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Abstract—Communications-Based Train Control (CBTC) is
a modern signalling system that uses radio communication to
transfer train control information between train and wayside.
The trackside networks in these systems are mostly based on
conventional infrastructure Wi-Fi (IEEE 802.11). It means a train
has to continuously associate (i.e. perform handshake) with the
trackside Wi-Fi Access Points (AP) as it moves, which incurs
communication delays. Additionally, these APs are connected to
the wayside infrastructure via optical fiber cables that incur
considerable installation costs. Our earlier work presented a
novel design in which trackside nodes function in ad-hoc Wi-
Fi mode, which means no handshake has to be performed with
them prior to transmitting. A node upon receiving packets from
a train forwards these packets to the next node, forming a chain
of nodes. Following this chain, packets reach the destination.
To make the design resilient against interference between the
nodes, transmissions are separated on multiple frequencies,
ensuring a certain separation between the transmissions. Our
previous results exposed a limitation of the design. Since a train
node is required to transmits on all frequencies to be able to
communicate to the chain with a high probability, the frequency
separation guaranteed inside the chain is not achievable in
the train-to-chain communication. As a result, the train node’s
transmissions cause a significant amount of interference on the
chain nodes. This paper proposes an extension to the design in
which an additional, dedicated frequency is employed for the
train-to-chain communication and presents the results from an
extensive simulation study.

Index Terms—Railway signalling, CBTC, radio communica-
tion, Wi-Fi, IEEE 802.11, ad-hoc, multi-radio, multi-hop

I. INTRODUCTION

Communications-Based Train Control (CBTC) is a widely
popular modern railway signalling system that uses radio
communication to transfer train control information between
the train and the wayside. This results in high resolution and
real-time train control information which increases the line
capacity by safely reducing the distance (headway) between
trains running on the same track. Despite its short range and
lack of support for mobility, the IEEE 802.11 WLAN, also
known as Wi-Fi, has prevailed as the radio technology of
choice for CBTC systems, mainly due to its cost-effectiveness.

In these systems, hundreds of Wi-Fi Access Points (APs)
are installed at the trackside to enable uninterrupted wireless
connectivity. Each AP is connected to the wayside (normally
a Traffic Control Center (TCC)) via optical fiber cables. Just
like in an ordinary infrastructure Wi-Fi network, the train must
first associate (i.e. perform handshake) to an AP to be able
to transmit. However, there are a number of disadvantages
of this design. Firstly, installation of cables to connect each
AP to the wayside is time-consuming and incurs high costs.
Secondly, the train must handover from one AP to other
as the it moves. The IEEE 802.11 technology lacks the
support for mobility as it was originally developed for users
in stationary environments. This results in employment of
complex handover algorithms in CBTC systems to enable
seamless mobility. A completely seamless operation is still
not feasible, leading to delays in communication as well as
limitations on the maximum train speed.

In [1], we presented a novel design for an ad-hoc based
radio communication network (patent pending [2]) in which
there are no conventional "APs". Nodes function as ordinary
Wi-Fi nodes, in an ad-hoc manner. A node broadcasts packets
to any nodes within its range. As a nearby node receives the
packet, it re-transmits (forwards) it, to be picked up by the
next nearby node. This forms a chain of nodes. Following
this chain, the packets reach the last node in the chain, which
is typically connected to TCC. Thus, a train is not required
to establish an association with an AP, and as a result, does
not need to handover between APs. Wired links between the
nodes and wayside backbone are no longer needed except for
the two nodes at each end of the chain. To make the chain
resilient against failures, redundancy is introduced in a way
that each node forwards packets to two of its neighbors in
each direction instead of one. In a conventional multi-hop ad-
hoc network where all nodes operate on a single frequency,
the capacity degrades sharply with the growing size of the
network as a result of the increased interference as well as
contention for the medium [3], [4], [5], [6]. Thus, to make
the chain resilient against interference, in the proposed design,



three frequencies are used in an alternating fashion such that a
chain node transmits on only one frequency in each direction.
In this way, a certain separation is introduced between two
nodes transmitting on the same frequency.

In [1], results from an extensive simulation study were
presented. While the results verified the effectiveness of the
design primarily in terms of resiliency, redundancy, and scal-
ability, they exposed two limitations of the design as well.
One of them is that since the train node transmits on all
three frequencies (in all directions) to maximize the probability
of being able to communicate with the chain, the frequency
separation inherent inside the chain is not achievable between
the transmissions of the train and the chain nodes. This leads to
a large amount of interference on these nodes and as a result,
a significantly high packet loss. To minimize this limitation,
in this paper we propose an extension (patent pending [7]) to
the design in which an additional, dedicated frequency is used
for train-to-chain communication.

The rest of this paper is laid out as follows. Section
II presents a brief overview of CBTC systems. Section III
provides an overview of the proposed design. Section IV
provides an overview of the extended design together with the
simulation study and the results. Section V discusses future
work. Finally, Section VI concludes the paper.

II. OVERVIEW OF CBTC SYSTEMS

A brief overview of CBTC is presented here. For a more
detailed version, refer to [8]. In CBTC, radio communication
is used to exchange train control information between the train
and the wayside, enabling Automatic Train Control (ATC)
functions. The train regularly sends its state to the wayside
over the radio connection. The state information includes the
current speed, direction, and location of the train. Based on
this information, the wayside ATC equipment calculates the
"limit of movement authority" (LMA) information and sends
it back to the train. LMA includes the maximum speed and
distance the train is permitted to travel. Based on LMA, the
onboard ATC equipment ensures that the train speed and the
safety distance to the preceding trains conforms to the required
limits. Due to this real-time communication between train and
wayside, the precise location of the trains can be determined.
This enables the so-called "moving block operation" that
allows trains to run closer to each other. Furthermore, the
number of trackside equipment—such as color light signals
and track circuits—is minimized. Fig. 1 illustrates typical
wayside—which includes trackside—components of a CBTC
system. The wayside ATC subsystems additionally perform
functions including scheduling trains and determining their
destination/dwell times. These subsystems are often collec-
tively referred to as the Traffic Control Center (TCC).

A large number of Wi-Fi APs are deployed at the trackside
to guarantee that the train has a radio connection all the time.
Each AP is connected (over a wired link) to the wayside
components through the backbone network. A train has to
continuously search for a new suitable AP (a process called
scanning) and re-associate as it moves along. To assist in
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Fig. 1. CBTC wayside components

handover, APs are placed in a way that their coverage areas
overlap. Fig. 1 uses the green and red colors to differentiate
between the APs’ coverage areas. A critical aspect of handover
in CBTC is how the train smoothly switches from one AP to
another, without causing interruptions in the communication.
A large handover latency might result in a train failing to
receive information about the minimum permitted distance to
the preceding train in-time. Normally a smooth transition is
ensured by equipping a train with at least two radios, one at
each end, such that one of these radios stays associated to the
current AP while the other switches to a new AP [8].

Normally, CBTC control messages are sent at regular,
short intervals of 100-600 milliseconds. This guarantees that
the wayside and the train always receive the most updated
information (i.e. train state and LMA) from each other [8].

III. PROPOSED NETWORK DESIGN

A brief description of the proposed network is presented
here. For further details, refer to [1]. Fig. 2 (a) illustrates
the conventional network design for CBTC trackside. In the
proposed design, at its basic, a train broadcasts packets which
are then picked up by a node in the chain and forwarded to
its neighboring node, and so on, as illustrated in Fig. 2 (b).
No AP scanning and association are thereby required.

   (a) Conventional design

   (b) Proposed design

Fig. 2. CBTC trackside network: Conventional vs. proposed design

A. Three frequencies and redundancy

A conventional multi-hop ad-hoc network operating on a
single frequency presents two major challenges. Firstly, as



Node 1 Node 2 Node 3 Node 4 Node 5Train
Traffic Control
Center (TCC)

Fig. 3. A terminal node (train) transfers packets to another terminal node (TCC) over a chain of five nodes

noted above, if all nodes transmit on the same frequency,
the probability of interference increases sharply. Additionally
relevant is the well-known "hidden node problem" in which
two nodes are in the transmission range of a common node but
not in each other’s range. Since they cannot hear each other, it
renders the Carrier Sense Multiple Access/Collision Avoidance
(CSMA/CA) mechanism used in IEEE 802.11 MAC to avoid
collisions ineffective. Secondly, a single failed node practically
breaks the chain.

To solve the interference problem, the proposed design
uses three frequencies to ensure a certain separation between
nodes transmitting on the same frequency. Each node is
equipped with three radios, all on different frequencies. The
two side radios use directional antennas one in each direction.
Transmissions are made not only to the immediate neighbor
node but also the following node. The third top radio is
equipped with an omni-directional antenna and is used only for
receiving. The three frequencies are then used in an alternating
fashion on subsequent nodes. A predefined address included in
each packet indicates the direction of the traffic flow. The three
radios inside a node are connected to each other via Ethernet.
As a radio receives a packet, depending on the direction of
the traffic, it delivers the packet to the correct side radio (i.e.
left or right) which transmits it further. Fig. 3 illustrates the
mechanism where the colors red, blue and green represent
three frequencies and a uni-directional traffic flow (from left
to right) is depicted. As seen, the two-node transmission range
solves the "single point of failure" problem and introduces
redundancy as a node receives the same packet from two nodes
rather than one. It further solves the "hidden node problem"
by ensuring that two nodes transmitting to a third common
node are always in each other’s range, e.g. Node 1 right radio
and Node 3 left radio transmitting to Node 2 top radio.

B. Chain node vs. terminal node

The node type discussed above is referred to as a "chain
node". A second type of node is the "terminal node", which
is the actual sender/receiver of these packets and is either a
train or a TCC. A train sends packets to the TCC, and a TCC
sends packets to one or more trains. Note that in reality, TCC
is a stationary machine without any radio equipment and is
connected to the end of the chain using a wired connection.
Nonetheless, for simplicity, figures in this paper (e.g. Fig. 3)
depict a TCC with radio equipment just like a train. In this
way, it can as well be seen as a train transmitting to another
train over the chain.

While a chain node transmits only on two frequencies (one
in each direction), a train transmits on all three frequencies and
in all directions, i.e. it uses three omni-directional antennas.
This is necessary as a train shall be able to communicate to
the chain regardless of its direction or orientation relative to
the chain. Note that one of the directional antennas on a chain
node might be facing opposite and thus might not be able
to receive from the train. Thus, by transmitting on all three
frequencies, it is guaranteed that a chain node with any of
the three possible frequency combinations is able to receive
from train on a minimum of two frequencies. Fig. 3 shows
a network where a terminal node (train) transfers packets
to another terminal node (TCC) over a chain of five nodes.
Note how the use of three frequencies ensures a frequency
separation distance of three nodes, e.g. the red frequency is
used by Node 2 and Node 5.

Regardless of the intended direction of a packet, a chain
node upon receiving a packet directly from a train forwards
the packet in both directions. Forwarding the packet in the
backward direction ensures that the packet takes the shortest
path to TCC, which might be located at either end of the chain.
The following chain node (in each direction) upon receiving
this packet continues to forward it in only one direction.

An inherent consequence of the redundancy in the design is
the duplicate packets. Note that a node might receive multiple
copies of the same packet either from the same node or from
two different nodes. For example in Fig. 3, Node 1 will receive
two copies of the same packet from the train. Node 2 will
receive four copies of the same packet, two forwarded by Node
1 and two received directly from the train, and so on. If each
node forwards the duplicate packets, they grow exponentially
along the chain and congest the network. Therefore, duplicates
are eliminated at each node based on a unique identifier.

IV. SIMULATION STUDY

Simulations were carried out using a discrete-event simula-
tor [9]. Table I lists the key simulation parameters and their
values used in the simulations. An inter-node distance of 600
meters has been used in all simulations, as it could be directly
related to the distance currently used in the Copenhagen’s S-
train CBTC system based on the conventional CBTC technol-
ogy. As the design requires that a node be heard by two of
its neighbors, transmission power and receive sensitivity were
adjusted to transmit to a distance of 1200 meters.

The proposed design relies on the assumption that the
separation provided by the three-frequency design is sufficient
and signals from nodes beyond that distance will not interfere.



TABLE I
SIMULATION PARAMETERS

Parameters Value
WLAN technology IEEE 802.11a OFDM at 54 Mbps

Frequency channels (MHz) 5170, 5230, 5290, 5735, 5795

Transmission power (dBm) 7

Receive sensitivity (dBm) -76

Antenna gain (dBi) 14

Antenna height (m) Train: 2, Chain node: 2 (side), 3 (top)

Packet size Payload: 512 bytes, Headers: 297 bits

Inter-node distance (m) 600

Nodes 20

Packet rate (per second) 1000

Simulation time (s) 60

However, this is far from reality as minor changes in the
propagation conditions have shown to dramatically increase
the signal range in railway environments [8]. Our simulation
model uses the simulation tool’s default Free-Space Path Loss
(FSPL) propagation model. The FSPL model assumes a free
space between the sender and receiver and therefore does
not consider signal loss that occurs due to obstacles. Thus,
it enables exceptionally large signal range—or interference
range—which provides the worst case scenario necessary to
validate the proposed design.

A. Results and discussions

In our simulation scenarios, one or more terminal nodes
located at the two ends of chain transmit packets which are
then transferred to the terminal node at the other end of the
chain. A network size of 20 nodes has been used, which
corresponds to 12 kilometers and closely relates to the size
that will be used in the actual CBTC deployments.

When discussing results, we are particularly interested in
six performance indicators, namely unique packets received,
duplicate packets received, total packets received, collisions,
erroneous packets received, and, packets lost. Number of
unique packets received serves as our key parameter as it indi-
cates how many of the original unique packets (i.e. excluding
duplicates) sent by the train are successfully transferred over
the network. Note that this number for a node is essentially
equivalent to the number of packets forwarded by the node.
Total packets received includes duplicate packets. Erroneous
packets are a result of interference between transmissions from
different nodes (including collisions). These packets are dis-
carded and do not count towards the aforementioned packets
received numbers. Packets lost is the number of packets that,
out of the original unique packets sent, were not received at
the receiving end, for example owing to errors.

Note that while we discuss results for all nodes in the
network, we are primarily interested in the results for the
terminal nodes.

1) Scenario 1: Default setup: In this scenario, the perfor-
mance of the default design is studied. In the first part of this
scenario, one terminal node (train) transmits packets which

are then transferred to the other terminal node (TCC) over the
chain. A packet rate of 1000 packets per second—equivalent
to 4.4 Mbps—is used.

Fig. 4 shows the results for the above mentioned six
parameters against each node shown on the x-axis. The y-axis
shows the number of packets received as a percentage of the
unique packets sent. Note that with the rate of 1000 packets
per second and a simulation time of 60 seconds, the number
of packets sent by a single radio on a terminal node during the
whole simulation run is 60,000. Thus, a 100% unique packets
received by a node implies that it received all 60,000 packets.
Note that the total number of packets sent by a terminal node
is thrice this number—as it sends on three radios. And ideally,
the total number of packets received by a chain node in one
direction is twice this number—as it receives packets from two
of its preceding nodes.
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Fig. 4. Results for Scenario 1: Default design with one traffic flow

The results show that 94.37% of the unique packets (red
line) were successfully transferred to TCC, i.e. a packet loss
of only 5.63% over a long chain of 20 nodes. As seen, the large
and stable number of duplicate packets received at each node
highlights the effectiveness of the redundancy in the design.
Furthermore, the frequency separation successfully minimizes
interference as the number of erroneous packets is minimum—
except for the first few nodes.

The large number of erroneous packets (light blue line)
seen at the nodes near the train (i.e. Nodes 2-4) is due to the
above mentioned limitation of the design and results in a sharp
drop in the number of total and duplicate packets received at
these nodes. As discussed above, the reason is that as a train
transmits on all frequencies, the inherent frequency separation
guaranteed otherwise inside the chain is not fully achievable,
resulting in interference on the nearby nodes. For example, at
Node 2, the train’s transmissions result in collisions with those
of Node 1. Note that Node 2 is the only node in this chain
that is in the transmission range of two nodes transmitting on
the same frequency, and thus the only to experience collisions.
While Nodes 3 and 4 are outside the train’s transmission range,
they are still in its interference range. For example, at Node
3, train’s transmissions interfere with those of Nodes 1 and 2.

As seen in Fig. 4, the impact of this limitation is less sig-
nificant due to the inherent redundancy in the design and thus
only a minor drop in the number of unique packets received
(red line) is seen at these nodes. However, as observed earlier



in [1], the problem intensifies when there are failed nodes in
the network. It is because in the absence of redundancy, the
packet loss seen at these nodes cannot be recovered throughout
the chain. Furthermore, this limitation is particularly critical
due to the fact that as a train will be travelling alongside the
chain, the interference currently seen on the first few nodes
will be seen across each node in the chain. Multiple trains in
close proximity will further worsen the situation.

In the second part of this scenario, both train and TCC
transmit packets to each other. This results in two traffic flows,
one in each direction, and a combined data rate of 8.8 Mbps.
Fig. 5 shows the results. Note that for brevity, the figure only
shows an average of the number of total and duplicate packets
received at each node. In reality, a significantly higher number
of packets is received at each node as it includes the packets
flowing in the opposite direction as well.
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Fig. 5. Results for Scenario 1: Default design with two traffic flows

Since TCC also transmits now, in Fig. 5, an equivalent
number of erroneous packets is seen at the nodes at the other
end of the chain (namely Nodes 15-17) as well as a result
of the interference from TCC’s transmissions. While a stable
number of unique packets received is maintained throughout
the chain, the number is significantly lower compared to that
in Fig. 4. As a result, only 59.48% of packets are successfully
delivered to the terminal nodes at the each end. In other words,
a packet loss of on average 40.52% is seen compared to only
5.63% in Fig. 4.

Besides the nodes at the two ends, a significant increase in
the number of erroneous packets is seen at the rest of the nodes
as well, resulting in a lower number of total and duplicate
packets received at these nodes. This highlights the other
limitation of the design reported in [1]. Specifically, it implies
that despite the frequency separation distance, the chain nodes
still interfere with each other as their interference range
exceeds the frequency separation distance due to the favorable
propagation conditions. This fact is more pronounced in Fig. 5
as the traffic is flowing in both directions and the top radio
on each node faces interference from nodes on its both sides.
Thus, at Nodes 5-14, on average 25.59% erroneous packets
are received per flow, compared to only 8.6% in Fig. 4. As a
result, the number of total packets received at these nodes is
less than 150%, compared to approximately 180% in Fig. 4.
This is a low number given that a node shall ideally receive two
copies of the same packet, i.e. 200%. Likewise, the number

of duplicate packets received is less than 65%, a much lower
number than the ideal 100%. Note that the nodes further in
the middle, namely Nodes 8-11, receive the highest number of
erroneous packets as these nodes have equal number of nodes
at their each side to interfere with each other.

To summarize it, two limitations are identified here: (1) a
train’s transmissions on all frequencies cause interference on
the nearby chain nodes, (2) despite the frequency separation
distance, nodes beyond this distance still interfere due to their
large interference range. The focus of this paper is to find
a solution for the first of these limitations, which, as we
observe subsequently, makes the major part of the packet loss.
A solution of the second limitation has been proposed in [10].

2) Scenario 2: Separate frequency for train-to-chain com-
munication: To minimize the interference that a train node
causes on its nearby chain nodes, in this scenario, we employ a
dedicated new frequency for the train-to-chain communication.
Fig. 6 illustrates the mechanism where the yellow color
represents the new frequency.

Node 1 Node 2 Node 3 Node 4 TCCTrain

Fig. 6. Separate frequency for train-to-chain communication

Each node in this design is equipped with an additional radio
that operates on this dedicated frequency. All the transmissions
from train to chain are now made on this new dedicated
frequency. On the other hand, a chain node, upon receiving
a packet from a train, still uses the original three frequencies
for forwarding the packet to the other chain nodes as in
the original design. Thus, in this way, the transmissions
from the train do not interfere with those from the chain
nodes. Transmissions from chain-to-train are also made on the
existing three frequencies as before.

Fig. 7 shows the results for the proposed extension for
the one-flow scenario. The effectiveness of the new design is
evident as the erroneous packets seen at Nodes 2-4 in Fig. 4
have disappeared and so has the drop in the total and duplicate
packets received at these nodes. As a result, the packet loss at
the TCC has dropped from 5.63% to only 0.41%.
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nication with one traffic flow



Fig. 8 shows the results for the two-flow scenario. As
expected, the erroneous packets have disappeared at both ends
of the chain and the packet loss at the two terminal nodes
has dropped from 40.52% seen in Fig. 5 to 17.85%. This
indicates that a major part of the packet loss—22.67% out of
40.52%—was caused by the terminal nodes’ transmissions. As
we observe subsequently, the rest 17.85% packet loss is caused
by the interference between the chain nodes. As discussed
above, it is due to their interference range being larger than
the frequency separation distance.

It is worth noting that in addition to employing a separate
frequency, the extended design can as well be used to employ
a separate radio technology for the train-to-chain commu-
nication, e.g. a combination of technologies where LTE or
IEEE 802.11p is used for the train-to-chain communication
and traditional Wi-Fi for the in-chain communication.
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Fig. 8. Results for Scenario 2: Separate frequency for train-to-chain commu-
nication with two traffic flows

3) Scenario 3: Extended frequency separation inside the
chain: To minimize the interference between the chain nodes,
in this scenario, we employ an earlier extension proposed
in [10] in which additional frequencies are employed by the
chain nodes to extend the frequency separation distance. Fig. 9
illustrates the mechanism.

Node 1 Node 2 Node 3 Node 4 Node 5

Node 1 Node 2 Node 3 Node 4 Node 5

Train

Train

Fig. 9. Frequency separation guaranteed with three and four frequencies

The top part of Fig. 9 shows the default three-frequency
design. Here, the frequency separation distance is three nodes,
e.g. the blue frequency is used first by Node 1 and then by
Node 4. The bottom part of the figure uses one additional
frequency (black). Note that a chain node still uses three
frequencies. The only difference is that now the subsequent
nodes use a different set of three frequencies instead of the

same frequencies in an alternating fashion. On the other hand,
the train node is preferably required to be equipped with one
additional radio because, as discussed in III-B, the train must
use all frequencies to maximize the probability of being able
to communicate to the chain. Note that it is normal to employ
various—e.g. up to four—radios per train in the conventional
CBTC systems in order to ensure high availability [8]. Thus,
this additional radio on the train does not necessarily increase
the system’s cost. As seen, employing an additional frequency
extends the frequency separation distance from three nodes to
four nodes as the blue frequency is now repeated at Node 5
instead of Node 4.

Fig. 10 illustrates the mechanism when the two extensions
are combined, i.e. the yellow frequency is used for train-
to-chain communication and the black frequency is used for
communication between chain nodes in addition to the original
three frequencies.

Node 1 Node 2 Node 3 Node 4 TCCTrain

Fig. 10. Separate frequency for train-to-chain communication combined with
extended frequency separation

The results for the design with the combined extensions
are presented in Fig. 11. As seen when compared to Fig. 8,
the extended frequency separation has resulted in a lowered
number of erroneous packets at Nodes 5-14. Thus, a significant
drop is seen in the number of packets lost (green line) at each
node and consequently, a rise in the number of unique packets
received. As a result, the packet loss at the terminal nodes has
dropped from 17.85% seen in Fig. 8 to only 1.1%.
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Fig. 11. Results for Scenario 3: Separate frequency for train-to-chain
communication combined with extended frequency separation

The results indicate that the interference caused by the
terminal nodes at their nearby nodes is a greater contributor to
the total packet loss. Specifically, out of the 40.52% packet loss
seen in the default scenario (Fig. 5), 22.67% was introduced
by the terminal nodes and 16.89% by the interference between
the chain nodes.

The results demonstrate the effectiveness of the design
as it allows to optimize frequency separation by employing



additional frequencies, both for train-to-chain and in-chain
communication.

V. FUTURE WORK

Additional solutions to minimize the interference caused
by a terminal node’s transmissions and an interference range
larger than the frequency separation distance, e.g. by modi-
fying the number of radios on the train, transmission power,
receive sensitivity, and modulation type, will be investigated
in future. Afterward, scenarios with mobility and a greater
number of trains and tracks will be considered.

VI. CONCLUSIONS

This paper extends the previously presented design of an
ad-hoc based trackside radio communication network for train
to trackside communication in CBTC. A node in this design
functions in ad-hoc mode, receiving broadcast packets and
forwarding to its neighbors, thus forming a chain of nodes.
Thus, in contrast to conventional infrastructure Wi-Fi, the
train does not have to perform a handshake with the nodes
as it moves and the costly optical fiber cables connecting the
nodes are no more needed. The design offers resiliency against
interference by employing multiple frequencies. Nonetheless,
our previous results showed a significant amount of packet loss
due to the interference caused by the transmissions from the
train nodes, which, as per the design, are required to transmit
on all frequencies and thus undermine the frequency separation
guaranteed inside the chain. This paper extends the design
by employing an additional, dedicated frequency to introduce
frequency separation for the train-to-chain communication.
The results show that the proposed extension successfully
eliminates the interference caused by the train and as a result,
a significantly large numbers of packets can be transferred
across large networks with only limited packet loss.
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