

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

Synchronized Audio Capture with an Array of Mobile Devices

A thesis submitted in partial fulfillment of the requirements

For the degree of Master of Science in Software Engineering

By

Nick Schaafsma

May 2016

	

ii	

The thesis of Nick Schaafsma is approved:

Michael Barnes, Ph.D.

Date

Adam Kaplan, Ph.D.

Date

Ani Nahapetian, Ph.D., Chair

Date

California State University, Northridge

	

iii	

Preface

Loop Multitrack Recorder is a project that I first started working on in a summer course
offered at California State University Northridge called Introduction to Software Engineering.
When the course ended, I found that I really enjoyed working on the project so I continued working
on the project for fun. A year and a half later, the project now allows you to enjoy most features
that you would expect from a mobile recording app (graphical sound editor, apply effects,
undo/redo, import/export to Google Drive or the device, etc.). The newest feature, for which this
thesis primarily concerns, involves creating a “Jam Session” where multiple users can get together
to record sounds on their own devices in a synchronized and collaborative manner. For screenshots
and more information about the app please visit Loop Multitrack Recorder [1] or search “Loop
Multitrack Recorder” on an Android device in Google Play.

	

iv	

Acknowledgements

 I want to thank my parents Susan and Michael Schaafsma for all their love and support. I
want to thank my advisor Ani Nahapetian for guiding me throughout the process, giving me ideas
& support, and helping me stay focused. I want to thank my boss Mike Boctor for letting me take
off work to work on my thesis. I want to thank my teachers for all of their hard work and creative
lesson plans. I also want to thank my brother, Ryan, for inspiring me to become an engineer.

	

v	

Table of Contents	
Signatures .. ii	

Preface ... iii	
Acknowledgements .. iv	

List of Figures .. vi	
List of Tables ... viii	

Abstract .. ix	
Chapter 1: Introduction ... 1	

Chapter 2: Approach and Implementation .. 3	
Chapter 3: Experimental Setup ... 8	

Chapter 4: Analysis ... 12	
Chapter 5: Conclusion .. 25	

References ... 26	

	

vi	

List of Figures
Figure 2-i: A hypothetical example for demonstration purposes. Each line represents a device's

recording time. The red marker indicates that device 2 started recording the latest relative to
the other devices. .. 3	

Figure 2-ii: Once you know the time at which the last device started recording, you can trim off
the beginning of each of the other devices’ recordings up until that point. In this way, the
recordings are aligned and ready to be combined. .. 4	

Figure 2-iii: One sound combined from three devices using the Server Clock Implementation. If
the implementation were perfect, you would expect to only see one peak from the sound.
However, you will notice that there are 3 peaks in this picture that produced an unwanted
reverberation sound effect. The distance between these peaks is a measure of error in the
synchronization process. ... 4	

Figure 2-iv: A hypothetical example of one loud sound captured by two devices. Point A is the
peak of the sound captured by device one and point B is the peak of the sound captured by
device two. The y-axis represents the decibel reading of the sound and the x-axis represents
when that decibel reading was captured in seconds. ... 5	

Figure 2-v: The Peak Alignment Implementation locates all the peaks in the devices for the initial
sound and trims off 1 second beyond that point of reference. In this way, the recordings are
aligned and ready to be combined without the initial noise. ... 5	

Figure 2-vi: Technology Stack .. 6	

Figure 2-vii: Session Creation .. 7	
Figure 3-i: All the devices are spaced at 32 cm from the metronome origin. Also included is a

thermometer at the bottom of the picture that measured the temperature of the experimental
environment. ... 8	

Figure 4-i: Average errors (seconds) in the Peak Alignment Implementation for the 64 cm spacing
from the metronome origin. .. 13	

Figure 4-iii: Average errors (seconds) in the Peak Alignment Implementation for a scenario where
each device was spaced at different locations from the metronome origin (4, 8, 16, 32, 64
cm). ... 15	

Figure 4-iv: Average errors (seconds) in the Server Clock Implementation for a scenario where
each device was spaced at different locations from the metronome origin (4, 8, 16, 32, 64
cm). ... 16	

Figure 4-v: All the runs corresponding to the Peak Alignment Implementation. 17	
Figure 4-vi: All the runs corresponding to the Server Clock Implementation. 18	

Figure 4-vii: Average errors (seconds) in Peak Alignment vs Server Clock Implementations. ... 19	
Figure 4-viii: Outlier-Free Subset ... 19	

Figure 4-ix: The difference between the Peak Alignment Implementation error and the Server
Clock Implementation error closely resembles a Normal Distribution. 20	

	

vii	

Figure 4-x: Average errors (seconds) at each spacing. Light Blue indicates Run 1, Orange indicates
Run 2, Grey indicates Run 3, Yellow indicates Run 4, and Dark Blue indicates Run 5. 21	

Figure 4-xi: Average error (seconds) for randomly selected devices at beat 27. Each point
represents an averaged run in the 32/64 cm group. Each color corresponds to one of the ten
runs. ... 23	

	

viii	

List of Tables
Table 3-i: The devices' names, the distances they were spaced from the metronome origin during

the experiment, and their operating systems. .. 10	
Table 4-i: Fields D1 through D5 are the peak times at a beat for devices 1 through 5 respectively.

This screenshot is of an Excel spreadsheet corresponding to Run 1 for the 64 cm spacing
using the Peak Alignment Implementation. .. 12	

Table 4-ii: ANOVA Summary when considering the devices' distance from the metronome origin
as a factor. ... 22	

Table 4-iii: ANOVA Summary when considering the number of devices in use as a factor. 24	

	

ix	

ABSTRACT

Synchronized Audio Capture with an Array of Mobile Devices

By

Nick Schaafsma

Master of Science in Software Engineering

The objective of this project is to measure the accuracy of using a high decibel sound as a
reference for synchronizing audio recordings in a system composed of mobile devices and cloud
technologies. The implementation is compared with one that only relies on a cloud provider’s
global clock.

	

1	

Chapter 1: Introduction

When recording sound, it is often desirable to record and combine sounds from multiple
locations to produce a sound of higher quality than if they were produced on their own. The process
of combining multiple sounds into one output is called beamforming and has been applied in
various fields ranging from business conference calling systems to scientific radio astronomy and
sonar mapping.

Synchronization plays an important role in beamforming. If you do not know when a sound
was captured, it is difficult to know at what point the sounds should be combined. Standard
solutions typically use hardware to stream audio data into a single computer to be processed. These
solutions, while very accurate and reliable, lack the mobility and accessibility you would typically
find in a mobile device.

The motivation for this project was to see whether you can take advantage of common
devices like smart-phones for use in a beamforming application. I had imagined getting together
with some musicians and having them all record their instruments together with their own devices.
Instead of purchasing microphones and special equipment, it would be less expensive to use what
we already have to set up an ad-hoc recording studio.

Since the mobile devices would be communicating through a wireless medium and most
likely be running at different processing rates, the idea of achieving perfect synchronization is
desirable but very difficult to obtain.
 Recent work by Sur, Wei, Zhang [2] and Smeding, Bosma, Castañeda [3] showed that it

 is definitely possible to implement beamforming solutions in a mobile system. Sur, Wei, and
Zhang took a clever approach for handling the synchronizing problem. Using local timestamps
from each of the device’s network adapter and creating Linear Regression models around these
timestamps, they found an Algebraic solution for synchronizing the devices together. One problem
they encountered, however, was that the network adapter’s timestamp was not always available in
some devices [2]. They also mentioned that you could use an external audio beacon to periodically
act as a reference for alignment, but they felt that the beacon would interfere with the recording.
This idea inspired me to use an initial loud noise at the start of the recording to act as an alignment
reference for all the devices. When compared to another approach that only used a cloud provider’s
global clock, the Peak Alignment Implementation, as I call it, produced better results in terms of
synchronization accuracy.
 Past studies by Silipo [4] and Stone, Moore [5] have shown that relatively small across-
channel delays (less than 20 milliseconds) can result in significant loss of speech intelligibility
[6][7]. In my experiment, the Peak Alignment Implementation achieved an average delay of
roughly 17 milliseconds while my other approach, called the Server Clock Implementation,
achieved an average delay of roughly 42 milliseconds.
 With regards to sensor networks, Deligeorges, Cakiades, Wang, and Doyle [8] described a
strategy using a Fusion algorithm to synchronize sensors together for detecting/locating sounds. It
achieved very accurate results (sub-millisecond) due to being written in way that directly access
the hardware.
 In regards to Audio Forensics and Multimedia Synchronization, Rodriguez, Apolinario,
Biscainho [9] and Su, Hajj-Ahmad, Wu, Oard [10] described an idea in which you can exploit
electric network frequency (ENF) signals to synchronize audio and video recordings together. An

	

2	

ENF signal is a unique signal that gets in embedded in audio recordings captured from devices
directly connected to a power grid. The ENF signal acts as a fingerprint for which multiple
recordings can use for alignment/synchronization. However, since the devices need to be
connected to a power grid, the strategy did not seem suitable for my mobile application.

	

3	

Chapter 2: Approach and Implementation

Two approaches for synchronizing audio together were implemented and are currently

available in the Loop Multitrack Recorder app on Google Play. The first approach, called the
Server Clock Implementation, uses a cloud technology called Photon Unity Networking along with
their clock API as a basis for synchronization. By knowing when each device started recording
based on a common server clock, you can align all the recordings to the device that started last as
depicted in Figures 2-i and 2-ii.

Figure 2-i: A hypothetical example for demonstration purposes. Each line represents a device's
recording time. The red marker indicates that device 2 started recording the latest relative to the
other devices.

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3

De
vi
ce
	 N
um

be
r

Photon	 Unity	 Networking	 Recording	 Time	 (seconds)

Server	 Clock	 Implementation	 Pre-‐Alignment

	

4	

Figure 2-ii: Once you know the time at which the last device started recording, you can trim off
the beginning of each of the other devices’ recordings up until that point. In this way, the
recordings are aligned and ready to be combined.

The problem with this approach, however, is that the common clock being used must

already be in synch with all the devices. It turns out that this was not always the case. On initial
runs of the approach and shown in Figure 2-iii’s example, a very noticeable and unwanted
reverberation effect was produced in the combined recordings. Upon further research, it was
described in a blog by a Photon Unity Networking administrator that the global server clock
contains an inaccuracy of roughly 15 milliseconds [11]. This inaccuracy, compounded with the
inaccuracies associated with operating system process schedules and varying hardware [3], led me
to search for a different approach.

Figure 2-iii: One sound combined from three devices using the Server Clock Implementation. If
the implementation were perfect, you would expect to only see one peak from the sound. However,
you will notice that there are 3 peaks in this picture that produced an unwanted reverberation
sound effect. The distance between these peaks is a measure of error in the synchronization
process.

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3

De
vi
ce
	 N
um

be
r

Photon	 Unity	 Networking	 Recording	 Time	 (seconds)	

Server	 Clock	 Implementation	 Post-‐Alignment

	

5	

The second approach, called the Peak Alignment Implementation, requires the user to
create a loud acute noise at the start of the recording to use as an alignment reference. You can use
just about anything to create the noise. In my experiment, two drum sticks were clacked together
to produce a noise at approximately the same distance from all the devices. When all the devices
stop recording, the algorithm locates the first peak in decibel reading from the initial noise and
trims off up to a second beyond that peak from all of the recordings as depicted in Figures 2-iv and
2-v.

Figure 2-iv: A hypothetical example of one loud sound captured by two devices. Point A is the
peak of the sound captured by device one and point B is the peak of the sound captured by device
two. The y-axis represents the decibel reading of the sound and the x-axis represents when that
decibel reading was captured in seconds.

Figure 2-v: The Peak Alignment Implementation locates all the peaks in the devices for the initial
sound and trims off 1 second beyond that point of reference. In this way, the recordings are aligned
and ready to be combined without the initial noise.

	

6	

 Both approaches incorporated the use of Unity 3D in C# along with Photon Unity
Network’s API and Google Drive’s API for uploading/downloading files to and from a shared
Google Drive folder. Midworld’s open source project, Google Drive for Unity 3D [12], provided
a solid foundation for implementing the file transfer and account authorization aspects of the
solutions. Photon Unity Network helped facilitate the communication between the devices using
Remote Procedure Calls (RPCs) and provided the common clock. All of these technologies
mentioned are displayed in Figure 3-vi’s technology stack.

Figure 2-vi: Technology Stack

Assuming that a Google Drive folder has been shared prior to a session’s creation, the

device that created the session will upload a file containing a unique Photon Unity Network Room
Identifier. With this id, the devices connect to the same room and communicate with each other
using RPC’s as depicted in Figure 2-vii. The RPCs are primarily invoked in the background, so all
the user has to do is create or join a session, start the recording session, create an initial noise (if
using the Peak Alignment Implementation), and press the stop recording button. Whenever
someone stops recording, their audio file is uploaded to the shared folder. When all the devices
have finished uploading their audio files, the device that created the session will download,
combine, and upload the final combined audio to the shared folder.

	

7	

Figure 2-vii: Session Creation

	

8	

Chapter 3: Experimental Setup

To measure the accuracy of the implementations, a testing ground was set up such that each
device could be placed at equidistant locations and record metronome beats coming from the origin
as shown in Figure 3-i. It is expected that the beat would reach each device at the same moment in
time. So if you observe a set of peaks for one beat that align at the same time, then you can say the
implementation is accurate. Furthermore, if the peaks are spread out for one beat, then you can say
the implementation is inaccurate. The average of these differences provided a key metric for
comparing the two implementations with each other.

Figure 3-i: All the devices are spaced at 32 cm from the metronome origin. Also included is a
thermometer at the bottom of the picture that measured the temperature of the experimental
environment.

	

9	

Prior to gathering data pertaining to the accuracy of the implementations, error due to the

experimental process/environment was taken into account. Some of the devices contained a tiny
pinhole that represented the device’s microphone location. To get an idea of what we can expect
if any of these locations were off, we can assume that the error in the true location was not greater
than 10 cm and use the speed of sound formula [13] to derive an expected error. The following is
the derivation of the potential error introduced:

(1)
𝑣 ≈ 331

𝑚
𝑠 1 +

𝑇)
273∘	 	 	 	

𝑣	 𝑖𝑠	 𝑡ℎ𝑒	 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	 𝑜𝑓	 𝑠𝑜𝑢𝑛𝑑	 𝑎𝑛𝑑	 𝑇)	 𝑖𝑠	 𝑡ℎ𝑒	 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	 𝑖𝑛	 𝐶𝑒𝑙𝑐𝑖𝑢𝑠.	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(2) 𝑑 = 𝑣 ∗ 𝑡

𝑑	 𝑖𝑠	 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	 𝑎𝑛𝑑	 𝑡	 𝑖𝑠	 𝑡𝑖𝑚𝑒.

𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔	 𝑡ℎ𝑎𝑡	 𝑡ℎ𝑒

(3) 𝑑CDDED < 	 10	 𝑐𝑚

implies that

(4) 𝑣 ∗ 𝑡CDDED < 10	 𝑐𝑚

(5) 𝑡CDDED <

10	 𝑐𝑚
𝑣

(6) 𝑡CDDED <

10	 𝑐𝑚

331	 𝑚𝑠 ∗ 100 𝑐𝑚
𝑚 1 + 𝑇)

273∘

	

𝐷𝑢𝑟𝑖𝑛𝑔	 𝑡ℎ𝑒	 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡	 𝑡ℎ𝑒	 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	 𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑒𝑑	 𝑏𝑒𝑡𝑤𝑒𝑒𝑛	 19∘	 𝑎𝑛𝑑	 22∘

(7) 19∘ ≤ 𝑇) ≤ 22∘

(8) 𝑡CDDED	 @	 OP∘ <

10	 𝑐𝑚

(331	 𝑚𝑠 ∗ 100 𝑐𝑚
𝑚) 1 + 19∘

273∘

(9) 𝑡CDDED	 @	 OP∘ < 	 0.00029212	 𝑠

	

10	

(10)
 𝑡CDDED	 @	 SS∘ <

10	 𝑐𝑚

(331	 𝑚𝑠 ∗ 100 𝑐𝑚
𝑚) 1 + 22∘

273∘

(11) 𝑡CDDED	 @	 SS∘ < 0.000290631	 𝑠

From the previous derivation, it is safe to say that approximating the devices’ microphone
locations potentially introduced up to 0.0003 seconds of error.

The audio was recorded in sets of 5 at each equidistant location: 8 cm, 16 cm, 32 cm, and
64 cm as shown in Table 3-i. The metronome was set at a rate of 60 beats per minute and each
device recorded roughly a minute of recording. The data range used in analysis were beats 2
through 57, as the first beat produced was often corrupted by the sound of turning the metronome’s
power switch on.

Table 3-i: The devices' names, the distances they were spaced from the metronome origin during
the experiment, and their operating systems.

The files generated from the experiment were WAV files. WAV files primarily consist of
an array of decibel readings captured by the device’s sound card. The readings, called samples, are
of a byte format which are typically converted into a real number ranging from -1 to 1. The sample
indices of this array are used in conjunction with the known sampling rate to map the sound over
time in a digital format.

The points of interest in the WAV files were the peak times corresponding to the
metronome beats. To locate and consolidate these peaks from the WAV files, an algorithm loosely
based on Originlab’s Window Search Peak Finding [14] concept of partitioning large data into
windows of a fixed size was created to locate each peak in every window. To avoid echoes and
external noises from being misinterpreted as metronome peaks, every time a peak was found, the
algorithm would jump a fixed amount and parse the next window. When the algorithm finishes its

	

11	

traversal, the peak times are then placed inside a CSV file for easier data manipulation and analysis
using Microsoft Excel.

	

12	

Chapter 4: Analysis

If you look at only one beat, there should be only one initial peak on each of the device’s
recordings. If all the devices have the same time corresponding to this beat, then there wouldn’t
be any difference in the times and all the devices would be considered in synch. If there is a
difference between any two devices, then you can average all of these differences to produce a
measurement corresponding to the average error in synchronization. Table 4-i shows a glimpse of
how this average error was produced in Excel, using the average of the absolute differences
between device peak times at a beat.

Table 4-i: Fields D1 through D5 are the peak times at a beat for devices 1 through 5 respectively.
This screenshot is of an Excel spreadsheet corresponding to Run 1 for the 64 cm spacing using the
Peak Alignment Implementation.

 Spreadsheets like Table 4-i were used to create graphical visualizations of the data for all
the different configurations used in the experiment. For example, the graphs displayed in Figures
4-i and 4-ii show the average error in accuracy when the devices were spaced 64 centimeters from
the metronome for both implementations. You will notice that at this particular configuration, the
Peak Alignment Implementation performed better than the Server Clock Implementation in terms
of accuracy.

	

13	

Figure 4-i: Average errors (seconds) in the Peak Alignment Implementation for the 64 cm spacing
from the metronome origin.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 10 20 30 40 50 60

Av
er
ag
e	
Er
ro
r	 i
n	
M
et
ro
no

m
e	 P

ea
ks
	 (s
ec
on

ds
)

Metronome	 Beat	 Count	 (Metronome	 Rate:	 @60	 BPM)

Run	 1

Run	 2

Run	 3

Run	 4

Run	 5

Average	 of	 Runs

	

14	

Figure 4-ii: Average errors (seconds) in the Server Clock Implementation for the 64 cm spacing.

 Figures 4-iii and 4-iv show that even when all the devices were spaced at different distances
from metronome origin, the Peak Alignment Implementation produced better results. This also
aligns with our previous derivation of expected error due to approximating the location of the
devices’ microphones. In the derivation we found that if the devices were off by 10 centimeters,
you can expect a relatively small value of 0.0003 seconds in error. The data from Figures 4-iii and
4-iv did not show any large patterns of error that would suggest otherwise.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 10 20 30 40 50 60

Av
er
ag
e	
Di
ffe

re
nc
e	
in
	 M

et
ro
no

m
e	 P

ea
ks
	 (s
ec
on

ds
)

Metronome	 Beat	 Count	 (Metronome	 Rate:	 @60	 BPM)

Run	 1

Run	 2

Run	 3

Run	 4

Run	 5

Average	 of	 Runs

	

15	

Figure 4-iii: Average errors (seconds) in the Peak Alignment Implementation for a scenario where
each device was spaced at different locations from the metronome origin (4, 8, 16, 32, 64 cm).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50 60

Av
er
ag
e	
Di
ffe

re
nc
e	
in
	 M

et
ro
no

m
e	 P

ea
ks
	 (s
ec
on

ds
)

Metronome	 Beat	 Count	 (Metronome	 Rate:	 @60	 BPM)

Run	 1

Run	 2

Run	 3

Run	 4

Run	 5

Average	 of	 Runs

	

16	

Figure 4-iv: Average errors (seconds) in the Server Clock Implementation for a scenario where
each device was spaced at different locations from the metronome origin (4, 8, 16, 32, 64 cm).

 Figures 4-v and 4-vi show all the averages in error for all the locations and runs or the
entire experiment in two graphs. At first glance you will notice that the Peak Alignment
Implementation, on average, had less error compared with the Server Clock Implementation. You
might also notice the large spikes in the graphs. The large spikes, or errors, can likely be attributed
to external noises leaking into the experimental environment and or issues relating to the window
search algorithm. Since it is difficult to pinpoint the exact cause of these spikes, we can look at
Figures 4-vii & 4-viii and locate an outlier-free subset that follows a linear progression you would
expect from a normal metronome. With this subset, we can formally conduct a statistical analysis
on whether the results from the Peak Alignment Implementation is significantly different than the
Server Clock Implementation.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40 50 60

Av
er
ag
e	
Di
ffe

re
nc
e	
in
	 M

et
ro
no

m
e	 P

ea
ks
	 (s
ec
on

ds
)

Metronome	 Beat	 Count	 (Metronome	 Rate:	 @60	 BPM)

Run	 1

Run	 2

Run	 3

Run	 4

Run	 5

Average	 of	 Runs

	

17	

Figure 4-v: All the runs corresponding to the Peak Alignment Implementation.

	

18	

Figure 4-vi: All the runs corresponding to the Server Clock Implementation.

	

19	

Figure 4-vii: Average errors (seconds) in Peak Alignment vs Server Clock Implementations.

 Figure 4-viii: Outlier-Free Subset

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 10 20 30 40 50 60

Av
er
ag
e	
Di
ffe

re
nc
e	
in
	 M

et
ro
no

m
e	 P

ea
ks
	 (s
ec
on

ds
)

Metronome	 Beat	 Count	 (Metronome	 Rate:	 @60	 BPM)

Average	 Errors	 in	 Peak	
Alignment	 for	 all	 Runs

Average	 Errors	 in	 Server	
Clock	 Alignment	 for	 all	
Runs

y	 =	 0.000002x	 +	 0.0166
R²	 =	 0.07869

y	 =	 -‐0.00001x	 +	 0.0424
R²	 =	 0.43905

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 10 20 30 40

Av
er
ag
e	
Di
ffe

re
nc
e	
in
	 M

et
ro
no

m
e	 P

ea
ks
	 (s
ec
on

ds
)

Metronome	 Beat	 Count	 (Metronome	 Rate:	 @60	 BPM)

Subset	 of	 Peak	
Alignment	 Errors

Subset	 of	 Server	
Clock	 Alignment	
Errors

	

20	

 At this point you can see that in ideal conditions during the experiment, the Server Clock
Implementation experienced an average error of approximately 42 milliseconds and the Peak
Alignment Implementation experienced an average error of approximately 17 milliseconds.
If you considered the observed range of values that produced theses averages, it might be the case
that there may be no difference between the averages since the data sets overlap too heavily. To
account for this scenario, a Paired One-Sided T-Test was performed within the sub-set data (beats
25 through 35) as follows:

(1) 𝐻V:	 𝜇Y = 	 𝜇Z
𝐻V:	 𝜇Y −	 𝜇Z = 0

	 	 	 	 𝑇ℎ𝑒	 𝑛𝑢𝑙𝑙	 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝐻V, 𝑖𝑠	 𝑚𝑎𝑘𝑖𝑛𝑔	 𝑡ℎ𝑒	 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	 𝑡ℎ𝑎𝑡	 𝑡ℎ𝑒𝑟𝑒	 𝑖𝑠	 𝑛𝑜	 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	
𝑏𝑒𝑡𝑤𝑒𝑒𝑛	 𝑡ℎ𝑒	 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	 𝑚𝑒𝑎𝑛	 𝑒𝑟𝑟𝑜𝑟	 𝑓𝑜𝑟	 𝑡ℎ𝑒	 𝑃𝑒𝑎𝑘	 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡	 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝜇Y	 ,	
𝑎𝑛𝑑 𝑡ℎ𝑒	 𝑆𝑒𝑟𝑣𝑒𝑟	 𝐶𝑙𝑜𝑐𝑘	 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝜇Z	 .	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(2) 𝐻a:	 𝜇Y < 𝜇Z

𝐻a:	 𝜇Y − 𝜇Z < 0

	 	 	 	 𝑇ℎ𝑒	 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒	 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝐻a, 𝑖𝑠	 𝑡ℎ𝑎𝑡	 𝑡ℎ𝑒	 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	 𝑚𝑒𝑎𝑛	 𝑒𝑟𝑟𝑜𝑟	 𝑓𝑜𝑟	 𝑡ℎ𝑒	 𝑃𝑒𝑎𝑘	
𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡	 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛	 𝑖𝑠	 𝑙𝑒𝑠𝑠	 𝑡ℎ𝑎𝑛	 𝑡ℎ𝑒	 𝑆𝑒𝑟𝑣𝑒𝑟	 𝐶𝑙𝑜𝑐𝑘	 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛.

(3) 	 	 	 	 𝑇ℎ𝑒	 𝑠𝑎𝑚𝑝𝑙𝑒	 𝑑𝑎𝑡𝑎	 𝑓𝑟𝑜𝑚	 𝑏𝑒𝑎𝑡	 25	 𝑤𝑎𝑠	 𝑐ℎ𝑜𝑠𝑒𝑛	 𝑎𝑡	 𝑟𝑎𝑛𝑑𝑜𝑚	 𝑓𝑟𝑜𝑚	 𝑤𝑖𝑡ℎ𝑖𝑛	 𝑡ℎ𝑒
𝑠𝑢𝑏𝑠𝑒𝑡	 𝑑𝑎𝑡𝑎	 𝑟𝑎𝑛𝑔𝑒	 𝑜𝑓	 𝑏𝑒𝑎𝑡	 25	 𝑡ℎ𝑟𝑜𝑢𝑔ℎ	 𝑏𝑒𝑎𝑡	 35. 𝑇ℎ𝑒	 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	 𝑖𝑛	 𝑒𝑟𝑟𝑜𝑟	 ℎ𝑎𝑠	 𝑏𝑒𝑒𝑛
𝑎𝑠𝑠𝑢𝑚𝑒𝑑	 𝑡𝑜	 𝑐𝑜𝑚𝑒	 𝑓𝑟𝑜𝑚	 𝑎	 𝑁𝑜𝑟𝑚𝑎𝑙	 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	 𝑎𝑠	 𝑠ℎ𝑜𝑤𝑛	 𝑖𝑛	 𝐹𝑖𝑔𝑢𝑟𝑒	 4-ix.

Figure 4-ix: The difference between the Peak Alignment Implementation error and the
Server Clock Implementation error closely resembles a Normal Distribution.

(4) 	 	 	 	 	 𝑈𝑠𝑖𝑛𝑔	 𝐸𝑥𝑐𝑒𝑙h𝑠	 𝑃𝑎𝑖𝑟𝑒𝑑	 𝑂𝑛𝑒	 𝑆𝑖𝑑𝑒𝑑	 𝑇𝑇𝑒𝑠𝑡	 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	 𝑔𝑖𝑣𝑒𝑠	 𝑎

𝑃	 𝑉𝑎𝑙𝑢𝑒 =	 2.68234E-06

The P Value is the probability that the averages are the same when considering the data
sets’ observed variation. Since the probability is very small, we can reject that the averages are the
same and we can accept our alternative hypothesis that the mean error for the Peak Alignment
Implementation is smaller than the mean error for the Server Clock Implementation [15].

-‐0.2 -‐0.15 -‐0.1 -‐0.05 0 0.05 0.1

(Peak	 Alignment	 Imp.	 	 error)	 -‐ (Server	 Clock	 Alignment	 Imp.	 error)
Distribution	 at	 beat	 25

	

21	

To see whether or not the factor of distance influenced the mean error, a One-Way Analysis
of Variance (ANOVA) test was performed on the sub-set data for the two implementations at beat
number 33. ANOVA is an extension of the T-Test. Instead of considering two population means,
we are now considering multiple population means. In the following, ANOVA is used to see
whether or not spacing the devices at 8cm or 16cm or 32cm or 64cm from the metronome origin
made any difference with respect to the average error observed in the Peak Alignment
Implementation. The first three points are the conditions that need to be satisfied prior to
conducting ANOVA.

(1) Beat 33 was chosen at random from the subset beat range of 25 through 35.
	

(2) The F-Test for homogeneity in variance was accepted to be equal for all the distances [16].

(3) The distributions have been assumed to come from Normal Distributions as shown in
Figure 4-x.

Figure 4-x: Average errors (seconds) at each spacing. Light Blue indicates Run 1, Orange
indicates Run 2, Grey indicates Run 3, Yellow indicates Run 4, and Dark Blue indicates
Run 5.

(4) 𝐻V:	 	 𝜇k = 	 𝜇Ol	 = 𝜇mS = 	 𝜇ln	

	 	 	 	 𝑇ℎ𝑒	 𝑛𝑢𝑙𝑙	 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝐻V, 𝑖𝑠	 𝑚𝑎𝑘𝑖𝑛𝑔	 𝑡ℎ𝑒	 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	 𝑡ℎ𝑎𝑡	 𝑡ℎ𝑒𝑟𝑒	 𝑖𝑠	 𝑛𝑜	 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	
𝑏𝑒𝑡𝑤𝑒𝑒𝑛	 𝑡ℎ𝑒	 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	 𝑚𝑒𝑎𝑛	 𝑒𝑟𝑟𝑜𝑟	 𝑎𝑡	 𝑒𝑎𝑐ℎ	 𝑠𝑝𝑎𝑐𝑖𝑛𝑔.

	

22	

(5) 𝐻a:	 	 𝜇k ≠ 𝜇Ol	 ≠ 𝜇mS ≠ 𝜇ln	

	 	 	 	 𝑇ℎ𝑒	 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒	 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝐻a, 𝑖𝑠	 𝑡ℎ𝑎𝑡	 𝑡ℎ𝑒	 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	 𝑚𝑒𝑎𝑛	 𝑒𝑟𝑟𝑜𝑟	 𝑎𝑡	 𝑒𝑎𝑐ℎ	 𝑠𝑝𝑎𝑐𝑖𝑛𝑔
𝑖𝑠	 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡.

(6)

Table 4-ii: ANOVA Summary when considering the devices' distance from the metronome
origin as a factor.

 The small P-value in Table 4-ii indicates that we can’t accept that the average errors at each
spacing for the Peak Alignment Implementation are the same. This implies that we can accept the
alternative hypothesis that there is a difference in the average errors when considering the device
distance from the metronome origin. Upon further investigation, a T-Test was performed for the
8/16 cm spacing group and the 32/64 cm spacing group. Contrary to my expectation, the test
concluded that it is plausible that the mean error for the 32/64 cm group is less than the 8/16 cm
group for the Peak Alignment Implementation.

For the Server Clock Implementation, a similar ANOVA test was conducted and concluded
that there was no significant difference between the average errors at each spacing. Since its usage
doesn’t require you to be relatively in the same proximity, this result was more aligned with my
expectation.

To determine whether or not the amount of devices used in the experiment impacted the
results, we can look at the runs corresponding to the 32/64 cm group and conduct a One-Way
ANOVA test comparing the average errors experienced between any 2 of the 5 devices, 3 of the 5
devices, 4 of the 5 devices, and 5 of the 5 devices. The 32/64 cm group was chosen for the ANOVA
calculation because all 5 devices were used in the 10 runs corresponding to the 32 and 64 cm
group. Beat number 27 was chosen at random from within the subset range (beat 25 through beat
35) to satisfy the first condition of the ANOVA test as follows:

(1) The data set pertaining to beat 27 was chosen at random. The devices that produced each

average were chosen at random.
	

	

23	

(2) The F-Test for homogeneity in variance was accepted to be equal for all the distances [16].

(3) The distributions have been assumed to come from Normal Distributions as shown in
Figure 4-xi.

Figure 4-xi: Average error (seconds) for randomly selected devices at beat 27. Each point
represents an averaged run in the 32/64 cm group. Each color corresponds to one of the
ten runs.

(4) 𝐻V:	 	 𝜇S = 	 𝜇m	 = 𝜇n = 	 𝜇p	

	 	 	 	 𝑇ℎ𝑒	 𝑛𝑢𝑙𝑙	 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝐻V, 𝑖𝑠	 𝑚𝑎𝑘𝑖𝑛𝑔	 𝑡ℎ𝑒	 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	 𝑡ℎ𝑎𝑡	 𝑡ℎ𝑒𝑟𝑒	 𝑖𝑠	 𝑛𝑜	 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	
𝑏𝑒𝑡𝑤𝑒𝑒𝑛	 𝑡ℎ𝑒	 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	 𝑚𝑒𝑎𝑛	 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	 𝑒𝑟𝑟𝑜𝑟	 𝑓𝑜𝑟	 𝑎𝑛𝑦	 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	 𝑑𝑒𝑣𝑖𝑐𝑒𝑠	
𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑.

(5) 𝐻a:	 	 𝜇S ≠ 𝜇m	 ≠ 𝜇n ≠ 𝜇p	

	 	 	 	 𝑇ℎ𝑒	 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒	 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝐻a, 𝑖𝑠	 𝑡ℎ𝑎𝑡	 𝑡ℎ𝑒	 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	 𝑚𝑒𝑎𝑛	 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	 𝑒𝑟𝑟𝑜𝑟	 𝑖𝑠	
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡	 𝑤ℎ𝑒𝑛 more or less devices are considered.

	

24	

(6) Table 4-iii: ANOVA Summary when considering the number of devices in use as a factor.

 The large P-value in Table 4-iii indicates that it is plausible that the average error when
considering 2 devices could be the same as the average error when considering up to 5 devices.
This means that considering more or less devices did not significantly impact the Peak Alignment
Implementation’s synchronization error. Similarly, the Server Clock Implementation’s ANOVA
test concluded that there was also no significant difference when considering additional devices in
use. Theoretically both implementations can handle up to 8 devices, however, this scenario was
not tested in this experiment.

	

25	

Chapter 5: Conclusion

Using a loud noise at the beginning of a recording session improved the process of aligning
multiple recordings together. The Peak Alignment Implementation that used this technique, on
average, produced an error of approximately 17 milliseconds during the experiment. This is 26
milliseconds better than the Server Clock Implementation which primarily used a cloud provider’s
global clock for synchronization.

Any error in synchronization produced an explicit reverberation sound effect when
combining multiple recordings that focused on a single source of audio. The Peak Alignment
Implementation significantly reduced this effect, but required an initial noise to be created at the
start of the recording and within the devices’ proximity. The Server Clock Implementation, on the
other hand, did not require the devices to be in the same proximity or an initial noise to be generated
by the user. In this way the Server Clock Implementation could be used for a wider range of
applications, if you can tolerate average errors of around 42 milliseconds.
 Both solutions did not compromise accuracy when the number of devices varied. There
was little difference in the amount of error observed when considering the use of 2, 3, 4, or 5
devices in a session.

	

26	

References

[1] Nick Schaafsma. “Loop Multitrack Recorder”.
https://sites.google.com/site/loopmultitrackmusicrecorder/ Retrieved April 2016.

[2] Sanjib Sur, Teng Wei, and Xinyu Zhang. “Autodirective audio capturing through a
synchronized smartphone array,” in Proceedings of the 12th annual international conference on
Mobile systems, applications, and services (MobiSys '14). ACM, New York, NY, USA, 2014. pp.
28 - 41.

[3] Roy Smeding, Sjoerd Bosma, Supervisor: Dr. Jorge Martínez Castañeda. “Smartphone Audio
Acquisition and Synchronization Using an Acoustic Beacon With Application to Beamforming,”
Delf University of Technology, Netherlands. 2015.

[4] Silipo, R., Greenberg, S., and Arai, T. “Temporal constraints on speech intelligibility as
deduced from exceedingly sparse spectral representations,” in Proceedings of Eurospeech,
Budapest, 1999. pp. 2687 - 2690.

[5] Stone, M.A., and Moore, B.C.J. “Tolerable hearing aid delays. III. Effects of speech
production and perception of across-frequency variation in delay,” Ear Hear, 2003. pp. 24, 175 -
183.

[6] J. V. Lichtenauer, J. Shen, and M. Pantic, “Cost-effective solution to synchronized audio-
visual capture using multiple sensors,” in IEEE Conference on Advanced Video and Signal
Based Surveillance (AVSS 2009), 2009. pp. 324 - 329.

[7] K. W. Grant, V. van Wassenhove, and D. Poeppel. “Discrimination of auditory-visual
synchrony,” in International Conference on Audio-Visual Speech Processing, 2003. pp. 31 - 35

[8] S. Deligeorges, G.Cakiades, J. George, Y. Wang, and F. Doyle. “A Mobile Self
Synchronizing Smart Sensor Array for Detection and Localization of Impulsive Threat Sources,”
2015 IEEE International Conference on Multisensor Fusion and lntegration for Intelligent
Systems (MFI) Sept 14 - 16, 2015. San Diego, CA, USA

[9] D. Rodriguez, J. Apolinario, and L. Biscainho, “Audio authenticity: Detecting ENF
discontinuity with high precision phase analysis,” IEEE Trans. Inf. Forensics Security, Sep.
2010. vol. 5, no. 3, pp. 534 - 543.

[10] H. Su, A. Hajj-Ahmad, M. Wu, and D. Oard, “Exploring the use of ENF for multimedia
synchronization,” in IEEE Int’l Conf. Acoustics, Speech, and Signal Processing (ICASSP), 2014.

[11] Tobias (Admin). “Significant Problems with PhotonNetwork.time and timestamps,”
http://forum.photonengine.com/discussion/1397/significant-problems-with-photonnetwork-time-
and-timestamps February 2012. Retrieved January 2016.

	

27	

[12] Midworld. “Google Drive for Unity 3D,” https://github.com/midworld/unity-googledrive
Retrieved April 2016.

[13] Raymond A. Serway and John W. Jewett, Junior. Physics for Scientists and Engineers with
Modern Physics, Seventh Edition. Thomson Higher Education, Belmont, CA, USA, 2008. pp. 475.

[14] Window Search Peak Finding Algorithm. http://www.originlab.com/doc/Origin-Help/PA-
Algorithm Retrieved December 2015.

[15] Ann E. Watkins, Richard L. Scheaffer, and George W. Cobb. Statistics in Action,
Understanding a World of Data 2nd Edition. Key Curriculum Press. 2008. pp. 625-626.

[16] Charles Caiontz. “Homogenity of Variances”. http://www.real-statistics.com/one-way-
analysis-of-variance-anova/homogeneity-variances/ Retrieved February 2016.

