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Abstract—Mobile Crowdsensing is a promising paradigm for
ubiquitous sensing, which explores the tremendous data col-
lected by mobile smart devices with prominent spatial-temporal
coverage. As a fundamental property of Mobile Crowdsensing
Systems, temporally recruited mobile users can provide agile,
fine-grained, and economical sensing labors, however theirself-
interest cannot guarantee the quality of the sensing data, even
when there is a fair return. Therefore, a mechanism is required
for the system server to recruit well-behaving users for credible
sensing, and to stimulate and reward more contributive users
based on sensing truth discovery to further increase credible
reporting. In this paper, we develop a novel Cheating-Resilient
Incentive (CRI) scheme for Mobile Crowdsensing Systems, which
achieves credibility-driven user recruitment and payback max-
imization for honest users with quality data. Via theoretical
analysis, we demonstrate the correctness of our design. The
performance of our scheme is evaluated based on extensive real-
world trace-driven simulations. Our evaluation results show that
our scheme is proven to be effective in terms of both guaranteeing
sensing accuracy and resisting potential cheating behaviors, as
demonstrated in practical scenarios, as well as those that are
intentionally harsher.

Index Terms—Mobile Crowdsensing; Cheating-Resilient Incen-
tive Scheme; Mobile Applications

I. I NTRODUCTION

The proliferation of mobile smart devices has promoted
the development of Mobile Crowdsensing Systems (MCSs),
a promising paradigm for agile, fine-grained, and economical
sensing with prominent spatial-temporal coverage [1]. Ex-
ploring people-centric data collected by smart devices with
enriched sensors (e.g. Global Positioning System, gyroscope
and microphone), a growing number of MCS prototypes
have been developed to support applications, including urban
sensing [2], environmental monitoring [3] and mobile social
networking [4].

Observing that the data source of MCSs is a set of personal
mobile devices temporally recruited, the self-interestednature
of mobile users needs to be taken into account for MCS imple-
mentations. From the perspective of mobile users considering
the potential costs (e.g. physical labor, device battery life,
and network bandage usage), participation is unlikely in an
MCS sensing task unless there was a considerable payback
under the rational person hypothesis. From the perspectiveof
the MCS server, the credibility of reported observations from
temporally recruited users is not guaranteed (i.e. users may
cheat in sensing tasks just for the payback without reporting
quality data, which is referred to as Cheating Behavior in

this paper), even when it pays fairly for data acquisition.
Intuitively, we can see that: (i) the MCS server needs to
recruit credible users in sensing tasks, and (ii) honest responses
deserve substantial reward while dishonest reporting requires
reprimand. A mechanism satisfying these two requirements
simultaneously is necessary for MCS implementations.

User Incentive schemes [5] aim at encouraging self-
interested users to participate in system tasks by rewarding
monetary or tradable paybacks. Generally speaking, existing
schemes in participatory systems model the user incentive
process as an optimization problem for either the system
server [6], [7] or users [8], [9] by designing mechanisms
based on auction or game theory. Nonetheless, research on
incentive mechanisms that considers active cheating behaviors
from self-interested users is relatively limited. Schemesin
[10] and [11] aim to guarantee the ‘bidder’s truthfulness’ in
designed auctions. Also, incentive schemes were proposed to
evaluate the quality of user reports [12], [13]. However, these
schemes cannot be directly deployed in highly dynamic and
opportunistic MCSs. To stimulate the service time of MCS
participators, a Stackelberg game-based incentive mechanism
is proposed in [14], which maximizes the utility of the MCS
platform and proves that a best strategy for all self-interested
participators can be centrally determined. However, sincethe
purpose of this work is to stimulate user participation, andno
sensing data quality related factor is considered, it cannot solve
the dishonest user reporting issue. An incentive mechanism
that encourages quality data reporting is necessary to guarantee
the usability of MCSs.

In this paper, we develop a novel Cheating-Resilient Incen-
tive (CRI) scheme for MCSs, which guarantees the accuracy of
crowdsensing tasks while encouraging mobile users to provide
quality data without cheating for maximum paybacks. Our
contributions are summarized as follows:

• Based on the participation-driven incentivization in [14],
we develop a reputation-driven method for the MCS
server to recruit the most credible users autonomously
according to their historical behaviors. Meanwhile, re-
cruited users can obtain maximum paybacks only when
they contribute no less than expected. We demonstrate
the correctness of our design with theoretical analysis.

• We introduce the truth discovery technique [15] into the
user incentive issue to evaluate the actual contribution
of recruited users in MCS tasks. The adaptive truth
discovery guarantees the accuracy of crowdsensing while
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Fig. 1: System Architecture

providing a baseline for user contribution evaluation.
• Through extensive trace-driven simulations, we evaluate

the performance of CRI. The simulation results validate
the effectiveness of CRI with respect to both quality-
driven user stimulation and cheating behavior resistance.

The remainder of the paper is organized as follows: In
Section II, we present the MCS model and the description
of the user incentive problem. In Section III, we present the
CRI scheme in detail. In Section IV, we present the evaluation
results of our designed scheme via extensive trace-driven
simulations. Finally, we conclude this paper in Section V.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. MCS Architecture

As shown in Figure 1, a general MCS consists of a
cloud servers and a set of registered mobile usersP =
{1, 2, . . . ,M}, whereM > 2. Any user i ∈ P can com-
municate withs via either cellular or WiFi access points.

For a specific sensing target,s can announce a taskτ to
all users inP . Receiving the announcement, any useri ∈ P
who is interested inτ can reply with its reputationri as an
application, which reflects its behavior in historical tasks. Ac-
cording to all applications received,s can determine the total
rewardR and the set of applicantsE = {1, 2, . . . , N} ⊆ P
to be the final employees ofτ . All employees∈ E then
conduct sensing obligations required byτ and report their
observationsO = {o1, o2, . . . , oN} to s. Based on all reports
received,s can discoverτ ’s sensing truthoτ , and evaluate the
contributionC = {c1, c2, . . . , cN} of all employees separately,
which determines their paybacksG = {g1, g2, . . . , gN} for τ

and corresponding reputation adjustments.

B. User Incentive Problem

The purpose of incentive mechanisms in MCSs is to stimu-
late mobile user activity through paybacks for participating in
sensing tasks. As the decision maker,s prefers to maximize
paybacks of the most contributive users as stimulation, while
minimizing the effect of potential cheating behaviors (e.g.
intentionally reporting random data just for the payback),to
achieve accurate sensing.

To guarantee the quality of sensing reports,s needs to
consider two issues: (i) the selection of employees for a given
task should be based on the applicant’s reputation, and (ii)the
reputation adjustment and payback to an employee should be
based on their contribution in the current task. Therefore,our
user incentive scheme should solve the following problems:

1) How to define and manage the user reputation?
2) How to recruit employees based on their reputations?
3) How to evaluate an employee’s contribution?
4) How to quantify and maximize an employee’s payback

according to its contribution?

III. T HE CHEATING-RESILIENT INCENTIVE SCHEME

In this section, we develop the Cheating-Resilient Incentive
(CRI) scheme to address the four problems outlined in Sub-
section II-B. Before the construction of CRI, we first provide
the formal definitions of bothuser reputationand employee
payback. Then, we present a mechanism for reputation-driven
employee recruitment. After that, we address the issue of how
to evaluate an employee’s contribution and how to quantify and
maximize an employee’s payback according to its contribution.

A. Definitions

In this paper, we formally define user reputation and em-
ployee payback as follows.

User Reputation: Intuitively, we treat the reputation as a
user’s credibility for offering quality reports. In fact, once
recruited, the user is responsible for providing an actual
contribution to the sensing task in proportion to its reputation.

For any mobile useri ∈ P , the reputation ofi, denoted as
ri (0 6 ri 6 1), will be adjusted bys wheneveri participates
in a sensing taskτ by

ri = αr′i + (1− α)
ci

c̄i
, (1)

wherer′i denotes the reputation ofi before it participates in
τ , c̄i denotesi’s expected contribution toτ (estimated bys
consideringr′i, discussed latter),ci denotesi’s actual contri-
bution toτ (evaluated bys, discussed latter), and0 6 α 6 1
determines the sensitivity ofi’s reputation adjustment. After
the user’s registration,s issues anyi ∈ P a valuer0 as its
initial reputation.

Employee Payback:Intuitively, it is natural to determine
an employee’s payback according to its contribution. Also,
considering that the reputation of an employee only denotes
the probability of its good behavior, we take the potential
quality risk into account for the payback determination.

Inspired by the sensing time-driven model in [14], for an
employeei ∈ E of task τ , we define its reputation-driven
paybackgi as

gi =
ci

∑

j∈E cj
R−

1− ri

ri
ci, (2)

whereR > 0 denotes the total reward ofτ . For a fixedR,
gi is subjected to both the ratio ofi’s contribution, ci∑

j∈E cj
R,

and the potential quality risk for recruitingi, 1−ri
ri

ci.



Algorithm 1: Reputation-Driven Employee Recruitment
Input :
R: reputations of∀i ∈ P ;
Output :
E : recruited employees;
C̄: expected contributions of∀i ∈ E .

1 put ∀ri ∈ R in descending order;
2 C̄ ← ∅, E ← {1, 2}, i← 3;
3 while i 6 |P| && ri >

|E|−1
∑

j∈E

1−rj

rj
+|E|−1

do

4 E ← E ∪ {i};
5 i++;

6 for ∀i ∈ P do
7 if i ∈ E then

8 c̄i =
(|E|−1)R

∑
j∈E

1−rj

rj

(1−
(|E|−1)

1−ri
ri

∑
j∈E

1−rj

rj

);

9 else
10 c̄i = 0;

11 C̄ ← C̄ ∪ c̄i;

12 return E , C̄;

Based on the definitions above, we develop CRI, which
consists of three components: (i)Employee Recruitment, (ii)
Contribution Evaluation, and (iii) Payback Determination.

B. Employee Recruitment

We now address the issue of how to recruit employees
based on their reputations. After the announcement of taskτ ,
receiving all applicationsR = {r1, r2, . . . , rM} (see Subsec-
tion II-A), s prefers to recruit employees with top reputations.
Nonetheless, according to Equation (2), it is possible thatan
applicant could obtain no payback if the total reward budget
is low. Therefore,s needs to determine the final employees
considering their expected paybacksḠ = {ḡ1, ḡ2, . . . , ḡM},
which are determined by their expected contributionsC̄ =
{c̄1, c̄2, . . . , c̄M}.

For effective stimulations, it is necessary fors to maximize
the expected payback that a well-behaving employee can have.
According to Equation (2), it is easy to get thatgi is second-
order continuous differentiable on̄ci, and the second derivative
of gi on c̄i is:

g̈i(c̄i) = −
2R

∑

j∈P\{i} c̄j

(
∑

j∈P c̄j)3
. (3)

When c̄i > 0, there isg̈i(c̄i) < 0, andgi(c̄i) is a concave
function. Therefore,gi(c̄i) has a unique maximum value when
|P| > 2. We call such a valuēgi as i’s expected payback,
which can be calculated wheneverġi(c̄i) = 0, c̄i > 0 has a
solution.

Therefore, from the perspective ofs, any i ∈ P that is
finally recruited should satisfy following restrictions:







c̄i =

√

riR
∑

j∈E\{i} c̄j

1−ri
−
∑

j∈E\{i} c̄j > 0;

ḡi =
c̄i∑

j∈E c̄j
R− 1−ri

ri
c̄i > 0.

(4)

To allow s to autonomously recruit as many credible users
as possible with a fixed total reward, we develop Algorithm 1
based on the NE computation algorithm in the STD game [14]
to determine final employees just based on their reputations.
Here, all employees recruited will have the maximum payback
only if they contribute as expected.

According to [14], we have Propositions 1 and 2 for
Algorithm 1 as follows.

Proposition 1.Anyi ∈ P that is not recruited by Algorithm
1 gets the maximum payback by not participating inτ .

Proposition 2. Any i ∈ E that is recruited by Algorithm
1 can obtain the maximum payback only if it contributes as
expected inτ .

Because of the page limitation, please refer to Theorem 1
and 2 in [14] for specific proofs.

Until now, s can recruit the most credible employeesE
and compute their expected contributionsC̄ only based on all
received applicationsR, andC̄ is treated as one of the metrics
for the payback determination.

C. Contribution Evaluation

In the following, we address the issue of how to evaluate
an employee’s contribution. After employee recruitment,s

announces a detailed task description ofτ to all i ∈ E . The
employees then reply corresponding reports containing their
observationsO = {o1, o2, . . . , oN}

1. Based onO, s discovers
the sensing truthoτ , and evaluates the actual contributions
C = {c1, c2, . . . , cN} of all i ∈ E .

Because there is no ground truth in our MCS scenario,s

needs to discover the sensing truthoτ , based onO, as the
baseline to evaluate employees’ actual contributions. Consid-
ering the potential conflict in reported observations and the
difference in employee reputations, we develop Algorithm 2
based on the general truth discovery framework in [15] to
allow s to computeoτ and to evaluate actual employee
contributionsC at the same time.

According to Algorithm 2, each actual contributionci ∈ C is
subjected to both the distance betweenoi andoτ , andi’s rep-
utationri. We treat observations from employees with higher
reputations as more credible, and an employee’s contribution
will be higher if its observation is closer tooτ . C is treated as
another metric for the payback determination.

D. Payback Determination

We now answer the question about how to quantify and
maximize an employee’s payback according to its contri-
bution. Based on the expected contributionsC̄ and the ac-
tual contributionsC, s can determine the final paybacks

1We treat each employee’s task observation as a single-dimension value for
concision, which can be expanded in different sensing scenarios.



Algorithm 2: Weighted Sensing Truth Discovery
Input :
O: observations of∀i ∈ E ;
RE : reputations of∀i ∈ E ;
ǫ: convergence threshold;
Output :
oτ : discovered sensing truth;
C: actual contributions of∀i ∈ E .

1 compute the standard deviation ofO: stdO;
2 initialize oτ as a random value;
3 initialize ∀ci ∈ C as0;
4 repeat
5 for ∀i ∈ E do

6 ci = log(

∑

j∈E
(oj−oτ )

2

stdOrj

(oi−oτ )2

stdOri

);

7 o′τ = oτ ;

8 oτ =

∑

j∈E cjoj
∑

j∈E cj
;

9 until |oτ − o′τ | < ǫ;
10 for ∀ci ∈ C do

11 ci =
ci

∑

cj∈C cj
;

12 return oτ , C;

G = {g1, g2, . . . , gN} for all i ∈ E , and update employees’
reputationsRE according to their behaviors inτ .

For all i ∈ E , to comparēci andci, we set the total reward

R =

∑
j∈E

1−rj

rj

(|E|−1) to guarantee that̄ci is within the range of
[0, 1].

According to Equation (2), we set

gi =















c̄i
∑

j∈E c̄j
R−

1− ri

ri
c̄i, if ci > c̄i,

ci
∑

j∈E c̄j
R−

1− ri

ri
ci, if ci < c̄i.

(5)

Also, according to Equation (1),s updates allri ∈ RE as:

ri =







αr′i + (1 − α), if ci > c̄i,

αr′i + (1 − α)
ci

c̄i
, if ci < c̄i.

(6)

As demonstrated, CRI guarantees that (i)s can recruit a
proper number of the most credible applicants for sensing
tasks, and (ii) recruited users can only obtain the maximum
paybacks when they contribute no less than expected. Cheating
behaviors will reduce their paybacks and opportunities of
being recruited in future tasks.

IV. EVALUATION

To validate the performance of CRI in real-world MCSs,
we conducted extensive trace-driven simulations based on
OMNeT++ 4.6, using real-world outdoor temperature data col-
lected by taxis in Rome (hereinafter referred to as Rometrace)

[16]. In the following, we first present the simulation settings,
and then show the evaluation results.

A. Simulation Settings

According to Rometrace, we constructed an MCS with a
cloud server and 366 registered users. All users possessed
outdoor temperature data opportunistically collected within
24 hours. The server spontaneously announced temperature
sensing tasks to the users. After receiving an announcement,
a user who possessed data collected within±60 seconds
autonomously applied for the task, and then uploaded cor-
responding report if it was recruited. The server provided
paybacks and updated employee reputations based on CRI
during the simulation.

For the parameter settings, we set the initial reputationr0 =
0.5 and α = 0.5 in Equation (1) for reasonable reputation
bootstrapping and management. In addition, we setǫ = 0.1
in Algorithm 2 as the truth discovery convergence threshold.
Again, according to Rometrace, each round of simulation lasts
for 86400 simulation seconds.

We collected the following four metrics to evaluate the
impact of cheating behaviors2 on the MCS performance:

• Discovered Truth (DT) refers to the sensing truth discov-
ered in a task, whose cumulative distribution reflects the
sensing accuracy. Ideally, CRI should be able to prevent
cheating behaviors from disrupting DT;

• Reputation (REP) refers to the user reputation, whose
cumulative distribution reflects the user’s behavior in
historical tasks. Ideally, CRI should be able to downgrade
a cheater’s REP in proportion to its cheating intensity;

• Payback (PB)3 refers to what a user receives for accom-
plishing sensing tasks, which reflects the motivation of
the user participating in future tasks. Ideally, CRI should
be able to reduce the PB that a user can get if it cheats;

• Task Count (TC) refers to the number of sensing tasks
accomplished by a user, which reflects the popularity
of the user. Ideally, CRI should be able to limit the
probability of a cheater participating in MCS tasks.

For comparison, we ran a round of simulation without
any cheating behavior as the baseline (i.e. the no cheating
scenario). Then, we analyzed the impact of cheating behaviors
introduced by users with different properties. In following
subsections, we depict the simulation results using eitherthe
Cumulative Distribution Figure (CDF) or the Time-Variance
Figure (TVF) for a distinct demonstration.

B. Impact of General Cheating Intensity

In this set of simulations, to study the impact of general
cheating behaviors with different intensities, we set all users
in the MCS to introduce cheating behaviors with different

2We considered user’s cheating behavior in simulations as reporting a ran-
dom observation within the range of[2◦C, 24◦C] (according to Rometrace).

3The payback of each task was normalized within the range of[0, 1] for
effective comparisons.
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Fig. 2: Impact of General Cheating Intensity
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Fig. 3: Impact of Cheating Behavior of TopR User

probabilities (i.e. 10%, 15% and 20%)4 in all sensing tasks.
The simulation result is illustrated in Figure 2.

According to Figure 2(a), compared with the baseline sce-
nario, the cumulative distribution of DT remains almost the
same in all cheating scenarios. We can see that a disturbance

4The setting of these cheating intensities should be reasonable considering
the well accepted fact that the MCS is a relatively good community with a
limited ratio of malicious behaviors (e.g.4% in [17], or 10% in [18]).
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Fig. 4: Impact of Cheating Behavior of TopP User
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Fig. 5: Impact of Cheating Behavior of TopC User

on the average DT no more than3.65% (i.e. 0.4◦C) is
introduced by general cheating behaviors with an intensity
up to 20%. Such an impact is nearly negligible considering
the practical temperature sensing requirement. CRI manages
to effectively restrict the impact of general cheating behaviors
on DT in both realistic and even harsher scenarios.

According to Figure 2(b), (c), and (d), when the cheating
intensity increases, user’s reputation, payback, and taskcount



are correspondingly downgraded for at least1.64%, 3.44%
and2.20%, respectively. CRI manages to reduce the cheater’s
probability of being recruited in future tasks by reducing its
reputation and payback autonomously, which will inherently
restrict user’s cheating intention.

C. Impact of Cheaters with Different Properties

In real-world MCSs, cheating behaviors of more trustworthy
or active users may pose deeper impacts on the MCS’s perfor-
mance. In this set of simulations, depending on the simulation
result of the baseline scenario, we separately set a user that (i)
had the highest reputation (referred to as the TopR cheater), (ii)
received the most paybacks (referred to as the TopP cheater),
and (iii) accomplished the most tasks (referred to as the TopC
cheater) to introduce cheating behaviors either consistently
(i.e. cheat with a 100% probability) or intermittently (i.e.cheat
with a 50% probability). The simulation results are illustrated
in Figures 3, 4, and 5.

TopR Cheater: According to Figure 3, neither the consis-
tent nor the intermittent cheating of the TopR cheater caused
obvious impact on DT (introduced disturbances of0.18%
and 0.46% on the average DT, respectively). Nonetheless,
in comparison with the baseline scenario, REP of the TopR
cheater was downgraded as long as there was cheating behav-
ior (1.04% and92.71% lower, respectively). Correspondingly,
both PB (1.19% and99.98% less, respectively) and TC (8.33%
and33.33% less, respectively) of the TopR cheater decreased.

TopP Cheater: According to Figure 4, neither consistent
nor intermittent cheating behaviors of the TopP cheater caused
obvious impact on DT (introduced disturbances of0.73% and
0.82% on the average DT, respectively). Meanwhile, REP of
the TopP cheater (10.34% and 14.94% lower, respectively)
was significantly downgraded. Similarly, it’s PB (18.18%
and 25.93% less, respectively) and TC (32% and 26% less,
respectively) declined dramatically because of cheating.

TopC Cheater: According to Figure 5, DT was obviously
affected by neither consistent nor intermittent cheating behav-
iors of the TopC cheater (introduced disturbances of0.91%
and 0.37% on the average DT, respectively). In turn, it’s
REP (58.51% and 42.55% lower, respectively) was severely
downgraded in cheating scenarios. Also, PB (53.05% and
50.35% less, respectively) and TC (39.22% and41.18% less,
respectively) decreased significantly.

According to the results above, it is well demonstrated that
CRI manages to encourage users to report honestly (with their
best efforts) in sensing tasks for higher payback, reputation,
and recruiting opportunities in practical MCSs.

V. CONCLUSION

In this paper, we developed CRI for MCSs to guarantee
crowdsensing accuracy by encouraging mobile users to pro-
vide quality data without cheating for the maximum paybacks.
To be specific, CRI enables MCS server to autonomously
recruit as many as credible users as task employees, and
employees will obtain the maximum payback only if they
contribute honestly as their reputations indicate. Via theoretical

analysis, we demonstrated the feasibility and correctnessof
our design. To evaluate the performance of CRI in practical
MCSs, we conducted extensive simulations based on real-
world crowdsensing data. The results show that CRI manages
to guarantee the sensing accuracy under realistic cheating
intensities (up to 20% of total reports). Meanwhile, cheating
behaviors from users with selected advantages (i.e. higher
reputations, more received paybacks, and more accomplished
tasks) can be effectively resisted as well. Our future work is
to develop a privacy-preserving CRI, which encourages honest
user behaviors without jeopardizing sensitive user information
including identities, locations, and living patterns.
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