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Preface 
 

Loop Multitrack Recorder is a project that I first started working on in a summer course 
offered at California State University Northridge called Introduction to Software Engineering. 
When the course ended, I found that I really enjoyed working on the project so I continued working 
on the project for fun. A year and a half later, the project now allows you to enjoy most features 
that you would expect from a mobile recording app (graphical sound editor, apply effects, 
undo/redo, import/export to Google Drive or the device, etc.). The newest feature, for which this 
thesis primarily concerns, involves creating a “Jam Session” where multiple users can get together 
to record sounds on their own devices in a synchronized and collaborative manner. For screenshots 
and more information about the app please visit Loop Multitrack Recorder [1] or search “Loop 
Multitrack Recorder” on an Android device in Google Play. 
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ABSTRACT 
 

 
 
 

Synchronized Audio Capture with an Array of Mobile Devices 
 
 

By 
 

Nick Schaafsma 
 

Master of Science in Software Engineering 
 

The objective of this project is to measure the accuracy of using a high decibel sound as a  
reference for synchronizing audio recordings in a system composed of mobile devices and cloud 
technologies. The implementation is compared with one that only relies on a cloud provider’s 
global clock.
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Chapter 1:   Introduction 
 

When recording sound, it is often desirable to record and combine sounds from multiple  
locations to produce a sound of higher quality than if they were produced on their own. The process 
of combining multiple sounds into one output is called beamforming and has been applied in 
various fields ranging from business conference calling systems to scientific radio astronomy and 
sonar mapping.  

Synchronization plays an important role in beamforming. If you do not know when a sound 
was captured, it is difficult to know at what point the sounds should be combined. Standard 
solutions typically use hardware to stream audio data into a single computer to be processed. These 
solutions, while very accurate and reliable, lack the mobility and accessibility you would typically 
find in a mobile device.  

The motivation for this project was to see whether you can take advantage of common  
devices like smart-phones for use in a beamforming application. I had imagined getting together 
with some musicians and having them all record their instruments together with their own devices. 
Instead of purchasing microphones and special equipment, it would be less expensive to use what 
we already have to set up an ad-hoc recording studio.  

Since the mobile devices would be communicating through a wireless medium and most  
likely be running at different processing rates, the idea of achieving perfect synchronization is  
desirable but very difficult to obtain.  
 Recent work by Sur, Wei, Zhang [2] and Smeding, Bosma, Castañeda [3] showed that it  

 is definitely possible to implement beamforming solutions in a mobile system. Sur, Wei, and 
Zhang took a clever approach for handling the synchronizing problem. Using local timestamps 
from each of the device’s network adapter and creating Linear Regression models around these 
timestamps, they found an Algebraic solution for synchronizing the devices together. One problem 
they encountered, however, was that the network adapter’s timestamp was not always available in 
some devices [2]. They also mentioned that you could use an external audio beacon to periodically 
act as a reference for alignment, but they felt that the beacon would interfere with the recording. 
This idea inspired me to use an initial loud noise at the start of the recording to act as an alignment 
reference for all the devices. When compared to another approach that only used a cloud provider’s 
global clock, the Peak Alignment Implementation, as I call it, produced better results in terms of 
synchronization accuracy.   
 Past studies by Silipo [4] and Stone, Moore [5] have shown that relatively small across-
channel delays (less than 20 milliseconds) can result in significant loss of speech intelligibility 
[6][7]. In my experiment, the Peak Alignment Implementation achieved an average delay of 
roughly 17 milliseconds while my other approach, called the Server Clock Implementation, 
achieved an average delay of roughly 42 milliseconds.  
 With regards to sensor networks, Deligeorges, Cakiades, Wang, and Doyle [8] described a 
strategy using a Fusion algorithm to synchronize sensors together for detecting/locating sounds. It 
achieved very accurate results (sub-millisecond) due to being written in way that directly access 
the hardware.  
 In regards to Audio Forensics and Multimedia Synchronization, Rodriguez, Apolinario, 
Biscainho [9] and Su, Hajj-Ahmad, Wu, Oard [10] described an idea in which you can exploit 
electric network frequency (ENF) signals to synchronize audio and video recordings together. An 
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ENF signal is a unique signal that gets in embedded in audio recordings captured from devices 
directly connected to a power grid. The ENF signal acts as a fingerprint for which multiple 
recordings can use for alignment/synchronization. However, since the devices need to be 
connected to a power grid, the strategy did not seem suitable for my mobile application.       
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Chapter 2:   Approach and Implementation 
 
Two approaches for synchronizing audio together were implemented and are currently 

available in the Loop Multitrack Recorder app on Google Play. The first approach, called the 
Server Clock Implementation, uses a cloud technology called Photon Unity Networking along with 
their clock API as a basis for synchronization. By knowing when each device started recording 
based on a common server clock, you can align all the recordings to the device that started last as 
depicted in Figures 2-i and 2-ii.  

 
 

 
 

Figure 2-i: A hypothetical example for demonstration purposes. Each line represents a device's 
recording time. The red marker indicates that device 2 started recording the latest relative to the 
other devices. 

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3

De
vi
ce
	
  N
um

be
r

Photon	
  Unity	
  Networking	
  Recording	
  Time	
  (seconds)

Server	
  Clock	
  Implementation	
  Pre-­‐Alignment



	
  

4	
  

 
 

Figure 2-ii: Once you know the time at which the last device started recording, you can trim off 
the beginning of each of the other devices’ recordings up until that point. In this way, the 
recordings are aligned and ready to be combined. 

 
The problem with this approach, however, is that the common clock being used must 

already be in synch with all the devices. It turns out that this was not always the case. On initial 
runs of the approach and shown in Figure 2-iii’s example, a very  noticeable and unwanted 
reverberation effect was produced in the combined recordings. Upon further research, it was 
described in a blog by a Photon Unity Networking administrator that the global server clock 
contains an inaccuracy of roughly 15 milliseconds [11]. This inaccuracy, compounded with the 
inaccuracies associated with operating system process schedules and varying hardware [3], led me 
to search for a different approach.   

 
 

 
 

Figure 2-iii: One sound combined from three devices using the Server Clock Implementation. If 
the implementation were perfect, you would expect to only see one peak from the sound. However, 
you will notice that there are 3 peaks in this picture that produced an unwanted reverberation 
sound effect. The distance between these peaks is a measure of error in the synchronization 
process.  
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The second approach, called the Peak Alignment Implementation, requires the user to 
create a loud acute noise at the start of the recording to use as an alignment reference. You can use 
just about anything to create the noise. In my experiment, two drum sticks were clacked together 
to produce a noise at approximately the same distance from all the devices. When all the devices 
stop recording, the algorithm locates the first peak in decibel reading from the initial noise and 
trims off up to a second beyond that peak from all of the recordings as depicted in Figures 2-iv and 
2-v.  

 
 

 
Figure 2-iv: A hypothetical example of one loud sound captured by two devices. Point A is the 
peak of the sound captured by device one and point B is the peak of the sound captured by device 
two. The y-axis represents the decibel reading of the sound and the x-axis represents when that 
decibel reading was captured in seconds.  

 

 
 
Figure 2-v: The Peak Alignment Implementation locates all the peaks in the devices for the initial 
sound and trims off 1 second beyond that point of reference. In this way, the recordings are aligned 
and ready to be combined without the initial noise. 
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 Both approaches incorporated the use of Unity 3D in C# along with Photon Unity 
Network’s API and Google Drive’s API for uploading/downloading files to and from a shared 
Google Drive folder. Midworld’s open source project, Google Drive for Unity 3D [12], provided 
a solid foundation for implementing the file transfer and account authorization aspects of the 
solutions. Photon Unity Network helped facilitate the communication between the devices using 
Remote Procedure Calls (RPCs) and provided the common clock. All of these technologies 
mentioned are displayed in Figure 3-vi’s technology stack.  
 
 

 
 

Figure 2-vi: Technology Stack 

 
Assuming that a Google Drive folder has been shared prior to a session’s creation, the 

device that created the session will upload a file containing a unique Photon Unity Network Room 
Identifier. With this id, the devices connect to the same room and communicate with each other 
using RPC’s as depicted in Figure 2-vii. The RPCs are primarily invoked in the background, so all 
the user has to do is create or join a session, start the recording session, create an initial noise (if 
using the Peak Alignment Implementation), and press the stop recording button. Whenever 
someone stops recording, their audio file is uploaded to the shared folder. When all the devices 
have finished uploading their audio files, the device that created the session will download, 
combine, and upload the final combined audio to the shared folder.  



	
  

7	
  

 
Figure 2-vii: Session Creation 
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Chapter 3:   Experimental Setup 
 

To measure the accuracy of the implementations, a testing ground was set up such that each 
device could be placed at equidistant locations and record metronome beats coming from the origin 
as shown in Figure 3-i. It is expected that the beat would reach each device at the same moment in 
time. So if you observe a set of peaks for one beat that align at the same time, then you can say the 
implementation is accurate. Furthermore, if the peaks are spread out for one beat, then you can say 
the implementation is inaccurate. The average of these differences provided a key metric for 
comparing the two implementations with each other. 

 
 

 
Figure 3-i: All the devices are spaced at 32 cm from the metronome origin. Also included is a 
thermometer at the bottom of the picture that measured the temperature of the experimental 
environment. 
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Prior to gathering data pertaining to the accuracy of the implementations, error due to the 

experimental process/environment was taken into account. Some of the devices contained a tiny 
pinhole that represented the device’s microphone location. To get an idea of what we can expect 
if any of these locations were off, we can assume that the error in the true location was not greater 
than 10 cm and use the speed of sound formula [13] to derive an expected error. The following is 
the derivation of the potential error introduced:  
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From the previous derivation, it is safe to say that approximating the devices’ microphone 
locations potentially introduced up to 0.0003 seconds of error.       

The audio was recorded in sets of 5 at each equidistant location: 8 cm, 16 cm, 32 cm, and 
64 cm as shown in Table 3-i. The metronome was set at a rate of 60 beats per minute and each 
device recorded roughly a minute of recording. The data range used in analysis were beats 2 
through 57, as the first beat produced was often corrupted by the sound of turning the metronome’s 
power switch on.    

 
Table 3-i: The devices' names, the distances they were spaced from the metronome origin during 
the experiment, and their operating systems. 

 
 

The files generated from the experiment were WAV files. WAV files primarily consist of 
an array of decibel readings captured by the device’s sound card. The readings, called samples, are 
of a byte format which are typically converted into a real number ranging from -1 to 1. The sample 
indices of this array are used in conjunction with the known sampling rate to map the sound over 
time in a digital format.  

The points of interest in the WAV files were the peak times corresponding to the 
metronome beats. To locate and consolidate these peaks from the WAV files, an algorithm loosely 
based on Originlab’s Window Search Peak Finding [14] concept of partitioning large data into 
windows of a fixed size was created to locate each peak in every window. To avoid echoes and 
external noises from being misinterpreted as metronome peaks, every time a peak was found, the 
algorithm would jump a fixed amount and parse the next window. When the algorithm finishes its 
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traversal, the peak times are then placed inside a CSV file for easier data manipulation and analysis 
using Microsoft Excel. 
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Chapter 4:   Analysis 
 

If you look at only one beat, there should be only one initial peak on each of the device’s 
recordings. If all the devices have the same time corresponding to this beat, then there wouldn’t 
be any difference in the times and all the devices would be considered in synch. If there is a 
difference between any two devices, then you can average all of these differences to produce a 
measurement corresponding to the average error in synchronization. Table 4-i shows a glimpse of 
how this average error was produced in Excel, using the average of the absolute differences 
between device peak times at a beat. 

 
Table 4-i: Fields D1 through D5 are the peak times at a beat for devices 1 through 5 respectively. 
This screenshot is of an Excel spreadsheet corresponding to Run 1 for the 64 cm spacing using the 
Peak Alignment Implementation. 

 
 
 Spreadsheets like Table 4-i were used to create graphical visualizations of the data for all 
the different configurations used in the experiment.  For example, the graphs displayed in Figures 
4-i and 4-ii show the average error in accuracy when the devices were spaced 64 centimeters from 
the metronome for both implementations. You will notice that at this particular configuration, the 
Peak Alignment Implementation performed better than the Server Clock Implementation in terms 
of accuracy. 
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Figure 4-i: Average errors (seconds) in the Peak Alignment Implementation for the 64 cm spacing 
from the metronome origin. 
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Figure 4-ii: Average errors (seconds) in the Server Clock Implementation for the 64 cm spacing. 

 Figures 4-iii and 4-iv show that even when all the devices were spaced at different distances 
from metronome origin, the Peak Alignment Implementation produced better results. This also 
aligns with our previous derivation of expected error due to approximating the location of the 
devices’ microphones. In the derivation we found that if the devices were off by 10 centimeters, 
you can expect a relatively small value of 0.0003 seconds in error. The data from Figures 4-iii and 
4-iv did not show any large patterns of error that would suggest otherwise. 
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Figure 4-iii: Average errors (seconds) in the Peak Alignment Implementation for a scenario where 
each device was spaced at different locations from the metronome origin (4, 8, 16, 32, 64 cm).  
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Figure 4-iv: Average errors (seconds) in the Server Clock Implementation for a scenario where 
each device was spaced at different locations from the metronome origin (4, 8, 16, 32, 64 cm). 
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entire experiment in two graphs. At first glance you will notice that the Peak Alignment 
Implementation, on average, had less error compared with the Server Clock Implementation. You 
might also notice the large spikes in the graphs. The large spikes, or errors, can likely be attributed 
to external noises leaking into the experimental environment and or issues relating to the window 
search algorithm. Since it is difficult to pinpoint the exact cause of these spikes, we can look at 
Figures 4-vii &  4-viii and locate an outlier-free subset that follows a linear progression you would 
expect from a normal metronome. With this subset, we can formally conduct a statistical analysis 
on whether the results from the Peak Alignment Implementation is significantly different than the 
Server Clock Implementation. 
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Figure 4-v: All the runs corresponding to the Peak Alignment Implementation. 
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Figure 4-vi: All the runs corresponding to the Server Clock Implementation. 

  
 
 
 
 



	
  

19	
  

 
Figure 4-vii: Average errors (seconds) in Peak Alignment vs Server Clock Implementations. 

 
               Figure 4-viii: Outlier-Free Subset  
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 At this point you can see that in ideal conditions during the experiment, the Server Clock 
Implementation experienced an average error of approximately 42 milliseconds and the Peak 
Alignment Implementation experienced an average error of approximately 17 milliseconds.  
If you considered the observed range of values that produced theses averages, it might be the case 
that there may be no difference between the averages since the data sets overlap too heavily. To 
account for this scenario, a Paired One-Sided T-Test was performed within the sub-set data (beats 
25 through 35) as follows:  
 

(1) 𝐻V:	
  𝜇Y = 	
  𝜇Z 
𝐻V:	
  𝜇Y −	
  𝜇Z = 0 

 
	
  	
  	
  	
  𝑇ℎ𝑒	
  𝑛𝑢𝑙𝑙	
  ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝐻V, 𝑖𝑠	
  𝑚𝑎𝑘𝑖𝑛𝑔	
  𝑡ℎ𝑒	
  𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	
  𝑡ℎ𝑎𝑡	
  𝑡ℎ𝑒𝑟𝑒	
  𝑖𝑠	
  𝑛𝑜	
  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	
   
𝑏𝑒𝑡𝑤𝑒𝑒𝑛	
  𝑡ℎ𝑒	
  𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	
  𝑚𝑒𝑎𝑛	
  𝑒𝑟𝑟𝑜𝑟	
  𝑓𝑜𝑟	
  𝑡ℎ𝑒	
  𝑃𝑒𝑎𝑘	
  𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡	
  𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝜇Y	
  ,	
   
𝑎𝑛𝑑 𝑡ℎ𝑒	
  𝑆𝑒𝑟𝑣𝑒𝑟	
  𝐶𝑙𝑜𝑐𝑘	
  𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝜇Z	
  .	
    

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   
(2) 𝐻a:	
  𝜇Y < 𝜇Z 

𝐻a:	
  𝜇Y − 𝜇Z < 0 
 
	
  	
  	
  	
  𝑇ℎ𝑒	
  𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒	
  ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝐻a, 𝑖𝑠	
  𝑡ℎ𝑎𝑡	
  𝑡ℎ𝑒	
  𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	
  𝑚𝑒𝑎𝑛	
  𝑒𝑟𝑟𝑜𝑟	
  𝑓𝑜𝑟	
  𝑡ℎ𝑒	
  𝑃𝑒𝑎𝑘	
   
𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡	
  𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛	
  𝑖𝑠	
  𝑙𝑒𝑠𝑠	
  𝑡ℎ𝑎𝑛	
  𝑡ℎ𝑒	
  𝑆𝑒𝑟𝑣𝑒𝑟	
  𝐶𝑙𝑜𝑐𝑘	
  𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛. 
 

(3) 	
  	
  	
  	
  𝑇ℎ𝑒	
  𝑠𝑎𝑚𝑝𝑙𝑒	
  𝑑𝑎𝑡𝑎	
  𝑓𝑟𝑜𝑚	
  𝑏𝑒𝑎𝑡	
  25	
  𝑤𝑎𝑠	
  𝑐ℎ𝑜𝑠𝑒𝑛	
  𝑎𝑡	
  𝑟𝑎𝑛𝑑𝑜𝑚	
  𝑓𝑟𝑜𝑚	
  𝑤𝑖𝑡ℎ𝑖𝑛	
  𝑡ℎ𝑒 
𝑠𝑢𝑏𝑠𝑒𝑡	
  𝑑𝑎𝑡𝑎	
  𝑟𝑎𝑛𝑔𝑒	
  𝑜𝑓	
  𝑏𝑒𝑎𝑡	
  25	
  𝑡ℎ𝑟𝑜𝑢𝑔ℎ	
  𝑏𝑒𝑎𝑡	
  35. 𝑇ℎ𝑒	
  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	
  𝑖𝑛	
  𝑒𝑟𝑟𝑜𝑟	
  ℎ𝑎𝑠	
  𝑏𝑒𝑒𝑛 
𝑎𝑠𝑠𝑢𝑚𝑒𝑑	
  𝑡𝑜	
  𝑐𝑜𝑚𝑒	
  𝑓𝑟𝑜𝑚	
  𝑎	
  𝑁𝑜𝑟𝑚𝑎𝑙	
  𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	
  𝑎𝑠	
  𝑠ℎ𝑜𝑤𝑛	
  𝑖𝑛	
  𝐹𝑖𝑔𝑢𝑟𝑒	
  4-ix. 
 
 

 
Figure 4-ix: The difference between the Peak Alignment Implementation error and the 
Server Clock Implementation error closely resembles a Normal Distribution. 

 
 

(4) 	
  	
  	
  	
  	
  𝑈𝑠𝑖𝑛𝑔	
  𝐸𝑥𝑐𝑒𝑙h𝑠	
  𝑃𝑎𝑖𝑟𝑒𝑑	
  𝑂𝑛𝑒	
  𝑆𝑖𝑑𝑒𝑑	
  𝑇𝑇𝑒𝑠𝑡	
  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	
  𝑔𝑖𝑣𝑒𝑠	
  𝑎 
 

𝑃	
  𝑉𝑎𝑙𝑢𝑒 =	
  2.68234E-­06    

The P Value is the probability that the averages are the same when considering the data 
sets’ observed variation. Since the probability is very small, we can reject that the averages are the 
same and we can accept our alternative hypothesis that the mean error for the Peak Alignment 
Implementation is smaller than the mean error for the Server Clock Implementation [15].  
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To see whether or not the factor of distance influenced the mean error, a One-Way Analysis 
of Variance (ANOVA) test was performed on the sub-set data for the two implementations at beat 
number 33. ANOVA is an extension of the T-Test. Instead of considering two population means, 
we are now considering multiple population means. In the following, ANOVA is used to see 
whether or not spacing the devices at 8cm or 16cm or 32cm or 64cm from the metronome origin 
made any difference with respect to the average error observed in the Peak Alignment 
Implementation. The first three points are the conditions that need to be satisfied prior to 
conducting ANOVA. 
 

(1) Beat 33 was chosen at random from the subset beat range of 25 through 35. 
	
   

(2) The F-Test for homogeneity in variance was accepted to be equal for all the distances [16].   
 

(3) The distributions have been assumed to come from Normal Distributions as shown in 
Figure 4-x.  
 

 
Figure 4-x: Average errors (seconds)  at each spacing. Light Blue indicates Run 1, Orange 
indicates Run 2, Grey indicates Run 3, Yellow indicates Run 4, and Dark Blue indicates 
Run 5.  

 
 

(4) 𝐻V:	
  	
  𝜇k = 	
  𝜇Ol	
   = 𝜇mS = 	
  𝜇ln	
   
 
	
  	
  	
  	
  𝑇ℎ𝑒	
  𝑛𝑢𝑙𝑙	
  ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝐻V, 𝑖𝑠	
  𝑚𝑎𝑘𝑖𝑛𝑔	
  𝑡ℎ𝑒	
  𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	
  𝑡ℎ𝑎𝑡	
  𝑡ℎ𝑒𝑟𝑒	
  𝑖𝑠	
  𝑛𝑜	
  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	
   
𝑏𝑒𝑡𝑤𝑒𝑒𝑛	
  𝑡ℎ𝑒	
  𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	
  𝑚𝑒𝑎𝑛	
  𝑒𝑟𝑟𝑜𝑟	
  𝑎𝑡	
  𝑒𝑎𝑐ℎ	
  𝑠𝑝𝑎𝑐𝑖𝑛𝑔. 
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(5) 𝐻a:	
  	
  𝜇k ≠ 𝜇Ol	
   ≠ 𝜇mS ≠ 𝜇ln	
   
 
	
  	
  	
  	
  𝑇ℎ𝑒	
  𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒	
  ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝐻a, 𝑖𝑠	
  𝑡ℎ𝑎𝑡	
  𝑡ℎ𝑒	
  𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	
  𝑚𝑒𝑎𝑛	
  𝑒𝑟𝑟𝑜𝑟	
  𝑎𝑡	
  𝑒𝑎𝑐ℎ	
  𝑠𝑝𝑎𝑐𝑖𝑛𝑔 
𝑖𝑠	
  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡. 
 
 

(6) 
  

  

 

 

 

 

 

 

  

  

  

  

  

  

 

 

  

  

  

  

  

  

 

 

  

  

  

  

  

  

Table 4-ii: ANOVA Summary when considering the devices' distance from the metronome 
origin as a factor. 

 
  

 The small P-value in Table 4-ii indicates that we can’t accept that the average errors at each 
spacing for the Peak Alignment Implementation are the same. This implies that we can accept the 
alternative hypothesis that there is a difference in the average errors when considering the device 
distance from the metronome origin. Upon further investigation, a T-Test was performed for the 
8/16 cm spacing group and the 32/64 cm spacing group.  Contrary to my expectation, the test 
concluded that it is plausible that the mean error for the 32/64 cm group is less than the 8/16 cm 
group for the Peak Alignment Implementation.  

For the Server Clock Implementation, a similar ANOVA test was conducted and concluded 
that there was no significant difference between the average errors at each spacing. Since its usage 
doesn’t require you to be relatively in the same proximity, this result was more aligned with my 
expectation. 

To determine whether or not the amount of devices used in the experiment impacted the 
results, we can look at the runs corresponding to the 32/64 cm group and conduct a One-Way 
ANOVA test comparing the average errors experienced between any 2 of the 5 devices, 3 of the 5 
devices, 4 of the 5 devices, and 5 of the 5 devices. The 32/64 cm group was chosen for the ANOVA 
calculation because all 5 devices were used in the 10 runs corresponding to the 32 and 64 cm 
group. Beat  number 27 was chosen at random from within the subset range (beat 25 through beat 
35) to satisfy the first condition of the ANOVA test as follows:  

 
(1) The data set pertaining to beat 27 was chosen at random. The devices that produced each 

average were chosen at random. 
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(2) The F-Test for homogeneity in variance was accepted to be equal for all the distances [16].   
 
 

(3) The distributions have been assumed to come from Normal Distributions as shown in 
Figure 4-xi.  
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 4-xi: Average error (seconds) for randomly selected devices at beat 27. Each point 
represents an averaged run in the 32/64 cm group. Each color corresponds to one of the 
ten runs. 

 
  
(4) 𝐻V:	
  	
  𝜇S = 	
  𝜇m	
   = 𝜇n = 	
  𝜇p	
   

 
	
  	
  	
  	
  𝑇ℎ𝑒	
  𝑛𝑢𝑙𝑙	
  ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝐻V, 𝑖𝑠	
  𝑚𝑎𝑘𝑖𝑛𝑔	
  𝑡ℎ𝑒	
  𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	
  𝑡ℎ𝑎𝑡	
  𝑡ℎ𝑒𝑟𝑒	
  𝑖𝑠	
  𝑛𝑜	
  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	
   
𝑏𝑒𝑡𝑤𝑒𝑒𝑛	
  𝑡ℎ𝑒	
  𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	
  𝑚𝑒𝑎𝑛	
  𝑎𝑣𝑒𝑟𝑎𝑔𝑒	
  𝑒𝑟𝑟𝑜𝑟	
  𝑓𝑜𝑟	
  𝑎𝑛𝑦	
  𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	
  𝑑𝑒𝑣𝑖𝑐𝑒𝑠	
   
𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑. 
 
 

(5) 𝐻a:	
  	
  𝜇S ≠ 𝜇m	
   ≠ 𝜇n ≠ 𝜇p	
   
 
	
  	
  	
  	
  𝑇ℎ𝑒	
  𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒	
  ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝐻a, 𝑖𝑠	
  𝑡ℎ𝑎𝑡	
  𝑡ℎ𝑒	
  𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	
  𝑚𝑒𝑎𝑛	
  𝑎𝑣𝑒𝑟𝑎𝑔𝑒	
  𝑒𝑟𝑟𝑜𝑟	
  𝑖𝑠	
   
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡	
  𝑤ℎ𝑒𝑛 more or less devices are considered. 
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(6) Table 4-iii: ANOVA Summary when considering the number of devices in use as a factor. 

 
   

 The large P-value in Table 4-iii indicates that it is plausible that the average error when 
considering 2 devices could be the same as the average error when considering up to 5 devices. 
This means that considering more or less devices did not significantly impact the Peak Alignment 
Implementation’s synchronization error. Similarly, the Server Clock Implementation’s ANOVA 
test concluded that there was also no significant difference when considering additional devices in 
use. Theoretically both implementations can handle up to 8 devices, however, this scenario was 
not tested in this experiment. 
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Chapter 5:   Conclusion 
 

Using a loud noise at the beginning of a recording session improved the process of aligning 
multiple recordings together. The Peak Alignment Implementation that used this technique, on 
average, produced an error of approximately 17 milliseconds during the experiment.  This is 26 
milliseconds better than the Server Clock Implementation which primarily used a cloud provider’s 
global clock for synchronization.  

Any error in synchronization produced an explicit reverberation sound effect when 
combining multiple recordings that focused on a single source of audio. The Peak Alignment 
Implementation significantly reduced this effect, but required an initial noise to be created at the 
start of the recording and within the devices’ proximity. The Server Clock Implementation, on the 
other hand, did not require the devices to be in the same proximity or an initial noise to be generated 
by the user. In this way the Server Clock Implementation could be used for a wider range of 
applications, if you can tolerate average errors of around 42 milliseconds.  
 Both solutions did not compromise accuracy when the number of devices varied. There 
was little difference in the amount of error observed when considering the use of 2, 3, 4, or 5 
devices in a session.   
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