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Abstract—Mobile Crowdsensing is a promising paradigm for
ubiquitous sensing, which explores the tremendous data col
lected by mobile smart devices with prominent spatial-tempral
coverage. As a fundamental property of Mobile Crowdsensing
Systems, temporally recruited mobile users can provide afg,
fine-grained, and economical sensing labors, however theself-
interest cannot guarantee the quality of the sensing data,ven
when there is a fair return. Therefore, a mechanism is requied
for the system server to recruit well-behaving users for crdible
sensing, and to stimulate and reward more contributive uses
based on sensing truth discovery to further increase credile
reporting. In this paper, we develop a novel Cheating-Resint
Incentive (CRI) scheme for Mobile Crowdsensing Systems, with
achieves credibility-driven user recruitment and payback max-
imization for honest users with quality data. Via theoretical

analysis, we demonstrate the correctness of our design. The.

performance of our scheme is evaluated based on extensiveate
world trace-driven simulations. Our evaluation results stow that
our scheme is proven to be effective in terms of both guarantng
sensing accuracy and resisting potential cheating behavi®, as
demonstrated in practical scenarios, as well as those thatre
intentionally harsher.

Index Terms—Mobile Crowdsensing; Cheating-Resilient Incen-
tive Scheme; Mobile Applications

|I. INTRODUCTION

this paper), even when it pays fairly for data acquisition.
Intuitively, we can see that: (i) the MCS server needs to
recruit credible users in sensing tasks, and (ii) honeporeses
deserve substantial reward while dishonest reportingiresju
reprimand. A mechanism satisfying these two requirements
simultaneously is necessary for MCS implementations.

User Incentive schemed |[5] aim at encouraging self-
interested users to participate in system tasks by rewgrdin
monetary or tradable paybacks. Generally speaking, Bgisti
schemes in participatory systems model the user incentive
process as an optimization problem for either the system
server [6], [7] or users[]8],[ 9] by designing mechanisms
based on auction or game theory. Nonetheless, research on
incentive mechanisms that considers active cheating liaisav
from self-interested users is relatively limited. Schenmes
[10] and [11] aim to guarantee the ‘bidder’s truthfulness’ i
designed auctions. Also, incentive schemes were propased t
evaluate the quality of user reports [12], [13]. Howeveesth
schemes cannot be directly deployed in highly dynamic and
opportunistic MCSs. To stimulate the service time of MCS
participators, a Stackelberg game-based incentive mésrhan
is proposed in[[14], which maximizes the utility of the MCS
platform and proves that a best strategy for all self-irgtee

The proliferation of mobile smart devices has promoteghrticipators can be centrally determined. However, sthee
the development of Mobile Crowdsensing Systems (MCS@urpose of this work is to stimulate user participation, and
a promising paradigm for agile, fine-grained, and econoimicsensing data quality related factor is considered, it cesoloe
sensing with prominent spatial-temporal coverage [1]. Exke dishonest user reporting issue. An incentive mechanism
ploring people-centric data collected by smart devices withat encourages quality data reporting is necessary t@agtes
enriched sensor=(g. Global Positioning System, gyroscopahe usability of MCSs.
and microphone), a growing number of MCS prototypes In this paper, we develop a novel Cheating-Resilient Incen-
have been developed to support applications, includingrurttive (CRI) scheme for MCSs, which guarantees the accuracy of
sensing[[2], environmental monitoringl [3] and mobile sbciacrowdsensing tasks while encouraging mobile users to geovi

networking [4].

quality data without cheating for maximum paybacks. Our

Observing that the data source of MCSs is a set of persomahtributions are summarized as follows:

mobile devices temporally recruited, the self-interestatlire

« Based on the participation-driven incentivization[in|[14]

of mobile users needs to be taken into account for MCS imple-
mentations. From the perspective of mobile users consigeri
the potential costse(g. physical labor, device battery life,
and network bandage usage), participation is unlikely in an

we develop a reputation-driven method for the MCS
server to recruit the most credible users autonomously
according to their historical behaviors. Meanwhile, re-
cruited users can obtain maximum paybacks only when

MCS sensing task unless there was a considerable payback they contribute no less than expected. We demonstrate

under the rational person hypothesis. From the perspeative
the MCS server, the credibility of reported observatiomsrr o
temporally recruited users is not guaranteed. users may
cheat in sensing tasks just for the payback without repgprtin
quality data, which is referred to as Cheating Behavior in

the correctness of our design with theoretical analysis.
We introduce the truth discovery techniquel[15] into the
user incentive issue to evaluate the actual contribution
of recruited users in MCS tasks. The adaptive truth
discovery guarantees the accuracy of crowdsensing while
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To guarantee the quality of sensing reporisneeds to
consider two issues: (i) the selection of employees for argiv
task should be based on the applicant’s reputation, anthéi)
reputation adjustment and payback to an employee should be
based on their contribution in the current task. Therefou,
user incentive scheme should solve the following problems:

1) How to define and manage the user reputation?

2) How to recruit employees based on their reputations?

3) How to evaluate an employee’s contribution?

4) How to quantify and maximize an employee’s payback
according to its contribution?

Cloud Server

(é))

Applicants

IIl. THE CHEATING-RESILIENT INCENTIVE SCHEME

Fig. 1: System Architecture In this section, we develop the Cheating-Resilient Ineenti

L ) o ) (CRI) scheme to address the four problems outlined in Sub-
providing a baseline for user contribution evaluation. - ge i TI-B. Before the construction of CRI, we first progid
« Through extensive trace-driven simulations, we evalugjig, tormal definitions of bothuser reputationand employee
the perfor.mance of CRI. Th_e simulation results Va“qatﬁayback Then, we present a mechanism for reputation-driven
th? effecnven_ess OT CRI with re;pect to ?Oth q,ua“tyémployee recruitment. After that, we address the issue wf ho
driven user stimulation and cheating behavior resistangg-eyaluate an employee's contribution and how to quantity a
The remainder of the paper is organized as follows: kaximize an employee’s payback according to its contriputi
Section[), we present the MCS model and the description
of the user incentive problem. In Sectibnl Ill, we present tH- Definitions
CRI scheme in detail. In SectignllV, we present the evaluatio In this paper, we formally define user reputation and em-
results of our designed scheme via extensive trace-driveloyee payback as follows.
simulations. Finally, we conclude this paper in Secfidn V.  User Reputation: Intuitively, we treat the reputation as a
user’s credibility for offering quality reports. In fact,noe
Il. SYSTEM MODEL AND PROBLEM DEFINITION recruited, the user is responsible for providing an actual
A. MCS Architecture contribution to the sensing task in proportion to its refiata
For any mobile usei € P, the reputation of, denoted as
7 (0 < r; < 1), will be adjusted bys whenever: participates
in a sensing task by

As shown in Figure[]1, a general MCS consists of
cloud servers and a set of registered mobile usePs =
{1,2,...,M}, where M > 2. Any useri € P can com-
municate withs via either cellular or WiFi access points. ri=ar;+(1— a)i, 1)

For a specific sensing target,can announce a task to Ci
all users inP. Receiving the announcement, any user P wherer, denotes the reputation @fbefore it participates in
who is interested in- can reply with its reputatiom; as an 7, ¢; denotesi’s expected contribution te (estimated bys
application, which reflects its behavior in historical taskc- consideringr}, discussed latter); denotesi’s actual contri-
cording to all applications received,can determine the total bution tor (evaluated bys, discussed latter), an@i< a < 1
reward R and the set of applican§ = {1,2,...,N} C P determines the sensitivity afs reputation adjustment. After
to be the final employees of. All employeesc £ then the user's registrations issues anyi € P a valuer, as its
conduct sensing obligations required byand report their initial reputation.
observations? = {o01,09,...,0n} t0 s. Based on all reports Employee Payback:Intuitively, it is natural to determine
received,s can discover’s sensing trutho,, and evaluate the an employee’s payback according to its contribution. Also,
contributionC = {ci, ¢, ..., cy} of all employees separately,considering that the reputation of an employee only denotes
which determines their paybacks= {g1,92,...,g9n} for 7 the probability of its good behavior, we take the potential
and corresponding reputation adjustments. quality risk into account for the payback determination.

Inspired by the sensing time-driven model In][14], for an
B. User Incentive Problem employeei € £ of task 7, we define its reputation-driven

The purpose of incentive mechanisms in MCSs is to stim@aybackg; as
late mobile user activity through paybacks for participgtin C 11—
sensing tasks. As the decision makemprefers to maximize gi = S C,R_ T Ci )
paybacks of the most contributive users as stimulationlewhi jee _
minimizing the effect of potential cheating behaviomg, WhereZ > 0 denotes the total reward of. For a fixedR,
intentionally reporting random data just for the paybac), 9: IS Subjected to both the ratio o6 contribution, s—=—-R,

achieve accurate sensing. and the potential quality risk for recruiting 1;—Tcl




Algorithm 1: Reputation-Driven Employee Recruitment
Input :

_ [riRYjeenii3 G

R: reputations offi € P; G=V T 1o —2jeeny & > 0; 4)

Output: 9i = E,Zs i =rig; > 0.

&: recruited employees; . _

C: expected contributions ofi € &. To allpw s tQ autqnomously recruit as many cred|ble. users

. - as possible with a fixed total reward, we develop Algorifim 1

1 putvr; € R in descending order; based on the NE computation algorithm in the STD g&me [14]
2C+ 2, & {1,2},i¢ 3 to determine final employees just based on their reputations
3 while i < |P| && 7, > — - —— do Here, all employees recruited will have the maximum payback

ce L HE|-1 ; i
2yee ~ry HIE] only if they contribute as expected.

According to [14], we have Propositions 1 and 2 for
Algorithm [T as follows.
Proposition 1. Any: € P that is not recruited by Algorithm

4 E+— EU{i};

efo_rViePdo
7

if i € £ then - gets the maximum payback by not participating-in
8 L & =LEPE (1~ (‘glfl)lTij); Proposition 2. Any i € £ that is recruited by Algorithm
2jee Ty Yjee 5 can obtain the maximum payback only if it contributes as
9 else expected inr.
10 L ¢ = 0; Because of the page limitation, please refer to Theorem 1
1 C—Cug: and 2 in [14] for specific proofs.

Until now, s can recruit the most credible employeés
and compute their expected contributigh®nly based on all
received application®, and( is treated as one of the metrics
for the payback determination.

Based on the definitions above, we develop CRI, which o )
consists of three components: Enployee Recruitmen(iy - Contribution Evaluation

12 return &, C;

Contribution Evaluationand (iii) Payback Determinatian In the following, we address the issue of how to evaluate
an employee’s contribution. After employee recruitment,
B. Employee Recruitment announces a detailed task descriptionrofo all i € £. The
We now address the issue of how to recruit employeg ployegs then reply corresponding reports con}ammg the
observation® = {01, 09,. .., oN}@. Based on®, s discovers

based on their reputations. After the announcement OffaSkthe sensing truthv,, and evaluates the actual contributions
receiving all application®R = {ry,r2,...,rn} (See Subsec- 9 o )

tion [IA), s prefers to recruit employees with top reputations. — {er, ¢, en}ofall i € £, . .
Nonetheless, according to Equatidh (2), it is possible #mat Because there is no ground truth in our MCS scenario,

applicant could obtain no payback if the total reward budg Fedﬁ totdlscml/ertthe selnsmg ,trutltn, t|>asedt c;)n(;) as (tg:
is low. Therefore,s needs to determine the final employee aseline fo evaluate employees: actual contrioutions.stoen

considering their expected paybacks— {91, G, gt} g_rf[fng the potentlall conflict |rtl {_eported odbserlvatlc')a\rrs artgl th2
which are determined by their expected contributighs= inerence in employee reputations, we develop Algoritim
(e1,6,...,em ). based on the general truth discovery framework[inl [15] to

: . . . L allow s to computeo, and to evaluate actual employee
For effective stimulations, it is necessary foto maximize P T ploy

. contributionsC at the same time.
the expected payback that a well-behaving employee can haveAccording o Algorithni2, each actual contributione C is

Accordmg_to Equa.t|0ri]2)_, itis Eaasy to get thatis sec.ond_- subjected to both the distance betwegmndo., andi's rep-
order continuous differentiable @, and the second derivative . ) ) .
utationr;. We treat observations from employees with higher

of g; ong; is: . . R
g: PG reputations as more credible, and an employee’s contoibuti
9R ~ will be higher if its observation is closer t&.. C is treated as

ZjeP\{i} Cj : P
= (3) another metric for the payback determination.
(Zje? Cj)

Whene; > 0, there isg;(¢; 0, and g;(¢;) is a concave : .
ez ~ gi(e) < y 9:( ?) We now answer the question about how to quantify and
function. Thereforey;(¢;) has a unique maximum value when_ "~ . ; ) : :
_ - maximize an employee’s payback according to its contri-
|P| > 2. We call such a valug; asi’'s expected payback, , S
. o _ bution. Based on the expected contributighsand the ac-
which can be calculated whenevégr(c;) = 0,¢; > 0 has a

. tual contributionsC, s can determine the final paybacks
solution.

] Therefore_, from the per_spectlve @f any i _6_ P that is 1we treat each employee’s task observation as a single-diorenalue for
finally recruited should satisfy following restrictions: concision, which can be expanded in different sensing sizena

gi(ei) =

D. Payback Determination



Algorithm 2: Weighted Sensing Truth Discovery
Input :
O: observations of/i € &;
Re: reputations ofvi € &;
e: convergence threshold;
Output:
o, discovered sensing truth;
C: actual contributions ofi € £.

compute the standard deviation ©f stdp;
initialize o, as a random value;
initialize Ve¢; € C asO0;
repeat
for Vi € £ do
(0j—05)?

Zjes stdor;
g(

(0i—0r)®
stdor;

a A W N P

)

CiZIO

/! .
07—_07’1

> jee Cioj .
leef,‘ Cj ,
ntil |o, — o] <¢;

or Ve; € C do
c;

L ZCJ' eC Cj '

return o,, C;

0; =

aCc

10

11 C; =

12

G ={91,92,...,9n} for all i € &, and update employees’
reputationsR¢ according to their behaviors in.
For alli € £, to comparez; andc;, we set the total reward
1—r

R = E(f;% to guarantee that; is within the range of
[0,1].
According to Equation[{2), we set
C; 1—r_ _
¢ —R — TCi, IfCi>Ci,
_ ZJEE € Ti 5
9i = Ci 1—r; . ( )
—R — ¢, If ¢ <g.
2jee € i

Also, according to Equatio (1}, updates all-; € R¢ as:

O[’I’Z/- + (1 — Oé), if c; = Ci,

ar; + (1 — oz)%, if ¢; <¢.

T

(6)

i =

As demonstrated, CRI guarantees thats(itan recruit a

[16]. In the following, we first present the simulation sedfs,
and then show the evaluation results.

A. Simulation Settings

According to Rometrace, we constructed an MCS with a
cloud server and 366 registered users. All users possessed
outdoor temperature data opportunistically collectedhimit
24 hours. The server spontaneously announced temperature
sensing tasks to the users. After receiving an announcement
a user who possessed data collected withi60 seconds
autonomously applied for the task, and then uploaded cor-
responding report if it was recruited. The server provided
paybacks and updated employee reputations based on CRI
during the simulation.

For the parameter settings, we set the initial reputatijos
0.5 anda = 0.5 in Equation [(1) for reasonable reputation
bootstrapping and management. In addition, weeset 0.1
in Algorithm[2 as the truth discovery convergence threshold
Again, according to Rometrace, each round of simulatiots las
for 86400 simulation seconds.

We collected the following four metrics to evaluate the
impact of cheating behavi#®n the MCS performance:

« Discovered Truth (DT) refers to the sensing truth discov-
ered in a task, whose cumulative distribution reflects the
sensing accuracy. Ideally, CRI should be able to prevent
cheating behaviors from disrupting DT;

« Reputation (REP) refers to the user reputation, whose

cumulative distribution reflects the user’'s behavior in

historical tasks. Ideally, CRI should be able to downgrade

a cheater’s REP in proportion to its cheating intensity;

Payback (PBE refers to what a user receives for accom-

plishing sensing tasks, which reflects the motivation of

the user participating in future tasks. Ideally, CRI should
be able to reduce the PB that a user can get if it cheats;

Task Count (TC) refers to the number of sensing tasks

accomplished by a user, which reflects the popularity

of the user. Ideally, CRI should be able to limit the
probability of a cheater participating in MCS tasks.

For comparison, we ran a round of simulation without
any cheating behavior as the baseline.(the no cheating
scenario). Then, we analyzed the impact of cheating bersvio
introduced by users with different properties. In follogin
subsections, we depict the simulation results using eitier
Cumulative Distribution Figure (CDF) or the Time-Variance

proper number of the most credible applicants for sensimygure (TVF) for a distinct demonstration.
tasks, and (ii) recruited users can only obtain the maximum

paybacks when they contribute no less than expected. @geai. Impact of General Cheating Intensity

behaviors will reduce their paybacks and opportunities
being recruited in future tasks.

IV. EVALUATION

of
In this set of simulations, to study the impact of general

cheating behaviors with different intensities, we set akns
in the MCS to introduce cheating behaviors with different

To validate the performance of CRI in real-world MCSs,

we conducted extensive trace-driven simulations based

I?]We considered user’s cheating behavior in simulations jpertieg a ran-
m observation within the range #°C, 24°C] (according to Rometrace).

- p
OMNeT++ 4._6,_usmg real-wor_ld outdoor temperature data col stpe payhack of each task was normalized within the rang.af] for
lected by taxis in Rome (hereinafter referred to as Romejraeffective comparisons.
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probabilities (e. 10%, 15% and 20%)in all sensing tasks. 5 the average DT no more thah65% (i.e. 0.4°C) is

The simulation result is illustrated in Figure 2. _ introduced by general cheating behaviors with an intensity
According to Figuré2(a), compared with the baseline scgp to 20%. Such an impact is nearly negligible considering
same in all cheating scenarios. We can see that a disturbagggfiectively restrict the impact of general cheating hétws

+The setting of th heating intensities should be refte der on DT in both realistic and even harsher scenarios.

e setling o ese cheating Intensites snou e re ig@nsidering . . .
the well accepted fact that the MCS is a relatively good comitguwith a ACCPVd_'ng to FlgureEIZ(b), (C)' a_-nd (d)' when the Cheatmg
limited ratio of malicious behaviorse(g. 4% in [17], or 10% in [18]). intensity increases, user’s reputation, payback, and dagkt



are correspondingly downgraded for at leasi4%, 3.44% analysis, we demonstrated the feasibility and correctoéss
and2.20%, respectively. CRI manages to reduce the cheatedar design. To evaluate the performance of CRI in practical
probability of being recruited in future tasks by reducitg i MCSs, we conducted extensive simulations based on real-
reputation and payback autonomously, which will inherentworld crowdsensing data. The results show that CRI manages
restrict user’s cheating intention. to guarantee the sensing accuracy under realistic cheating
, ) , intensities (up to 20% of total reports). Meanwhile, chagti

C. Impact of Cheaters with Different Properties behaviors from users with selected advantages kigher

In real-world MCSs, cheating behaviors of more trustworthgeputations, more received paybacks, and more accomglishe
or active users may pose deeper impacts on the MCS’s perfiaisks) can be effectively resisted as well. Our future wark i
mance. In this set of simulations, depending on the simariatito develop a privacy-preserving CRI, which encourages $ione
result of the baseline scenario, we separately set a udgithauser behaviors without jeopardizing sensitive user infatram
had the highest reputation (referred to as the TopR cheéter) including identities, locations, and living patterns.
received the most paybacks (referred to as the TopP cheater)
and (iii) accomplished the most tasks (referred to as theCTop
cheater) to introduce cheating behaviors either conglgteril] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhurydah. T.
(i.e. cheat with a 100% probability) or intermittentlye. cheat Campbell, “A survey of mobile phone sensing=EE Commun. Mag.

. . . . : vol. 48, no. 9, pp. 140-150, 2015.
with a 50% probability). The simulation results are illaded [2] R. Gao, M. Zhao, T. Ye, F. Ye, Y. Wang, K. Bian, T. Wang, andLX,

in Figured B[4, anf]5. “Jigsaw: Indoor floor plan reconstruction via mobile croedsing,” in

] . . . . Proc. ACM Mobicom 2014, pp. 249-260.
TopR Cheater: According to Figuré3, neither the CONSIS13) |, capezzuto, L. Abbamonte, S. De Vito, and E. Massera,niaker

tent nor the intermittent cheating of the TopR cheater chuse friendly mobile and social sensing approach to urban aifityuenoni-
obvious impact on DT (introduced disturbances 8% toring,” in Proc. IEEE Sensors2014, pp. 12-16.

. 4] M. Bakht, M. Trower, and R. H. Kravets, “Searchlight: woyou be my
and 0.46% on the average DT, respectively). Nonetheles%, neighbor?” inProc. ACM Mobicom 2012, pp. 185-196.

in comparison with the baseline scenario, REP of the TogR H. Gao, C. H. Liu, W. Wang, J. Zhao, Z. Song, X. Su, J. Crasficr
cheater was downgraded as long as there was cheating behavand K. K. Leung, "A survey of incentive mechanisms for paptitory

. . . sensing,”IEEE Commun. Surveys Tutsol. 17, no. 2, pp. 1-1, 2015.
ior (1.04% and92.71% lower, respectively). CorreSpondIngly’[6] J. S. Lee and B. Hoh, “Sell your experiences: a market meisim based

both PB (.19% and99.98% less, respectively) and TB.83% incentive for participatory sensing,” ifroc. IEEE PerCom 2010, pp.
and33.33% less, respectively) of the TopR cheater decreased. 60-68.
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