Android device in Google Play.
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ABSTRACT

Synchronized Audio Capture with an Array of Mobile Devices

By
Nick Schaafsma
Master of Science in Software Engineering
The objective of this project is to measure the accuracy of using a high decibel sound as a
reference for synchronizing audio recordings in a system composed of mobile devices and cloud

technologies. The implementation is compared with one that only relies on a cloud provider’s
global clock.



Chapter 1: Introduction

When recording sound, it is often desirable to record and combine sounds from multiple
locations to produce a sound of higher quality than if they were produced on their own. The process
of combining multiple sounds into one output is called beamforming and has been applied in
various fields ranging from business conference calling systems to scientific radio astronomy and
sonar mapping.

Synchronization plays an important role in beamforming. If you do not know when a sound
was captured, it is difficult to know at what point the sounds should be combined. Standard
solutions typically use hardware to stream audio data into a single computer to be processed. These
solutions, while very accurate and reliable, lack the mobility and accessibility you would typically
find in a mobile device.

The motivation for this project was to see whether you can take advantage of common
devices like smart-phones for use in a beamforming application. I had imagined getting together
with some musicians and having them all record their instruments together with their own devices.
Instead of purchasing microphones and special equipment, it would be less expensive to use what
we already have to set up an ad-hoc recording studio.

Since the mobile devices would be communicating through a wireless medium and most
likely be running at different processing rates, the idea of achieving perfect synchronization is
desirable but very difficult to obtain.

Recent work by Sur, Wei, Zhang [2] and Smeding, Bosma, Castaneda [3] showed that it

is definitely possible to implement beamforming solutions in a mobile system. Sur, Wei, and
Zhang took a clever approach for handling the synchronizing problem. Using local timestamps
from each of the device’s network adapter and creating Linear Regression models around these
timestamps, they found an Algebraic solution for synchronizing the devices together. One problem
they encountered, however, was that the network adapter’s timestamp was not always available in
some devices [2]. They also mentioned that you could use an external audio beacon to periodically
act as a reference for alignment, but they felt that the beacon would interfere with the recording.
This idea inspired me to use an initial loud noise at the start of the recording to act as an alignment
reference for all the devices. When compared to another approach that only used a cloud provider’s
global clock, the Peak Alignment Implementation, as I call it, produced better results in terms of
synchronization accuracy.

Past studies by Silipo [4] and Stone, Moore [5] have shown that relatively small across-
channel delays (less than 20 milliseconds) can result in significant loss of speech intelligibility
[6][7]. In my experiment, the Peak Alignment Implementation achieved an average delay of
roughly 17 milliseconds while my other approach, called the Server Clock Implementation,
achieved an average delay of roughly 42 milliseconds.

With regards to sensor networks, Deligeorges, Cakiades, Wang, and Doyle [8] described a
strategy using a Fusion algorithm to synchronize sensors together for detecting/locating sounds. It
achieved very accurate results (sub-millisecond) due to being written in way that directly access
the hardware.

In regards to Audio Forensics and Multimedia Synchronization, Rodriguez, Apolinario,
Biscainho [9] and Su, Hajj-Ahmad, Wu, Oard [10] described an idea in which you can exploit
electric network frequency (ENF) signals to synchronize audio and video recordings together. An
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ENF signal is a unique signal that gets in embedded in audio recordings captured from devices
directly connected to a power grid. The ENF signal acts as a fingerprint for which multiple
recordings can use for alignment/synchronization. However, since the devices need to be
connected to a power grid, the strategy did not seem suitable for my mobile application.



Chapter 2: Approach and Implementation

Two approaches for synchronizing audio together were implemented and are currently
available in the Loop Multitrack Recorder app on Google Play. The first approach, called the
Server Clock Implementation, uses a cloud technology called Photon Unity Networking along with
their clock API as a basis for synchronization. By knowing when each device started recording
based on a common server clock, you can align all the recordings to the device that started last as
depicted in Figures 2-i and 2-ii.

Server Clock Implementation Pre-Alignment
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Figure 2-i: A hypothetical example for demonstration purposes. Each line represents a device's
recording time. The red marker indicates that device 2 started recording the latest relative to the
other devices.



Server Clock Implementation Post-Alignment
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Figure 2-ii: Once you know the time at which the last device started recording, you can trim off
the beginning of each of the other devices’ recordings up until that point. In this way, the
recordings are aligned and ready to be combined.

The problem with this approach, however, is that the common clock being used must
already be in synch with all the devices. It turns out that this was not always the case. On initial
runs of the approach and shown in Figure 2-iii’s example, a very noticeable and unwanted
reverberation effect was produced in the combined recordings. Upon further research, it was
described in a blog by a Photon Unity Networking administrator that the global server clock
contains an inaccuracy of roughly 15 milliseconds [11]. This inaccuracy, compounded with the
inaccuracies associated with operating system process schedules and varying hardware [3], led me
to search for a different approach.
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Figure 2-iii: One sound combined from three devices using the Server Clock Implementation. If
the implementation were perfect, you would expect to only see one peak from the sound. However,
you will notice that there are 3 peaks in this picture that produced an unwanted reverberation
sound effect. The distance between these peaks is a measure of error in the synchronization
process.



The second approach, called the Peak Alignment Implementation, requires the user to
create a loud acute noise at the start of the recording to use as an alignment reference. You can use
just about anything to create the noise. In my experiment, two drum sticks were clacked together
to produce a noise at approximately the same distance from all the devices. When all the devices
stop recording, the algorithm locates the first peak in decibel reading from the initial noise and

trims off up to a second beyond that peak from all of the recordings as depicted in Figures 2-iv and
2-v.
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Figure 2-iv: A hypothetical example of one loud sound captured by two devices. Point A is the
peak of the sound captured by device one and point B is the peak of the sound captured by device

two. The y-axis represents the decibel reading of the sound and the x-axis represents when that
decibel reading was captured in seconds.
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Figure 2-v: The Peak Alignment Implementation locates all the peaks in the devices for the initial

sound and trims off 1 second beyond that point of reference. In this way, the recordings are aligned
and ready to be combined without the initial noise.



Both approaches incorporated the use of Unity 3D in C# along with Photon Unity
Network’s API and Google Drive’s API for uploading/downloading files to and from a shared
Google Drive folder. Midworld’s open source project, Google Drive for Unity 3D [12], provided
a solid foundation for implementing the file transfer and account authorization aspects of the
solutions. Photon Unity Network helped facilitate the communication between the devices using
Remote Procedure Calls (RPCs) and provided the common clock. All of these technologies
mentioned are displayed in Figure 3-vi’s technology stack.

Unity 3D Loop Multitrack

Recorder Application Google Drive
written in C# Cloud Storage
' Midworld's Unity | ( )
- Google Drive's ’
Google Drive L o
Plugin written in RESTFul API
\__ C#andJava

Photon Unity " Photon Unity Networking '
Networking APl * " Server

Figure 2-vi: Technology Stack

Assuming that a Google Drive folder has been shared prior to a session’s creation, the
device that created the session will upload a file containing a unique Photon Unity Network Room
Identifier. With this id, the devices connect to the same room and communicate with each other
using RPC’s as depicted in Figure 2-vii. The RPCs are primarily invoked in the background, so all
the user has to do is create or join a session, start the recording session, create an initial noise (if
using the Peak Alignment Implementation), and press the stop recording button. Whenever
someone stops recording, their audio file is uploaded to the shared folder. When all the devices
have finished uploading their audio files, the device that created the session will download,
combine, and upload the final combined audio to the shared folder.
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Figure 2-vii: Session Creation




Chapter 3: Experimental Setup

To measure the accuracy of the implementations, a testing ground was set up such that each
device could be placed at equidistant locations and record metronome beats coming from the origin
as shown in Figure 3-i. It is expected that the beat would reach each device at the same moment in
time. So if you observe a set of peaks for one beat that align at the same time, then you can say the
implementation is accurate. Furthermore, if the peaks are spread out for one beat, then you can say
the implementation is inaccurate. The average of these differences provided a key metric for
comparing the two implementations with each other.

Figure 3-i: All the devices are spaced at 32 cm from the metronome origin. Also included is a
thermometer at the bottom of the picture that measured the temperature of the experimental
environment.



Prior to gathering data pertaining to the accuracy of the implementations, error due to the
experimental process/environment was taken into account. Some of the devices contained a tiny
pinhole that represented the device’s microphone location. To get an idea of what we can expect
if any of these locations were off, we can assume that the error in the true location was not greater
than 10 cm and use the speed of sound formula [13] to derive an expected error. The following is
the derivation of the potential error introduced:

1
() v~(331m) | 4C
S 273°
v is the velocity of sound and T, is the temperature in Celcius.
(2) d=v=xt
d is distance and t is time.

Assuming that the

3) dorror < 10 cm
implies that
4) V* torror < 10 cm
) 10 cm
Lerror T
(6) 10 cm
terror < T
m cam ol
(331 (%) + 100(m)) 1+5-5
During the experiment the temperature fluctuated between 19° and 22°
(7) 19° < T, <22°
®) 10 cm
terror @ 19° < 19°
m cm

(331 () * 100 (FE) |1+ 275

9) terror @190 < 0.00029212 s



(10) 10 cm
terror@22° < 500
m cm
331 () * 100 (SED 1+ 5750
(11) torror @ 222 < 0.000290631 s

From the previous derivation, it is safe to say that approximating the devices’ microphone
locations potentially introduced up to 0.0003 seconds of error.

The audio was recorded in sets of 5 at each equidistant location: 8 cm, 16 cm, 32 cm, and
64 cm as shown in Table 3-i. The metronome was set at a rate of 60 beats per minute and each
device recorded roughly a minute of recording. The data range used in analysis were beats 2
through 57, as the first beat produced was often corrupted by the sound of turning the metronome’s
power switch on.

Table 3-i: The devices' names, the distances they were spaced from the metronome origin during
the experiment, and their operating systems.

The mobile devices used in the

The set of distances

The device’s operating system.

experiment. from the metronome
origin used in the
experiment.
MacBook Air {8, 16,32, 64} | OS X Yosemite 10.10.5
Nexus 7 {8, 16,32, 64} | Android Lollipop 5.1.1
Sony Xperia Z1 Compact {8, 16,32, 64} | Android Lollipop 5.1.1
Nexus 7 {32, 64} | Android Lollipop 5.1.1
Samsung Galaxy Tab S {32, 64} | Android Lollipop 5.0.2
Wittner MT-50 Quartz {0} | None (Strictly Hardware)
Metronome
Photon Unity Network Server Unknown | Most likely Windows (Cloud

Provider encapsulates the version
of Windows)

The files generated from the experiment were WAV files. WAV files primarily consist of
an array of decibel readings captured by the device’s sound card. The readings, called samples, are
of a byte format which are typically converted into a real number ranging from -1 to 1. The sample
indices of this array are used in conjunction with the known sampling rate to map the sound over
time in a digital format.

The points of interest in the WAV files were the peak times corresponding to the
metronome beats. To locate and consolidate these peaks from the WAV files, an algorithm loosely
based on Originlab’s Window Search Peak Finding [14] concept of partitioning large data into
windows of a fixed size was created to locate each peak in every window. To avoid echoes and
external noises from being misinterpreted as metronome peaks, every time a peak was found, the
algorithm would jump a fixed amount and parse the next window. When the algorithm finishes its
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traversal, the peak times are then placed inside a CSV file for easier data manipulation and analysis
using Microsoft Excel.
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Chapter 4: Analysis

If you look at only one beat, there should be only one initial peak on each of the device’s
recordings. If all the devices have the same time corresponding to this beat, then there wouldn’t
be any difference in the times and all the devices would be considered in synch. If there is a
difference between any two devices, then you can average all of these differences to produce a
measurement corresponding to the average error in synchronization. Table 4-i shows a glimpse of
how this average error was produced in Excel, using the average of the absolute differences
between device peak times at a beat.

Table 4-i: Fields DI through D5 are the peak times at a beat for devices 1 through 5 respectively.
This screenshot is of an Excel spreadsheet corresponding to Run 1 for the 64 cm spacing using the
Peak Alignment Implementation.

Beat n o1 D2 03 o4 o5 abe(D1 - D2) abe(D1-D3) |abe(D1-D4) |abe(D1-DS) |abe(D2-D3) |abe(D2-D4) |abe(D2-DS) |abe(D3-D4) |abe(D3-DS) abe(D4-D5)  Average Error
2 5858185841 5873514739 5855578231 5857823129 5.853900227 0.015328798 0.00735229 0.000362812 0.0057:4286 0.007936508 0.01568161 0.009674512 0.007755102 0.001678005 0.006077098 0.007755102
3 6.692471655 6.007345805 6.695909297 5.692154195 6.696185941 0.01537415 0.007437642 0.00031746 0.005714286 0.007938508 0.01559161 0.009659864 0.007755102 0.001723356 0.006031746 0.007764172
4 7.026712018 7.942131519 7.934165011 7.026304558 7.932517007 0.015419501 0.007462393 0.00031746 0.00580438% 0.007936508 0.015736361 0.009614512 0.007800454 0.001678005 0.006122448 0.007791383
5 8.951043084 8.976462585 8.058526077 8.950725624 8.956302721 0.015419501 0.007462393 0.00031746 0.005759637 0.007338508 0.015735961 0.009659864 0.007800454 0.001723356 0.006077098 0.007791383
6 9.095263447 10.0107483 10.00281179 9.935071338 10.00113379 0.015464853 0.007528345 0.000272108 0.00535034 0.007938508 0.015736961 0.008614512 0.007800454 0.001678005 0.006122443 0.007800454
7 11.02956916 11.04507937 11.03714286 11.0293424 11.03548485 0.015510204 0.007573695 0.000226757 0.005855692 0.007938508 0.015735961 0.009614512 0.007800454 0.001678005 0.0061224495 0.007809524
8 1206380852 1207931873 1207142857 1206362812 1206975057 0.015510204 0.007619048 0.000181406 0.005841043 0.007881156 0.01568161 0.009569161 0.007800454 0.001678005 0.006122448 0.007300454
9 1308814059 1311365079 1310575864 13.09765818 1310408163 0.015510204 0.007619048 0.000181406 0.005841043 0.007881156 0.01568161 0.009569161 0.007800454 0.001678005 0.006122448 0.007300454
10 14.13238095 14.14763651 14.14004535 14.1322449 14.13835735 0.015555556 0.0076€4393 0.000135054 0.005966395 0.007881156 0.01568161 0.009569161 0.007800454 0.001678005 0.006122448 0.007309524
11 1516566667 1516226757 1517437642 1516857595 1517269841 0.015600807 0.007709751 9.07020€-05 0.006031746 0.007881156 0.01568161 0.009569161 0.007800454 0.001678005 0.006122448 0.007318594
12 1620050703 16.21655323 16.20866213 1620085168 16.20608413 0.015846259 0.007755102 4.53515E-05 0.006077098 0.007881156 0.01568161 0.009569161 0.007800454 0.001678005 0.006122448 0.007327684
13 17.2352381 17.25088435 17.2420932 17.23514739 17.24131519 0.015846259 0.007755102 9.07020€-05 0.006077098 0.007881156 0.015736361 0.009569161 0.007345805 0.001678005  0.0061678 0.007345805
14 1826947846 1828517007 1827727891 1826343311 1627560091 0.01559161 0.007800454 4.53515E-05 0.00612244% 0.007881156 0.015736361 0.009569161 0.007345805 0.001678005  0.0061678 0.007354875
15 19.30376417 19.39950113 18.31160998 1830376417 18.30983197 0.015735361 0.007845805 0 0.0061678 0.007881156 0.015736361 0.009569161 0.007845805 0.001678005  0.0061678 0.007363346
16 20.33800454 20.35378685 20.34569563 20.33304883 20.34421769 0.015762313 0.0078891156 4.53515£-05 0.006213152 0.007821156 0.015735361 0.009569161 0.007845805 0.001678005  0.0061678 0.007862086
17 21.3723356 21.38871791 29.38022676 27.37238095 21.37854875 0.015762313 0.007881156 4.53515£-05 0.006213152 0.007821156 0.015735361 0.008569181 0.007845805 0.001678005  0.0061678 0.007862086
18 22 40657595 2242240383 2241451247 22 40665667 2241283447 0.015327664 0.007938508 9.07028€-05 0.006258503 0.007821156 0.015735861 0.009569181 0.007845805 0.001678005  0.0061678 0.007900227
19 2344066168 23.45573463 23.44884354 23.44099773 2344721088 0.015373016 0.007961858 0.000136054 0.006349206 0.007821156 0.015735861 0.00952381 0.007845805 0.001632653 0.006213152 0.007918367
20 24.47510204 2445097506 2446372825 24.47528345 24.48145125 0.015373016 0.008027211 0.000181406 0.006349206 0.007845805 0.01568161 0.00952381 0.007845805 0.007678005 0.0061678 0.007918367
2% 2550843311 2552530612 2557746032 25.50956816 2551562766 0.015873016 0.008027211 0.000136054 0.006384558 0.007845805 0.015735361 0.009478458 0.007891156 0.001632653 0.006258503 0.007927438
22 26.54367347 26.55959184 26.55174603 26.54385488 26.550¢1338 0.015918357 0.008072562 0.000181406 0.006439308 0.007845805 0.015735361 0.008478458 0.007891156 0.001632653 0.006258503 0.007345578
23 2757795818 27.5635229 27.5880771 27.57878594 27.58444444 0.015963718 0.008117914 0.000226757 0.006465261 0.007845805 0.015735361 0.009478458 0.007891156 0.001632653 0.006258503 0.007963718
24 2861219355 26.62820862 26.62036281 28.67247166 26.61873016 0.01600907 0.008163265 0.000272108 0.006530612 0.007845805 0.015735361 0.008478458 0.007891156 0.001632653 0.006258503 0.007961858
25 2064648526 2066253368 2065469388 2064560272 208.65306122 0.016054422 0.008208617 0.00031746 0.006575864 0.007845805 0.015735361 0.009478458 0.007891156 0.007632653 0.006258503 0.008
26 30.71505668 30.73115646 30.72331066 307754185  30.721678 0.016059773 0.008253368 0.000362812 0.006521315 0.007845805 0.015735361 0.009478458 0.0078091156 0.001632653 0.006258503 0.008018141
27 39.71505668 31.73115646 31.72331066 31.7754185  31.721678 0.016099773 0.006253368 0.000362812 0.006521315 0.007845805 0.015735361 0.009478458 0.0078091156 0.001632653 0.006258503 0.008018141
2B 3274929705 3276544218 3275759637 3274970522 3275586372 0.016145125 0.00825932 0.000408163 0.006566667 0.007845805 0.015735361 0.009478458 0.0078091156 0.001632653 0.006258503 0.008035281
20 33.78358277 33.76977324 3379152744 3376359093 33.76029478 0.016150476 0.008344671 0.000408163 0.0067¢2018 0.007845805 0.015762313 0.009478458 0.007938508 0.001632653 0.006303855 0.008063492
30 3487766848 34.33405896 34.82621315 34.81827664 34.8245305 0.016180476 0.008344671 0.000408163 0.006712018 0.007845805 0.015762313 0.008478458 0.007936508 0.001632653 0.006303855 0.008063492

Spreadsheets like Table 4-i were used to create graphical visualizations of the data for all
the different configurations used in the experiment. For example, the graphs displayed in Figures
4-i and 4-ii show the average error in accuracy when the devices were spaced 64 centimeters from
the metronome for both implementations. You will notice that at this particular configuration, the
Peak Alignment Implementation performed better than the Server Clock Implementation in terms
of accuracy.
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Figure 4-i: Average errors (seconds) in the Peak Alignment Implementation for the 64 cm spacing
from the metronome origin.
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Figure 4-ii: Average errors (seconds) in the Server Clock Implementation for the 64 cm spacing.

Figures 4-iii and 4-iv show that even when all the devices were spaced at different distances
from metronome origin, the Peak Alignment Implementation produced better results. This also
aligns with our previous derivation of expected error due to approximating the location of the
devices’ microphones. In the derivation we found that if the devices were off by 10 centimeters,
you can expect a relatively small value of 0.0003 seconds in error. The data from Figures 4-iii and
4-iv did not show any large patterns of error that would suggest otherwise.
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Figure 4-iii: Average errors (seconds) in the Peak Alignment Implementation for a scenario where
each device was spaced at different locations from the metronome origin (4, 8, 16, 32, 64 cm).
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Figure 4-iv: Average errors (seconds) in the Server Clock Implementation for a scenario where
each device was spaced at different locations from the metronome origin (4, 8, 16, 32, 64 cm).

Figures 4-v and 4-vi show all the averages in error for all the locations and runs or the
entire experiment in two graphs. At first glance you will notice that the Peak Alignment
Implementation, on average, had less error compared with the Server Clock Implementation. You
might also notice the large spikes in the graphs. The large spikes, or errors, can likely be attributed
to external noises leaking into the experimental environment and or issues relating to the window
search algorithm. Since it is difficult to pinpoint the exact cause of these spikes, we can look at
Figures 4-vii & 4-viii and locate an outlier-free subset that follows a linear progression you would
expect from a normal metronome. With this subset, we can formally conduct a statistical analysis
on whether the results from the Peak Alignment Implementation is significantly different than the
Server Clock Implementation.
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Figure 4-v: All the runs corresponding to the Peak Alignment Implementation.
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Figure 4-vi: All the runs corresponding to the Server Clock Implementation.
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Figure 4-vii: Average errors (seconds) in Peak Alignment vs Server Clock Implementations.
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Figure 4-viii: Outlier-Free Subset
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At this point you can see that in ideal conditions during the experiment, the Server Clock

Implementation experienced an average error of approximately 42 milliseconds and the Peak
Alignment Implementation experienced an average error of approximately 17 milliseconds.
If you considered the observed range of values that produced theses averages, it might be the case
that there may be no difference between the averages since the data sets overlap too heavily. To
account for this scenario, a Paired One-Sided T-Test was performed within the sub-set data (beats
25 through 35) as follows:

(1) Hot ty = 1,
Ho:pp — s =0

The null hypothesis, Hy, is making the assumption that there is no dif ference
between the population mean error for the Peak Alignment Implementation, i, ,

and the Server Clock Implementation, y .

2) Hy: py < i
Hy:php —us <0

The alternate hypothesis, H,, is that the population mean error for the Peak
Alignment Implementation is less than the Server Clock Implementation.

3) The sample data from beat 25 was chosen at random from within the
subset data range of beat 25 through beat 35.The dif ference in error has been
assumed to come from a Normal Distribution as shown in Figure 4-ix.

(Peak Alignment Imp. error) - (Server Clock Alignment Imp. error)
Distribution at beat 25

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1

Figure 4-ix: The difference between the Peak Alignment Implementation error and the
Server Clock Implementation error closely resembles a Normal Distribution.

4) Using Excel's Paired One Sided TTest function gives a

P Value = 2.68234E-06

The P Value is the probability that the averages are the same when considering the data
sets’ observed variation. Since the probability is very small, we can reject that the averages are the
same and we can accept our alternative hypothesis that the mean error for the Peak Alignment
Implementation is smaller than the mean error for the Server Clock Implementation [15].
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To see whether or not the factor of distance influenced the mean error, a One-Way Analysis
of Variance (ANOVA) test was performed on the sub-set data for the two implementations at beat
number 33. ANOVA is an extension of the T-Test. Instead of considering two population means,
we are now considering multiple population means. In the following, ANOVA is used to see
whether or not spacing the devices at 8cm or 16cm or 32cm or 64cm from the metronome origin
made any difference with respect to the average error observed in the Peak Alignment
Implementation. The first three points are the conditions that need to be satisfied prior to
conducting ANOVA.

(1) Beat 33 was chosen at random from the subset beat range of 25 through 35.
(2) The F-Test for homogeneity in variance was accepted to be equal for all the distances [16].

(3) The distributions have been assumed to come from Normal Distributions as shown in

Figure 4-x.
8cm 16cm 32cm 64 cm
Average Average Average Average
Errors Errors Errors Errors
0.035 0.035 0.018 0.025
o
0.016
0.03 @ 0.03 °
) | o 0.014 0.02
0.025 0.025 0.012 .
0.015
0.02 0.02 0.01 o
0.015 0.015 0.008 0.01 :
.01 @ 0.01 0.006
. e ° 0.004 ° 0.005
0.005 0.005 0.002 3
0 0 0 0 2

Figure 4-x: Average errors (seconds) at each spacing. Light Blue indicates Run 1, Orange
indicates Run 2, Grey indicates Run 3, Yellow indicates Run 4, and Dark Blue indicates
Run 5.

4) Hy: pg = e = Uzz = Hea

The null hypothesis, Hy, is making the assumption that there is no dif ference
between the population mean error at each spacing.
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(5) Hy: pg # 1o # Uzz 7 Hea

The alternate hypothesis, H,, is that the population mean error at each spacing
is dif ferent.

(6) Table 4-ii: ANOVA Summary when considering the devices' distance from the metronome
origin as a factor.

SUMMARY

Groups Count Sum Average Variance
0.099603477 0.019960695 6.72726E-05
0.096356765 0.019271353 7.4457T1E-05
0.041239607 0.008247921 2.9596E-05
0.061284958 0.012258992 2.47T161E-05

& cm Averages
16 cm Averages

32 cm Averages

[T ¢ R ¢ I ¢

64 cm Averages

ANOVA

Source of Variation SS af MS F P-value F cnii
Between Groups 0.000479752 3 0.000158917 3.262020842 0.048977697 3.23887
Within Groups 0.000784167 16 4.90104E-05

Total 0.001263919 19

The small P-value in Table 4-ii indicates that we can’t accept that the average errors at each
spacing for the Peak Alignment Implementation are the same. This implies that we can accept the
alternative hypothesis that there is a difference in the average errors when considering the device
distance from the metronome origin. Upon further investigation, a T-Test was performed for the
8/16 cm spacing group and the 32/64 cm spacing group. Contrary to my expectation, the test
concluded that it is plausible that the mean error for the 32/64 cm group is less than the 8/16 cm
group for the Peak Alignment Implementation.

For the Server Clock Implementation, a similar ANOVA test was conducted and concluded
that there was no significant difference between the average errors at each spacing. Since its usage
doesn’t require you to be relatively in the same proximity, this result was more aligned with my
expectation.

To determine whether or not the amount of devices used in the experiment impacted the
results, we can look at the runs corresponding to the 32/64 cm group and conduct a One-Way
ANOVA test comparing the average errors experienced between any 2 of the 5 devices, 3 of the 5
devices, 4 of the 5 devices, and 5 of the 5 devices. The 32/64 cm group was chosen for the ANOVA
calculation because all 5 devices were used in the 10 runs corresponding to the 32 and 64 cm
group. Beat number 27 was chosen at random from within the subset range (beat 25 through beat
35) to satisfy the first condition of the ANOVA test as follows:

(1) The data set pertaining to beat 27 was chosen at random. The devices that produced each
average were chosen at random.
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(2) The F-Test for homogeneity in variance was accepted to be equal for all the distances [16].

(3) The distributions have been assumed to come from Normal Distributions as shown in

Figure 4-xi.
Average Error Average Error Average Error Average Error
(seconds) (seconds) (seconds) (seconds)
between any 2 between any 3 between any 4 between any 5
Devices Devices Devices Devices
0.05 0.06 0.02 0.04
0.045 ' 0.018 ®
® 0.035
0.04 SRS 0.016 o ?
0.03
0.035 0.04 ® 0.014
0.03 0.012 . 0.025 3
®
0.025 ® 0.03 0.01 pt 0.02
0.02 ® 0.008 0.015 ’
0.015 ' 0.02 B 0.006 %
@ 0.01 ‘
0.01 0.01 0.004
0.005 G e 0.002 0.005 -
®
0 0 0 0

Figure 4-xi: Average error (seconds) for randomly selected devices at beat 27. Each point
represents an averaged run in the 32/64 cm group. Each color corresponds to one of the
ten runs.

4) Hy: py = pg =ty = Us

The null hypothesis, H,, is making the assumption that there is no dif ference
between the population mean average error for any additional devices
considered.

®) Hy: ty # Uz # Uy #F Us

The alternate hypothesis, H,, is that the population mean average error is
dif ferent when more or less devices are considered.
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(6) Table 4-iii: ANOVA Summary when considering the number of devices in use as a factor.

SUMMARY
Groups Count Sum Average Variance
2 10 0.147165533 0.014716553 0.000160095
3 10 0.203B54875 0.020385488 0.000247913
4 10 0.108463341 0.010946334 2.60423E-05
5 10 0.144365079 0.014436508 8.00348E-05
ANOVA
Source of Variation S§S df MS F P-value Fcri
Between Groups 0.000457748 3 0.000152583 1.18721681 0.328280265 2.86626
Within Groups 0.004626764 36 0.000128521
Total 0.005084512 39

The large P-value in Table 4-iii indicates that it is plausible that the average error when
considering 2 devices could be the same as the average error when considering up to 5 devices.
This means that considering more or less devices did not significantly impact the Peak Alignment
Implementation’s synchronization error. Similarly, the Server Clock Implementation’s ANOVA
test concluded that there was also no significant difference when considering additional devices in
use. Theoretically both implementations can handle up to 8 devices, however, this scenario was

not tested in this experiment.
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Chapter 5: Conclusion

Using a loud noise at the beginning of a recording session improved the process of aligning
multiple recordings together. The Peak Alignment Implementation that used this technique, on
average, produced an error of approximately 17 milliseconds during the experiment. This is 26
milliseconds better than the Server Clock Implementation which primarily used a cloud provider’s
global clock for synchronization.

Any error in synchronization produced an explicit reverberation sound effect when
combining multiple recordings that focused on a single source of audio. The Peak Alignment
Implementation significantly reduced this effect, but required an initial noise to be created at the
start of the recording and within the devices’ proximity. The Server Clock Implementation, on the
other hand, did not require the devices to be in the same proximity or an initial noise to be generated
by the user. In this way the Server Clock Implementation could be used for a wider range of
applications, if you can tolerate average errors of around 42 milliseconds.

Both solutions did not compromise accuracy when the number of devices varied. There
was little difference in the amount of error observed when considering the use of 2, 3, 4, or 5
devices in a session.
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