MULTI-WEAR: A Multi-Wearable Platform
For Enhancing Mobile Experiences

Andreas Pamboris', Panayiotis Andreou?, Herodotos Herodotou?, George Samaras

4

'University of Central Lancashire, apamboris @uclan.ac.uk

2University of Central Lancashire, pgandreou@uclan.ac.uk
3Cyprus University of Technology, herodotos.herodotou@cut.ac.cy
#University of Cyprus, cssamara@cs.ucy.ac.cy

Abstract—The uptake of wearable technology suggests that the
time is ripe to explore new opportunities for improving mobile
experiences. Apps, however, are not keeping up with the pace
of technological advancement because wearables are treated as
standalone devices, although their individual capabilities better
classify them as peripherals with complementary roles. We
foresee that the next generation of apps will orchestrate multiple
wearable devices to enhance mobile user experiences. However,
currently there is limited support for combining heterogeneous
devices. This paper introduces MULTI-WEAR, a platform to
scaffold the development of apps that span multiple wearables. It
demonstrates experimentally how MULTI-WEAR can help bring
changes to mobile apps that go beyond conventional practices.

I. INTRODUCTION

The next big revolution in consumer technology is at our
doorstep and comes in the form of wearable devices equipped
with computational resources and embedded sensors [1]. These
include: (i) hand wearables (smart watches and wristbands); (ii)
torso and leg wearables (smart clothes); (iii) chest wearables
(typically used for health monitoring); and (iv) head-mounted
wearables (augmented reality (AR) and virtual reality (VR)
glasses/headsets) [2]. Nevertheless, the apps currently devel-
oped for such devices are not at the forefront of innovation, but
instead are straitjacketed by limitations of individual platforms,
which are targeted separately.

Different types of wearables usually favor some aspects of
mobile user experience (mUX) over others. For instance, hand
wearables include a variety of sensors (e.g., accelerometer,
ambient light, gyroscope, pedometer, heart rate, and magne-
tometer), which expose a continuous stream of data related to
the user’s activity at runtime and/or the execution environment.
However, due to form factor constraints, they have significantly
smaller displays. Similarly, smart clothes and health wearables
support sensing at an even finer granularity by offering head-to-
toe coverage of the human body, but they include less means
of displaying content. Finally, what AR and VR wearables lack
in sensors and flexible input interfaces, they make up for in
high-quality 3D visualization capabilities.

Today’s wearable apps are constrained by the fact that
wearables are treated as standalone devices; developers typically
shape their apps around both the positive and negative traits
of such a device [3], [4], [5]. Instead, combining different
types of wearables together holds the promise of improving

mUX. Previous work attempted to combine different wearables
to, for e.g., offer accurate location awareness services in AR
settings [6] or use voice and gesture recognition simultaneously
to achieve a better combined recognition rate [7]. However,
building distributed apps on top of heterogeneous platforms
entails challenges across the entire development stack. For e.g.,
developers need to explicitly code the communication between
devices and understand how different low-level APIs can be
properly coordinated to exploit the combined capabilities of
wearables.

This paper presents the design of MULTI-WEAR, a plat-
form to pave the way for streamlining and simplifying the
development of multi-wearable apps, i.e., apps that leverage
multiple wearables, to offer better mUX. MULTI-WEAR aims
at abstracting away the complexity involved with orchestrating
multiple devices in a single app. It supports a homogeneous
communication layer to consolidate multiple smart wearables
into a single virtual development platform. Furthermore, it
provides advanced sensing policies and mechanisms to allow for
querying sensor data from multiple heterogeneous devices in a
unified and efficient manner. Finally, MULTI-WEAR provides
APIs for advanced app capabilities that leverage the aforemen-
tioned layers to make the most of the combined capabilities
of different devices (e.g., novel input/output interfaces based
on accurate gesture recognition and 3D visual experiences). In
summary, the contributions of this paper are:

1) It describes the architectural design of the MULTI-
WEAR platform, which addresses all major challenges
involved with building multi-wearable apps.

2) It demonstrates experimentally how MULTI-WEAR
can help improve mUX substantially through the devel-
opment of an e-commerce app on top of a VR headset
and a smart wristband; this app is used to evaluate the
tangible impact of MULTI-WEAR on user experience.

II. THE NEED FOR WEARABLE INTEGRATION SUPPORT

Table I shows the diversity of current wearables in terms of
computational resources, sensors, and programming interfaces,
but also provides insights on how they could complement each
other when combined through MULTI-WEAR. Hand wearables
include a variety of common embedded sensors and typically
support input based on voice and touch events. Smart clothing

TABLE I: Comparison of representative devices from different wearable categories

Input Capabilities

Output Capabilities

Category Name 08 Sensors Touch Mic Display Audio Haptic
Hand Apple Watch watchOS Accelerometer, ambient light, v v 340x272, v v
Wearables gyroscope, heart rate, NFC 390x312
Moto 360 Sport Android Accelerometer, ambient light, gyroscope, v v 320x290 v v
Wear OS pedometer, GPS, heart rate, barometer
Microsoft Band 2 Microsoft Accelerometer, ambient light, gyroscope, v v 320x128 X v
Band 2 OS barometer, GPS, heart rate, galvanic
skin response, skin temperature, UV
Torso Athos Shirt - Realtime EMG, heart rate X X X X X
& Leg or Shorts
Wearables | Sensoria Socks - Pressure sensors X X X X X
Chest ADAMM Asthma - Heart rate, temperature, X X X X v
Wearables monitoring cough rate, respiration
QardioCore - EKG/ECG, heart rate, temperature, X X X X v
respiratory rate, galvanic skin response
Head Oculus Rift Oculus Accelerometer, X v 2160x1200 v X
Mounted Home gyroscope, magnetometer
Wearables Vuzix M100 Android Ambient light, GPS, proximity, X v 400x240 v X
ICS 4 gyroscope, accelerometer, compass
items typically don’t support local processing, nor do the
P Y PP P & Y MULTI-WEAR APP SERVICES

possess a display of any sorts. Nonetheless, they offer access
to new types of sensors such as ECG, breathing rate, and
pressure sensors. Similarly, health wearables offer access to
even more sensors that, for e. g., measure cough rate, respiration
rate, and blood pressure. Finally, head-mounted devices offer
less sensors but provide for better means of visualization.

Despite the common characteristics of particular wearable
categories, differences within each category also exist, for e.g.,
in terms of supported connectivity types, display sizes, sensors
and computational resources. Combined with the fact that each
device runs on top of a different OS and exposes different
programming interfaces, this complicates the development of
multi-wearable apps. All in all, today’s wearable landscape is
highly fragmented, which gives rise to significant challenges.
Developers are currently required to understand the internals of
different wearable platforms and their respective APIs, and to
provision explicitly their apps for distributed execution across
heterogeneous technologies. This is the main obstacle on the
way to realizing future multi-wearable apps.

IIT. MULTI-WARE ARCHITECTURAL DESIGN

The MULTI-WEAR platform aims at facilitating the devel-
opment of apps that offer advanced mUX by executing across
multiple mobile and wearable devices. Its primary goal is
to hide the low-level complexity involved with combining
seamlessly different devices. Its architecture (Figure 1) factors
functionality of similar responsibilities into separate layers,
namely the Hardware Abstraction, Data Management, and App
Services layers, which are described next.

A. Hardware Abstraction Layer

The purpose of this layer is to support seamless connection
establishment and runtime communication between different
types of devices. One device, typically the mobile device, acts
as the mediator, which is used as a bridge of communication
between all other wearables.

Input Services
Gesture recognition
Context recognition
Physical activity recognition
Emotion recognition

| DATA MANAGEMENT |

Output Services
Display services
Audio services
Haptic services

[Query Manager || Publish/Subscribe Engine |
A A
\/ \/
| Data Acquisition Engine |

| HARDWARE ABSTRACTION |
[Unified Communication Protocol |
Device
Wearable Wearable Manager
Driver #1 Driver #N
N o~ A WEARABLE &
& MOBILE DEVICES D n

Fig. 1: The MULTI-WEAR architecture

The Device Manager mainly supports connection establish-
ment between different devices at runtime. It supports the
discovery of paired devices on the fly by periodically polling
for new devices using appropriate discovery libraries (e.g.,
BandClientManager for Microsoft Band, WCSession for Apple
Watch, etc.). It also monitors the status of interconnected
devices throughout execution (mainly in terms of availability
and power state). This information can be polled by other
layers at runtime to adjust accordingly the use of services.

A Unified Communication Protocol is used to support the
exchange of messages between the mediator and other wearable
devices at runtime, over different channels (Bluetooth and
WiFi). This protocol allows other MULTI-WEAR components
to contact any connected wearable through a unified, cross-
platform interface. Furthermore, it supports three mechanisms

for efficient network communication, to help improve perfor-
mance in terms of responsiveness and energy consumption.
These include: (1) batch transfers to allow for reducing
the communication overhead associated with multiple short
transmissions spaced with small rest periods; (2) reuse of
existing network connections to avoid connection establishment
delays; and (3) asynchronous communication to avoid the
unnecessary blocking of execution during data transmission.

Finally, the Hardware Abstraction Layer has device-specific
functions in place, i.e., the Wearable Device Drivers, which
allow the mediator to talk to different heterogeneous wearable
devices. It maintains a map between the functions provided by
the Unified Communication Protocol and the corresponding
Wearable Device Drivers, which is used to translate high-level
requests (issued by upper layers) into low-level (device-specific)
code executed on the supported devices.

B. Data Management Layer

This layer is responsible for managing the flow of data from
various embedded wearable sensors to the mediator. It sits in
between the Hardware Abstraction and App Services layers
as it (1) leverages the former to gain access to heterogeneous
physical devices; and (2) services the latter by providing access
to data streams in the particular format they are requested.

Query management and data acquisition from multiple
wearable sensors are essential operations for building apps
with advanced capabilities. Through the Query Manager, a
developer is provided with the means for (1) creating queries to
retrieve data from different wearables; and (2) pre-processing
(filtering and/or integrating) sensor data streams to conform to
the format specified by the requester (an app service).

Two different types of queries are supported: point and
continuous queries. The former consists of one-off requests
for a particular sensor reading, while continuous queries are
serviced over a longer time span (at specified periodic intervals).
To model such queries in a unified way, a SQL-like acquisitional
query language is used. For e.g., a query such as Q1: “Retrieve
the accelerometer and gyroscope values every 1 second” is rep-
resented as follows: SELECT accelerometer, gyroscope
FROM wearables EVERY 1s. The Query Manager analyzes
the syntax of a submitted query, and verifies whether a query
can indeed be executed on the available wearables. For e.g.,
an app service that requires monitoring a user’s heart rate
could issue Q2: “Retrieve the heart rate of a user 10 times
per second”. This query however may be constrained by the
sampling frequency of the corresponding heart rate sensor. To
handle such cases, the Query Manager specifies how to manage
infeasible queries (e.g., by raising an appropriate exception to
alert apps of MULTI-WEAR’s inability to support Q2).

For each query submitted to the Query Manager, a query
object is initially created, which comprises the following fields:
(1) a list of sensors that can provide the data requested (e.g.,
accelerometer and gyroscope for hand gesture recognition);
(i1) the frequency of data retrieval (e.g., every 1s); (iii) the
lifetime of a query; and (iv) a condition that triggers the
execution of the query (e.g., when heart rate >120 bpm). Query

Mediator: VR Workstation
/ N
MULTI-WEAR Platiorm
—_ Request Gesture
(Hand Gesture Recognition [* | Handler
Gesture
Response T Query l
Game
(Qu?ry Manager) Engine
(Data Ac¢quisition Engine) VR
Engine
Device Manager Unified Communication l
Vi g Protocol -
v Rendering
(Microsoft Band 2 Driver) Pipeline
\ V4
Connect Sensor|data Device-specific requests
v \ 4
Native Discovery Native Sensor -
Libraries Libraries e»| ACCelerometer iJl
Microsoft.Band. Microsoft.Band. (x,,2)
BandClientManager Sensor Oculus
Microsoft Band 2 Rift

Fig. 2: VRH+W (VR Headset plus Wristband) app structure

objects are later translated into specific requests for different
types of supported wearables, using their Native Sensor
Libraries. This is handled by the corresponding Wearable
Device Drivers (in the Hardware Abstraction Layer).

Once queries are handed over to the Hardware Abstraction
Layer, the Data Acquisition Engine is responsible for registering
listeners that handle events raised by different wearables,
e.g., when new measurements are made available. In the
case of QI, two such listeners are registered to account for
new accelerometer and gyroscope readings, respectively. The
measurements collected eventually reach the Query Manager,
which is responsible for combining them into a result object
that is returned to the requesting service.

The Data Management Layer also supports more efficient
query execution plans when multiple interleaving (continuous)
queries are in progress. This is achieved through the Publish
Subscribe Engine, which sits in between the Query Manager
and the Data Acquisition Engine, and is used for caching
and sharing results between queries with similar requirements.
The Query Manager can avoid going all the way down to the
wearables if the requested data can be deduced from the results
of existing active queries. For e.g., two concurrent app services
may require access to the same sensor data. Assuming the
addition of Q3: “Retrieve the accelerometer and gyroscope
values every 5 seconds”, the Query Manager is able to detect
that Q3 can be answered by sampling the results of Q1; the
results of Q1 are published to the Publish/Subscribe Engine,
which allows Q3 to reuse these results by subscribing to Q1.

C. App Services Layer

This layer is responsible for providing high-level services that
can be used as building blocks to realise novel app functionality.
It currently offers two types of services for creating advanced
input and output app components.

Output Services expose interfaces for creating and managing
notifications in various formats (e.g., long messages, quick
responses, alerts), which span multiple devices. They support
various delivery methods such as displaying text or images on
multiple device screens as well as haptic and audio feedback.

Input Services can be used for providing input to an
app in new novel ways. This component offers an API for
accessing useful information regarding the user and execution
environment at runtime, which can trigger different events
depending on the core business logic of an app. Input services
can be split conceptually into two categories: explicit and
implicit services, depending on whether they rely on actions
initiated explicitly by the user (instructing the app to perform
some task), or input inferred implicitly by MULTI-WEAR.

Explicit input services include: (1) Gesture Recognition ser-
vices, which recognize user gestures (for e.g., hand movements
used to trigger a change of the user’s field of view in a
virtual reality environment); and (2) services that leverage
interchangeable input methods based on voice, hardware
buttons, touch screen actions, etc. (supported collectively by a
wide range of wearables).

Implicit input services include: (1) Context Recognition
services, which infer knowledge about the ambient execution
environment (for e.g., light and sound levels in a room based on
ambient light sensors and microphones, or user location based
on GPS sensors); (2) Physical Activity Recognition services,
which detect user physical statuses (for e.g., standing, walking,
running, sitting, lying down, etc., based on accelerometer,
gyroscope, and heart rate sensors); and (3) Emotion Recognition
services, which detect user emotional states (for e.g., stress
levels, based on heart rate and galvanic skin response sensors).
Such input information can be used to allow apps to react to
user and/or environment changes on the fly.

IV. THE CASE OF A MULTI-WEARABLE E-COMMERCE APP

This section demonstrates experimentally how MULTI-
WEAR can be used to improve an app’s capabilities by
leveraging multiple wearable devices. In particular, it compares
two versions of an e-commerce app, which were developed for:
(i) a VR headset only (VRH); and (ii) a VR headset combined
with a smart wristband (VRH+W) using MULTI-WEAR.

A. E-commerce Use Case

The e-commerce app implements an online virtual store
that supports the following functionality: users can navigate
through the store; browse clothing items; select/view a specific
item; customize a selected item according to size and color
preferences; and add/remove different items to/from their
shopping cart. Two modes of execution are supported: (i)
the navigation mode, which allows users to move within the
confinements of the virtual store, and (ii) the select mode,
which allows users to select clothing items and menu options.

The first version of the app, termed VRH, is implemented
on top of an Oculus Rift Development Kit 2 (DK2) headset'

'Oculus Rift, https://www.oculus.com/en-us/

and a VR workstation. In navigation mode, users are able to
move within the virtual store using head movements to point at
directional arrows overlayed on the screen. To switch to select
mode, users focus on an item for two seconds using a tracker
in the center of the screen. The two-second delay is required
to ensure that no accidental mode switching occurs at runtime.

The second version, termed VRH+W, uses additionally a
Microsoft Band 2 wristband? and a Bluetooth 4.0 LE trans-
ceiver, which allows for connecting the wristband with the
VR workstation. The wristband allows users to navigate using
hand gestures by swiping their hand accordingly in different
directions. In addition, hand gestures are used to implement
shortcuts for frequent operations such as changing the size and
color of a selected item, adding an item to the shopping cart,
and showing or hiding the shopping cart.

To develop the VR counterpart of both app versions we
used the Unity game engine®, which supports the Oculus Rift
headset. For VRH+W, we also used the Band SDK for the
Universal Windows Platform in C# to program the Microsoft
Band 2 wristband. As part of the MULTI-WEAR platform, a
gesture recognition model for the wristband was implemented
based on the open-source Wiigee project*, which employs a
Hidden Markov Model to train and recognize user-specified
gestures. Finally, communication between the devices was im-
plemented using a SignalR-based> communication platform; the
platform supports communication between programs executing
in different environments (Java, .NET 2.0, .NetCore).

Figure 2 describes the architecture of the VRH+W app
built on top of MULTI-WEAR. It leverages a subset of the
full-fledged platform (as described in §III), which includes a
prototype implementation of: the Device Manager to handle
connection establishment between the wearable devices and the
VR workstation; the Query Manager and the Data Acquisition
Engine to manage the continuous retrieval of accelerometer
data from the wristband; and App Services for recognizing hand
gestures based on accelerometer sensor data. Provided these
components, a developer is asked to implement the remaining
app functionality, which relates to the VR and Game engines,
as well as the app logic for reacting to different hand gestures
that are recognized seamlessly through MULTI-WEAR.

B. Experimental Setup

We compare VRH with VRH+W by conducting experiments
with a group of users. The goal of the experiments is to
demonstrate how the combination of the VR headset and the
wristband through MULTI-WEAR can significantly improve
mUX. In particular, for the e-commerce use case, we identify
improvements along two main dimensions: execution time and
the quality of user interaction with the virtual environment.

Users: A total of five computer science students participated
in the experiments (4 males, 1 female, mean age 21.4). All
participants had prior experience in using VR systems.

Zhttps://www.microsoft.com/microsoft-band/en-gb
3Unity Game Engine, http://unity3d.com/
“http://www.wiigee.org/

3SignalR, http://signalr.net/

TABLE II: App scenarios used in experiments

Scenario Steps
S.{a,b,c} 1. Navigate to a target location in the store
(Differ in 2. Select an item from a stand
target 3. Select a color
location) 4. Add the item to cart
5. Select a size
6. De-select the item
S.d 1. Open cart
2. View cart
3. Close cart

VRH

@ 30 o 40 VRH
) o}

£ £

c c

el kel

5 5

o o

Q o}

x x

1} 1}

Uy U, Uz Uy Ug
User
(a) Scenario S.a (b) Scenario S.b

@ 45 VRH @ Sg

® o v

£ g .3

= = 25

c c 2

2 2 15

]]

o o 1

L L 05

L L 0

(c) Scenario S.c (d) Scenario S.d

Fig. 3: Scenario completion times using VRH Vs. VRH+W

App scenarios: Table II describes the four scenarios used in
experiments, chosen to cover different aspects of the virtual
shop experience. These include: locating an item, changing its
size and color, adding items to and viewing the shopping cart.
Scenarios S.a—c cover different movement patterns and differ
only in the virtual location users are asked to navigate to.

Experiments: (1) participants are asked to execute all four
app scenarios in both VRH and VRH+W to compare execution
times and the quality of user experience; and (2) participants
are asked to perform 25 hand gestures (e.g., swiping in different
directions) to record the accuracy of MULTI-WEAR’s gesture
recognition. In all experiments, we measure the duration of
each step involved and record the ground view map of the
virtual environment using an external monitor.

C. Execution Time

Figure 3 shows the execution time per app scenario (de-
scribed in Table II) for each of the users u; (1<i<5) who
participated in the experiments. An average reduction in
execution time by approximately 45-56% for scenarios S.a—
¢, and 69% for scenario S.d was achieved, with negligible
variations across different experiments. The S.a—c results show

100 4

o]
o

Gesture recognition
accuracy (%)

uy U, Us Uy Ug
User

Fig. 4: Accuracy of gesture recognition

® k{\\i\’B@ N Q\B

m I & & yo
? e o .

2, -~ . a

(b) VRH+W

A
(a) VRH

Fig. 5: User trajectory on VR ground view map for S.a

that by using MULTI-WEAR’s input services based on hand
gestures, navigation is much faster as it avoids the overhead
associated with having to point at overlay arrows using head
movements in order to change the direction of movement.
Furthermore, VRH+W’s shortcuts (again based on hand gesture
inputs) for changing the color or size of a selected item, and for
adding an item to the shopping cart, yield additional savings
in execution time. This is because they avoid the artificial
delay used in VRH to distinguish between such actions and
head movements that aim at changing a user’s viewpoint. The
impact of shortcuts for showing and hiding the shopping cart
is even more compelling, as indicated by the results for S.d.

D. Interaction with Virtual Environment

Next, we evaluate the quality of user interaction with VRH
and VRH+W by comparing the navigation patterns of users
that move within the confinements of the virtual store. We also
evaluate the accuracy of the gesture recognition model used
to replace less intuitive navigation controls like hovering over
overlay arrows using head movements (used in VRH).

1) Quality of User Navigation: To wholly immerse users
in a VR experience, apps need to support both realistic 3D
visualization and interaction between users and the virtual
environment. Based solely on the Oculus Rift, VR experience
covers only the visual side of things—as reported by its inventor,
VR apps for Oculus Rift currently offer suboptimal experiences
by lacking a fully integrated input/output system that can
provide for a natural way to interact with the virtual world [8].

Combining the Oculus Rift with a wristband wearable is a
step towards improving significantly the interaction with the
virtual environment. This experiment focuses on the quality of
user navigation by comparing the movement patterns of users
in VRH and VRH+W. Figure 5 shows a ground view map of
the virtual store, annotated with the trajectory of a user who
is asked to move between two pre-defined locations. In the

case of VRH, users are required to hover over overlay arrows
using head movements in order to move in different directions.
This, however, prevents them from being able to change their
viewpoint simultaneously, i.e., turn their head in different
directions to view their virtual surroundings. As a result, users
cannot change the direction of movement while being on the
move, which is why a user’s trajectory comprises straight
connected lines. In contrast, VRH+W supports navigation (using
hand gestures) without compromising one’s ability to use
head movements to switch viewpoint simultaneously, which is
reflected by the more natural curved path shown in Figure 5b.

2) Gesture Recognition Accuracy: The prototype gesture
recognition model used in VRH+W is implemented as an Input
service in MULTI-WEAR’s App Services layer. To determine
the model’s accuracy, each user was asked to perform 25
gestures from a vocabulary of six hand gestures, which cover
different directions of swiping (up, down, left, right, forward
and backwards). The results of this experiment (Table 4) show
a success rate that ranges between 76-100%, averaging to
approximately 90% across all users.

V. RELATED WORK

Previous work has focused on special-purpose systems
developed from the ground up with the intention of leveraging
multiple ambient and wearable devices. The work by Kourogi et
al. [6] proposes an AR system that combines multiple wearable
devices to enable accurate location and orientation awareness
services. Such wearables include cameras, attitude sensors,
accelerometers, magnetometers, gyro-sensors, and inclinome-
ters, all attached to the user’s body. In health care, proposed
systems [9], [10], [11] combine ambient and wearable sensors
(e.g., ear-worn and blob-based vision sensors, accelerometers,
gyroscopes, and bio-signal sensors) to enable the robust
recognition of activities and motions. Similarly, the work by
Cho et al. [7] proposes a distributed system that comprises
a wristband-type device and a mobile gateway. The system
supports voice and gesture recognition simultaneously in order
to achieve a better combined recognition rate. PalmType [12]
combines wrist-worn sensors with smart glasses in order to
use palms as keyboards for text entry.

More related to MULTI-WEAR is the work by Brito et
al. [13] on a service-oriented sensor middleware architecture
for data acquisition and processing in the health domain. This
middleware addresses requirements for sensor interoperability
in heterogeneous medical devices, dealing specifically with
challenges related to data collection and aggregation. Uddin et
al. [14] propose a framework for monitoring human activity
using wearable devices, which focuses on reducing the data
processing and energy overheads of the wearable device by
preprocessing and filtering out data collected by the device.

The aforementioned systems are designed explicitly to
support specific devices and tasks such as accurate position
tracking, better motion detection, or voice/gesture recognition.
They embody a narrow set of features focused primarily around
measurement refinements for better accuracy, or efficient data
collection and aggregation mechanisms. Furthermore, they

cannot be easily extended to leverage arbitrary wearable devices,
and mainly consider wearable sensors as opposed to full-fledged
devices. In contrast, MULTI-WEAR is a general-purpose plat-
form for combining, at different levels of abstraction, arbitrary
types of wearables in order to facilitate the development of
any kind of multi-wearable apps.

VI. CONCLUSIONS

The future of mobile apps lies with the fusion of multiple
wearables to benefit from their combined capabilities. MULTI-
WEAR is a platform that provides the necessary abstractions
to support developers in the integration of multiple wearables
under the umbrella of a single app. To validate the impact
of multi-wearable apps on user experience, using a prototype
implementation of MULTI-WEAR, we implemented and eval-
uated two versions of a VR app (one based solely on a VR
headset and another that combines a VR headset with a smart
wristband). We compared them experimentally to show that
the latter can significantly improve mobile user experience.

ACKNOWLEDGMENTS

This work was partially supported by the European H2020
project GrowMeUp (#643647). We would like to thank the
InSPIRE center for its contribution to the implementation and
evaluation of this work.

REFERENCES

[1] Business Insider, THE WEARABLES REPORT: Growth Trends,
Consumer Attitudes, and Why Smartwatches will Dominate, 2015,
https://goo.gl/HxeUS58.

[2] Vandrico Inc., The
https://vandrico.com/wearables/.

[3] Max Castleman, The Advantages and Disadvantages of Wearable Tech,
2014, https://goo.gl/nH2cuj.

[4] Insurance Journal, Pros and Cons of Wear-
able Technology in the Workplace, 2015,
http://www.insurancejournal.com/news/national/2015/08/07/377825.htm.

[5] InformationWeek, Smartwatches Still Lack Killer App, 2016,
https://goo.gl/74kie3.

[6] M. Kourogi and T. Kurata, “Personal Positioning Based on Walking
Locomotion Analysis with Self-Contained Sensors and a Wearable
Camera,” in ISMAR, 2003.

[71 L-Y. Cho, J. Sunwoo, H.-T. Jeong, Y.-K. Son, H.-J. Ahn, D.-W. Lee,
D.-W. Han, and C.-H. Lee, “A Distributed Wearable System Based on
Multimodal Fusion,” in ICESS, 2007.

[8] The Verge, Virtual Reality Check: Why Controllers Haven’t Caught Up
to the Oculus Rift, 2013, http://goo.gl/sfrAoq.

[9] J. Pansiot, D. Stoyanov, D. Mcllwraith, B. Lo, and G.-Z. Yang, “Ambient

and Wearable Sensor Fusion for Activity Recognition in Healthcare

Monitoring Systems,” in BSN, 2007.

D. G. Mcllwraith, J. Pansiot, and G. Yang, “Wearable and Ambient

Sensor Fusion for the Characterisation of Human Motion,” in /ROS,

2010.

J.-K. Min and S.-B. Cho, “Activity Recognition Based on Wearable

Sensors Using Selection/Fusion Hybrid Ensemble,” in SMC, 2011.

C.-Y. Wang, W.-C. Chu, P.-T. Chiu, M.-C. Hsiu, Y.-H. Chiang, and M. Y.

Chen, “PalmType: Using Palms As Keyboards for Smart Glasses,” in

Proc. of the 17th Intl. Conf. on Human-Computer Interaction with Mobile

Devices and Services, 2015.

M. Brito, L. D. Vale, P. Carvalho, and J. Henriques, “A Sensor

Middleware for Integration of Heterogeneous Medical Devices,” in Proc.

of the 32nd Annual Intl. Conf. of the IEEE Engineering in Medicine and

Biology Society, 2010.

M. Uddin, A. Salem, I. Nam, and T. Nadeem, “Wearable Sensing

Framework for Human Activity Monitoring,” in Proc. of the 2015

Workshop on Wearable Systems and Applications (WearSys), 2015.

Wearable Database, 2017,

[10]

(11]
[12]

[13]

[14]

