
This paper has been accepted for presentation in CCNC 2018 - 15th IEEE Consumer Communications & Networking Conference
to be held on 12-15 January, 2018, Las Vegas, USA. This is an author copy. The respective Copyrights are with IEEE.

ADS: Adaptive and Dynamic Scaling Mechanism for
Multimedia Conferencing Services in the Cloud

Abbas Soltanian†, Diala Naboulsi†, Mohammad A. Salahuddinǂ, Roch Glitho†, Halima Elbiaze‡, Constant Wette*
†Concordia University, ǂUniversity of Waterloo, ‡Université du Québec À Montréal, *Ericsson, Canada

{ab_solta, d_naboul, glitho}@encs.concordia.ca, mohammad.salahuddin@ieee.org, elbiaze.halima@uqam.ca,
Constant.Wette.tchouati@ericsson.com

Abstract— Multimedia conferencing is used extensively in a

wide range of applications, such as online games and distance

learning. These applications need to efficiently scale the

conference size as the number of participants fluctuates. Cloud is

a technology that addresses the scalability issue. However, the

proposed cloud-based solutions have several shortcomings in

considering the future demand of applications while meeting both

Quality of Service (QoS) requirements and efficiency in resource

usage. In this paper, we propose an Adaptive and Dynamic Scaling

mechanism (ADS) for multimedia conferencing services in the

cloud. This mechanism enables scalable and elastic resource

allocation with respect to the number of participants. ADS

produces a cost efficient scaling schedule while considering the

QoS requirements and the future demand of the conferencing

service. We formulate the problem using Integer Linear

Programming (ILP) and design a heuristic for it. Simulation

results show that ADS mechanism elastically scales conferencing

services. Moreover, the ADS heuristic is shown to outperform a

greedy algorithm from a resource-efficiency perspective.

Keywords— Cloud Computing; Multimedia Conferencing;

Platform-as-a-Service; Resource Allocation; Scaling Algorithm

I. INTRODUCTION

Cloud computing is a paradigm in which resources (e.g.,
storage, network, and services) are provisioned rapidly on
demand. It offers three main service models, including
Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS),
and Infrastructure-as-a-Service (IaaS) [1]. Multimedia
conferencing is the real-time exchange of media content (e.g.,
voice, video and text) between different parties [2]. It has several
applications, such as massively multiplayer online games
(MMOG) and distance learning. These applications have a
considerable fluctuation in terms of the number of users. For
instance, in one study, the number of players in the World of
Warcraft game fluctuates between 1.5 and 2.5 million in 10
hours [3]. Therefore, such applications require a very high
scalability and elasticity that cloud-based implementations may
provide.

To speed up the provisioning of conferencing applications,
providers can use conferencing services (e.g., dial-in video
conferencing) available as SaaS [4], [5]. Therefore, the
conferencing PaaS is responsible for ensuring that conferencing
SaaSs deliver the required Quality of Service (QoS), such as
delay or availability. A major challenge it faces is to ensure that
the multimedia conferencing services offered as SaaS scale in an
elastic manner, as participants join and leave. Required
resources need to be available and cost efficiency needs to be
ensured.

Fig. 1 depicts the assumed business model. It has four main
roles as conferencing application providers, conferencing
service providers, conferencing PaaS provider and,
conferencing IaaS providers. Conferencing service providers
use the conferencing PaaS to provision conferencing services
and offer them as SaaS. Conferencing application providers also
use the offered conferencing SaaSs to provision their
applications. For instance, the provider of an online game
application that allows dial-in audio conferencing between the
game players uses Dial-in/Dial-out Audio conferencing service
to provision the application. The conferencing PaaS provider
offers the required functionalities for provisioning of the
conferencing services (e.g., service hosting, execution, and
management). Besides these functionalities, it provides a
mechanism for scaling the conferencing services. The
conferencing PaaS provider relies on the conferencing IaaS
providers who offer the required resources (e.g., CPU and
storage) to realize conferencing services. Also, there are several
conferencing application users considered as conference
participants.

During the conference, PaaS scales the conferencing
services in response to the fluctuating number of participants.
To ensure elastic scalability and to achieve cost efficiency, the
conferencing PaaS requires an efficient scaling mechanism. This
paper proposes an Adaptive and Dynamic Scaling mechanism
(ADS) for conferencing services. ADS performs an elastic
conference scaling, in terms of the number of participants, while
meeting the Service Level Agreement (SLA) between the PaaS
provider and the conferencing application providers. The
dynamicity of ADS facilitates the on-demand scaling up or
down of the conference. Moreover, its scaling policies change

Conferencing

Service

Providers

Conferencing

Application

Providers

Conferencing

IaaS Providers
Conferencing IaaS n

Conferencing

PaaS Provider

Conferencing Service A
(Dial-in/Dial-out Audio

Conference)

Conferencing Service B
(Dial-out Video Conference

with Text Chat)

Distance LearningOnline Game

Conferencing IaaS 1

…

Adaptive and Dynamic Scaling Mechanism (ADS)

. . .

…

Conferencing Service Provisioning System

Fig. 1. Cloud-based Conferencing Business Model

This paper has been accepted for presentation in CCNC 2018 - 15th IEEE Consumer Communications & Networking Conference
to be held on 12-15 January, 2018, Las Vegas, USA. This is an author copy. The respective Copyrights are with IEEE.

adaptively in accordance with the fluctuating number of
conference participants to ensure elasticity.

We analyze the proposed scaling mechanism theoretically
by modeling it as an optimization problem. Moreover, we design
a heuristic for real-world scenarios. The results show the impact
of ADS on the conference size. Also, we compare the cost
pertaining to the resources and QoS of ADS with those of a
greedy algorithm.

The rest of the paper is organized as follows. In Section II,
we discuss the requirements of scaling the conferencing services
as well as the related work. Section III delineates the system
model, including cooperation and mathematical models. The
ADS heuristic is presented in Section IV followed by the
performance evaluation of ADS in Section V. We conclude in
Section VI with contributions and future research directions.

II. REQUIREMENTS AND RELATED WORK

In this section, we present the scaling requirements of
multimedia conferencing services, followed by a review of the
related work.

A. Requirements

A crucial requirement of scaling mechanisms for multimedia
conferencing services pertains to meeting the SLA between the
conferencing application providers and the PaaS provider. For
instance, each conferencing application can have a different
acceptable delay for users before they can join the conference.
Therefore, the scaling mechanism should utilize the
application-level (high-level) metrics (e.g., the delay before
users join the conference). Also, the decisions of the scaling
mechanism should be aligned with the thresholds defined in the
SLA.

Besides meeting the SLA, being cost efficient is another
important requirement of scaling mechanisms. Inherently,
resource provisioning with the minimum cost is desirable for
any resource allocation system. In multimedia conferencing,
since there is a significant fluctuation in the number of users,
cost efficiency while scaling is of even greater importance.
Moreover, elasticity is crucial in scaling. It increases resource
utilization and reduces cost.

Another important requirement for scaling mechanisms of
conferencing services is to consider the future demand of the
conferencing applications. In fact, the scaling mechanism needs
to be adaptive in accordance with the expected fluctuation in the
future demands to ensure elasticity and avoid service outage.

B. Related Work

The scaling mechanism presented in this work is used to
solve the problem of efficient resource allocation for multimedia
conferencing services. Since this problem entails the allocation
of resources within the cloud environment, this is a cloud
resource allocation problem. Based on the aforementioned
requirements, we categorize the related work into 1) PaaS
resource allocation solutions and, 2) IaaS resource allocation
solutions.

1) Existing PaaS Resource Allocation Solutions
Several PaaS resource allocation solutions consider meeting

the SLA requirements and cost efficiency. Anselmi et al. [6]

model the resource allocation problem of PaaS as a Generalized
Nash Equilibrium problem. Their scaling model relies on the
number of virtual machines (VMs) that host the applications
offered as SaaS. Satoh [7] also proposes a resource allocation
mechanism for applications in the cloud. Satoh minimizes the
required resources by reducing the redundant functions and data
of the applications. Gomez et al. [8] introduce a PaaS framework
that enables provisioning of cloud-based services and
applications. Their platform also supports heterogeneous
environments and relies on different IaaSs. Hu et al. [9] present
an adaptive resource management algorithm. Their proposed
PaaS dynamically allocates and reallocates the application
instances based on the fluctuation of resource demands.

Although these works consider SLA and cost, they do not
take the future demand of the applications into account.
Moreover, their proposed solutions only consider low-level QoS
requirements (e.g., demand on computing resources) and they
do not utilize the application-level metrics in their solutions.
Also, the scaling decisions in these solutions lead to adding a
new instance of an application or adding a VM. Therefore, they
support elasticity at the VM-level granularity.

Besides SLA and cost, there are some other works that
consider future demand as well. Bunch et al. [10] present a
pluggable auto-scaling mechanism for PaaS. They use an
exponential smoothing algorithm to forecast the future demands.
Roy et al. [11] also develop a model-predictive algorithm for
workload forecasting. While [10] utilizes the application-level
metrics, [11] does not and only considers low-level metrics for
scaling. These solutions also can only support elasticity at the
VM-level granularity.

2) Existing IaaS Resource Allocation Solutions
Besides PaaS resource allocation solutions, there are some

other solutions proposed for IaaS. Xavier et al. in [12] and [13]
propose resource allocation algorithms for audio and video
services. The proposed solutions scale the resources at the VM-
level while attempting to minimize the cost. They also consider
meeting the user’s quality of experience in their algorithms.
However, they do not consider the future demands.

Negralo et al. [14] present algorithms for scaling resources
by using load balancing and addition or removal of VMs.
Scaling is triggered when a threshold value is reached for low-
level metrics (e.g., CPU or bandwidth usage) defined
beforehand. While the main focus of this work is cost efficiency,
they do not consider SLA requirements. Moreover, they do not
take the future demands into account. Unlike [14], Gong et al.
[15] propose a scaling solution that considers future resource
demands. They propose an elastic resource scaling mechanism
to minimize the cost of resources. However, they do not consider
the application-level metrics and meeting the SLA.

There are some other works, such as [16] and [17], with the
objective of minimizing the wastage of resources. However,
neither of them considers the future demand of the applications.
Moreover, scaling decisions of these mechanisms result in
addition or removal of a VM. Also, these solutions are not based
on application-level metrics and they do not consider meeting
the SLA.

This paper has been accepted for presentation in CCNC 2018 - 15th IEEE Consumer Communications & Networking Conference
to be held on 12-15 January, 2018, Las Vegas, USA. This is an author copy. The respective Copyrights are with IEEE.

To conclude, all of the discussed related works try to allocate
resources based on the existing or predicted number of users as
the input. However, in this paper, we focus on deciding about
the optimal size of the conferencing service while considering
all requirements. In other words, ADS can complement the
existing works. In fact, ADS can be used by all these solutions
to tune their resource allocation mechanisms. For example, the
derived conference size from ADS at each time slot can be used
in [12] and [13] as the number of sources for their audio and
video resource allocation algorithms. Moreover, these solutions
can use the best scaling time derived from ADS as the trigger of
their resource allocation. In Table I, the related works are
evaluated with respect to the requirements of the scaling
mechanisms for multimedia conferencing services.

III. SYSTEM MODEL

Our system model includes cooperation and mathematical
models. In our mathematical model, we define ADS as an
Integer Linear Programming (ILP) problem.

A. Cooperation Model

According to the business model (c.f. Fig. 1), we consider a
large-scale cloud environment to support scaling of the
conferencing services. It consists of users as conference
participants, a conferencing PaaS and, multiple conferencing
IaaSs. The conference participants across a large geographical
area want to join a conferencing application, such as MMOG.
We assume there is an SLA between the conferencing
application provider and the PaaS, where the QoS requirements
are defined. One such requirement is the maximum acceptable
delay for a participant to join the conference (�). Moreover, we
assume there is an SLA between the conferencing PaaS and the
conferencing IaaSs, where another set of QoS requirements are
defined. One such QoS requirement is the time to provision
resources in the IaaSs (�).

When a conference participant wants to join the conference,
the required resources should be provisioned within	� time
slots. In addition, when the scaling request is sent to the IaaSs,
it takes � time slots for resources to be provisioned. The
challenge lies in finding the best time to send the scaling
request. Moreover, this entails finding the required amount of

resources to achieve the optimal resource cost while
guaranteeing QoS requirements.

B. Mathematical Model

This subsection, presents ADS problem formulation which
is modeled as an ILP problem.

1) Problem Statement

Given � time slots of equal durations, let � and � represent
the sets of expected arrivals and departures of conference
participants, respectively. Such that, there will be a maximum
of	�� ∈ �	and
� ∈ �	participants, joining and leaving the
conference during time slot	�, respectively. It is assumed
that	�	and � are available before the conference is started. Also,
there is a threshold	� pertaining to the maximum acceptable
delay before a participant can join the conference. We assume
that	� is a multiple of time slots. Upon sending of the scaling
request from the PaaS to the conferencing IaaSs, it is assumed
that the required resources will be allocated within the time
lag	�. We assume that � is a multiple of time slots and the �s for
scaling up and scaling down are equal. Moreover, we assume the
IaaS does not accept parallel scaling requests for the same
conferencing service. Therefore, we assume there is at least �
time slots between two consecutive scaling requests. To simplify
the problem, we consider the same � for all IaaSs. In addition,
we assume	� < �. The goal is to find the optimal scaling
schedule, such that the total amount of allocated resources in
terms of the number of participants is minimized over the
conference duration.

We model this as an ILP problem where we assume that
each conference participant needs the same amount of resources
to join the conference. Tables II and III delineate the inputs and
variables of our problem, respectively.

TABLE II. Problem Inputs
Input Definition � Total number of time slots in the entire conference duration

�
A set of expected arrivals of conference participants, such that
during time slot	�, a maximum �� ∈ �	participants join the
conference, 1 ≤ � ≤ �

�

A set of expected departures of conference participants, such
that during time slot	�, a maximum
� ∈ �	participants leave the
conference, 1 ≤ � ≤ �

�

A set of number of conference participants, such that during
time slot	�, a maximum of �� ∈ �	participants are in the
conference for more than � time slots, 1 ≤ � ≤ �

�

The time lag, stipulated in the conferencing IaaS SLA for the
response to the resource provisioning request. � > 1	time	slot, otherwise the problem is trivial. � Maximum acceptable delay for preparing the conference service � A big enough constant

TABLE III. Problem Variables

Variable Definition

�
� × � matrix, where ��,� is the actual number of participants
allocated to the service at time slot � whose corresponding
request is sent from PaaS to the IaaS at time slot �

� × � matrix, where !�,� is the actual number of participants
de-allocated from the service at time slot � whose
corresponding request is sent from PaaS to the IaaS at time slot �

"
A vector of binary variables, where 	#� =%1, �&	'��()*�
))+����,	#*-.*)/	/0	1��(�/	/�2*)�0/	�0, 0/ℎ*#5�)*

TABLE I. Evaluation of the Related Works

State-of-the-art

S
L

A

A
w

a
re

n
es

s

C
o

st

E
ff

ic
ie

n
cy

E
la

st
ic

it
y

F
u

tu
re

D
em

a
n

d
s

A
p

p
li

ca
ti

o
n

-

le
v

el
 M

et
ri

cs

P
a
a

S
 S

o
lu

ti
o

n
s

Anselmi et al. [1] � �
Satoh [2] � � �

Gomez et al. [3] � � �
Hu et al. [4] � �

Bunch et al. [5] � � � �
Roy et al. [6] � � �

ADS ���� ���� ���� ���� ����

Ia
a

S
 S

o
lu

ti
o

n
s Xavier et al. [7] � � � �

Xavier et al. [8] � � � �
Negralo et al.[9] �
Gong et al. [10] � � �
Shen et al. [11] �
Han et al. [12] �

This paper has been accepted for presentation in CCNC 2018 - 15th IEEE Consumer Communications & Networking Conference
to be held on 12-15 January, 2018, Las Vegas, USA. This is an author copy. The respective Copyrights are with IEEE.

2) Objective
We assume that the cost of using resources at each time slot

depends on the total number of participants in the conference at
that time slot. Our objective is to minimize the cost while
considering other QoS requirements. We consider the
provisioned resources in terms of the number of participants and
the remaining time of the conference after provisioning the
resources. The resource allocation and de-allocation for time
slot	�, for which the request is sent to IaaSs at time slot	� are
represented as ��,� and	!�,�, respectively. Since the result of the
scaling request will be ready after � time slots, the remaining
time of the conference after sending the scaling request at time
slot	� will be	� − 7� + �9. Equation (1) depicts our objective.

2���2�:* ;<<7��,� − !�,�9 × 7� − 7� + �99=>?
�@A

=
�@A

B (1)

3) Constraints

To respect the maximum acceptable delay (i.e., threshold	�),
the allocated resources, in terms of conference participants,
between time slot	� and � + � should be greater than or equal to
the expected number of participants arriving at time slot	�. In
other words, in the SLA between PaaS and the application
providers, the conferencing PaaS guarantees that there will be
no user waiting for more than � time slots to be served before
the conference ends. Equations (2) and (3) enforce this
constraint. Note that the resources can be reserved before or after
arrivals of users. It means that the scaling request time (i.e., � in
these equations) can be from the moment that conference was
started until the end of the conference.

< ��,��CD>?
�@A

≥ �� 								∀	1 ≤ � ≤ 7� − �9 (2)

<��,�=>?
�@A

≥ �� 								∀	7� − �9 < � ≤ � (3)

If there are some participants in the conference and PaaS
provides them their required service, the conference size cannot
be scaled down more than the number of participants who are
remaining in the conference. In fact, the conference size cannot
shrink before participants leave the conference, as in equations
(4), (5) and (6).

<!�,�=>?
�@A

≤
� 								∀	1 ≤ � ≤ � (4)

< !�,�=>?
�@�>?

≤
� 								∀	� + 1 ≤ � ≤ � (5)

< !�,��>?>A
�@A

= 0								∀	� + 1 < � ≤ � (6)

The maximum amount of scaling down requests at each time
slot cannot be more than the maximum of total allocated
resources before that time slot. This is guaranteed in equation
(7).

<<��,G�
G@A

=
�@A

≥<<!�,G�
G@A

=
�@A

								∀	1 ≤ � ≤ � (7)

Based on � and	�, the set	�	can	be defined, such that there
will be a maximum of	�� ∈ �	participants in time slot	�, who can
be in the conference for more than � time slots. Therefore, at
each time slot, the prepared conference size should at least have
the required resources for the participants who have been in the
conference for more than	� time slots. Equation (8) represents
this constraint.

<<��,G�>?
G@A

=
�@A

−<<!�,G�>?
G@A

=
�@A

≥ �� 								∀	� < � ≤ � (8)

The conferencing IaaSs can accept the new scaling request
from the PaaS after the previous request has been processed
completely. Therefore, two consecutive scaling requests from
the conferencing PaaS must be separated by	�, as depicted in (9).

< #��C?>A
�@�

≤ 1								∀	1 ≤ � ≤ � − � (9)

Moreover, any changes in the conference size made at time
slot	�, should be mapped to their scaling request at the same time
slot as shown in equations (10) and (11). We assume	� is a big
enough constant in these equations.

� × #� ≥ ��,� 								∀	1 ≤ �, � ≤ � (10) � × #� ≥ !�,� 							∀	1 ≤ �, � ≤ � (11)
To avoid unnecessary resource allocation or de-allocation,

there should be no scaling requests over the last � time slots of
the conference. In fact, such a request, if made, will take effect
after the end of the conference. Through equation (12), we
ensure that such requests are not sent. #� = 0								∀	� − � < � ≤ � (12)

IV. ADS HEURISTIC

Based on the proposed mathematical model, reaching the
optimal solution for the large-scale scenarios is very time-
consuming. Therefore, we propose an ADS heuristic as well to
reach a sub-optimal solution in a reasonable time. The ADS
heuristic tries to find the best schedule for scaling requests while
respecting the SLAs. Algorithm 1 delineates the ADS heuristic.
It iterates over the set of time slots throughout the conference.
We consider the constants shown in Table II as the inputs of this
algorithm. Also, the output of ADS algorithm is an integer array (with � elements. Each)� ∈ (represents the required scaling
amount at time slot	�. ADS heuristic has two main phases. In the
first phase, it tries to find the minimum possible conference size
and the best time for scaling the conference. In the second phase,
it makes sure that all scaling requests are separated by at least �
time slots.

Since the cost depends on the amount of the provisioned
resources and their usage over time, ADS heuristic is designed
with the objective of reserving the least resources, as late as
possible. The latest time should respect � and	�. Also, the
minimum amount should respect the number of participants who

This paper has been accepted for presentation in CCNC 2018 - 15th IEEE Consumer Communications & Networking Conference
to be held on 12-15 January, 2018, Las Vegas, USA. This is an author copy. The respective Copyrights are with IEEE.

are in the conference. Therefore, in phase 1, ADS tries to find
the minimum size of the conference and the best time to send the
scaling request. Based on the inputs, conference scaling takes �
time slots. Therefore, at each time slot	�, ADS should consider
the total conference size of		� time slots ahead. Also, new
participants can wait up to	� time slots to join the conference.
Thus, ADS can consider it as well and checks the total
conference size up to	� time slots ahead. In consequence, since
the objective is to find the minimum cost, ADS considers the
minimum conference size between time slots � + � and	� + �.

In phase 2, ADS heuristic ensures that the consecutive
scaling requests are separated by more than � time slots.
Moreover, it keeps track of the previous scaling request and its
corresponding conference size. ADS compares the previous
conference size with the result of phase 1 to decide about the
scaling amount as the output of the algorithm. A positive value
in the output means the request is to scale up, while a negative
one means to scale down.

V. SIMULATION RESULTS

In this section we will describe our evaluation scenarios and
the simulation settings, followed by comparison results.

A. Evaluation Scenarios and Simulation Settings

As the evaluation scenarios, we consider two different
conferencing applications. (i) Massively Multiplayer Online
Game (MMOG) and, (ii) Online Political Party Discussion
(OPPD). In both scenarios, the users as the conference
participants, are sharing their videos and audios in the logic of
the application. In MMOG, users join and leave the game from
all over the world. Thus, there is a significant fluctuation in the

number of participants. In contrast, in OPPD, since the
participants are limited, the fluctuation of the conference size is
small.

For our simulation, we randomly generate the number of
participants joining and leaving the conference at each time slot.
To cover all possibilities, we keep the same conference size over
a part of this time. This means that either no one joins or leaves
the conference, or the number of users joining the conference is
equal to the number of users leaving at each time slot, over that
part. In our simulation, we divide the conference duration to 100
time slots. Also, we assume the resource provisioning time and
the acceptable delay are 3 and 4 time slots, respectively. In
addition, we set the fluctuation of the number of users to up to
1500 and 300 in MMOG and OPPD, respectively. Simulation
parameters and settings are depicted in Table IV.

B. Results

We implement the ADS algorithm in JAVA. Also, we use
the LPSolve engine [18] to find the ADS optimal solution for
our mathematical model. We compare the results of our
algorithm with that of the optimal solution and the expected
conference size. Also, we use a greedy algorithm as the baseline
of our comparison. Since there is no similar heuristic in the
literature that meets all of our requirements, this allows us to
assess how our heuristic performs with respect to a simple
greedy approach. The greedy algorithm operates on a periodic
basis with a period equal to	�. At time slot	/ (with	/	20
	� =0), it derives the maximum number of participants between time
slots	/ + � and	/ + 2�. It then scales the conference
accordingly. By that, the greedy approach is capable of
satisfying the threshold of user’s acceptable delay. Fig. 2 and 3,
depict the created conference size for MMOG and OPPD
applications, respectively. As these figures show, both our
optimal and heuristic solutions can scale the conference size up
and down. The scaling is elastic and it respects the SLAs.

Although in our scenarios, users can wait up to � time slots
to join the conference, there could be a cost for the delay as QoS
violation. Fig. 4 and 5 show the total resource allocation and
QoS violation costs of our scaling mechanism for MMOG and
OPPD, respectively. As shown in these figures, the ADS
heuristic outperforms the greedy algorithm from a resource-
efficiency perspective. It leads to a solution that is closer to
optimality with respect to the solution of the greedy algorithm,
implying lower resource cost. However, this comes at the cost
of a higher QoS violation. By comparing the solutions obtained
from different algorithms, we notice that the greedy approach
implies the least cost of QoS violation. It is followed by our ADS
heuristic, while the ADS optimal solution leads to the highest
QoS violation cost. These results highlight the trade-off that
exists between the resource efficiency and QoS.

Fig. 4 and 5 also show that the cost of the ADS heuristic for
provisioning resources in OPPD and MMOG has an 18% and a

TABLE IV. Simulation Parameters and Settings

General

Parameters
Value MMOG Settings OPPD Settings

� 100 � and �
Fluctuation

0-1500 � and �
Fluctuation

0-300
� 3 � 4 � 1000000

Algorithm 1. ADS Heuristic

Input: �, �, �, �, �; // same as the inputs of Table II
Output: (; // an schedule set of scaling decisions
1. old_size	← 0 // previously provisioned size of the conference
2. new_size ← 0 // conference size that should be provided for the

future
3. For each � ∈ � do
4. min_size	← 	∞
5. best_t ← 0
Phase 1: Find the best possible time for sending the scaling request

6. For t =	� + 	� → � + �	do
7. total_size← 0
8. For p=1→ t do

9. total_size	← total_size + �P −
P

10. end for
11. If (min_size	≥ total_size) Then
12. min_size	← total_size
13. best_t	← t	−	�
14. end if
15. end for

Phase 2: Set the amount of scaling request for the best found time and

move � to the next available time for sending request to the IaaSs

16. new_size ← min_size
17. ([R*)/_/] ← new_size −	old_size
18. old_size ← new_size
19. � ← best_t	+	� − 1; // -1 because it is in the loop and � for next

cycle will be (best_t−	�)
20. end for each

Return (

This paper has been accepted for presentation in CCNC 2018 - 15th IEEE Consumer Communications & Networking Conference
to be held on 12-15 January, 2018, Las Vegas, USA. This is an author copy. The respective Copyrights are with IEEE.

35% gap from the optimal solution, respectively. It means that
the ADS heuristic can perform better when scaling conferences
with lower fluctuations.

VI. CONCLUSION

In this paper, we propose a novel Adaptive and Dynamic
Scaling mechanism (ADS) for multimedia conferencing
applications. ADS produces a cost-efficient scaling schedule
while considering the QoS requirements and the future demands
of the conferencing services. We model ADS as an optimization
problem and design a heuristic to solve it in large-scale
scenarios. Simulation results show the elasticity of ADS
mechanism for conferencing services. Moreover, we show that
the proposed ADS heuristic outperforms a simple greedy
algorithm from a resource-efficiency perspective. In the future,
we plan to extend our work by accounting for QoS violation
cost, considering different resource allocation times from IaaSs,
and having lower threshold of acceptable delay than the resource
provisioning time.

ACKNOWLEDGMENT

 This work is supported in part by Ericsson and the National
Science and Engineering Research Council (NSERC) of
Canada.

REFERENCES
[1] P. Mell and T. Grance, “The NIST definition of cloud computing,”

2011.
[2] R. H. Glitho, “Cloud-based multimedia conferencing: Business model,

research agenda, state-of-the-art,” in Commerce and Enterprise

Computing (CEC), 2011 IEEE 13th Conference on, 2011, pp. 226–230.
[3] V. Nae, R. Prodan, and T. Fahringer, “Cost-efficient hosting and load

balancing of massively multiplayer online games,” in Grid Computing

(GRID), 2010 11th IEEE/ACM International Conference on, 2010, pp.
9–16.

[4] A. F. Alam, A. Soltanian, S. Yangui, M. A. Salahuddin, R. Glitho, and
H. Elbiaze, “A Cloud Platform-as-a-Service for multimedia
conferencing service provisioning,” in Computers and Communication

(ISCC), 2016 IEEE Symposium on, 2016, pp. 289–294.
[5] P. Rodríguez, D. Gallego, J. Cerviño, F. Escribano, J. Quemada, and J.

Salvachúa, “Vaas: Videoconference as a service,” in Collaborative

Computing: Networking, Applications and Worksharing, 2009.

CollaborateCom 2009. 5th International Conference on, 2009, pp. 1–
11.

[6] J. Anselmi, D. Ardagna, and M. Passacantando, “Generalized nash
equilibria for saas/paas clouds,” Eur. J. Oper. Res., vol. 236, no. 1, pp.
326–339, 2014.

[7] I. Satoh, “Self-adaptive resource allocation in cloud applications,” in
Proceedings of the 2013 IEEE/ACM 6th International Conference on

Utility and Cloud Computing, 2013, pp. 179–186.
[8] S. García-Gómez et al., “4CaaSt: Comprehensive management of

Cloud services through a PaaS,” in Parallel and Distributed Processing

with Applications (ISPA), 2012 IEEE 10th International Symposium on,
2012, pp. 494–499.

[9] R. Hu, Y. Li, and Y. Zhang, “Adaptive resource management in PaaS
platform using feedback control LRU algorithm,” in Cloud and Service

Computing (CSC), 2011 International Conference on, 2011, pp. 11–18.
[10] C. Bunch, V. Arora, N. Chohan, C. Krintz, S. Hegde, and A. Srivastava,

“A pluggable autoscaling service for open cloud PaaS systems,” in
Proceedings of the 2012 IEEE/ACM Fifth International Conference on

Utility and Cloud Computing, 2012, pp. 191–194.
[11] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud

using predictive models for workload forecasting,” in Cloud Computing

(CLOUD), 2011 IEEE International Conference on, 2011, pp. 500–
507.

[12] R. Xavier, H. Moens, B. Volckaert, and F. De Turck, “Design and
evaluation of elastic media resource allocation algorithms using
CloudSim extensions,” in Network and Service Management (CNSM),

2015 11th International Conference on, 2015, pp. 318–326.
[13] R. Xavier et al., “Cloud resource allocation algorithms for elastic media

collaboration flows,” in Cloud Computing Technology and Science

(CloudCom), 2016 IEEE International Conference on, 2016, pp. 440–
447.

[14] A. Pessoa Negralo, M. Adaixo, L. Veiga, and P. Ferreira, “On-Demand
Resource Allocation Middleware for Massively Multiplayer Online
Games,” in Network Computing and Applications (NCA), 2014 IEEE

13th International Symposium on, 2014, pp. 71–74.
[15] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource

scaling for cloud systems,” in Network and Service Management

(CNSM), 2010 International Conference on, 2010, pp. 9–16.
[16] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: elastic resource

scaling for multi-tenant cloud systems,” in Proceedings of the 2nd ACM

Symposium on Cloud Computing, 2011, p. 5.
[17] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight resource

scaling for cloud applications,” in Cluster, Cloud and Grid Computing

(CCGrid), 2012 12th IEEE/ACM International Symposium on, 2012,
pp. 644–651.

[18] M. Berkelaar, K. Eikland, P. Notebaert, and others, “lpsolve: Open
source (mixed-integer) linear programming system,” Eindh. U

Technol., 2004.

Fig. 2. Conference Size Comparison in MMOG

Fig. 3. Conference Size Comparison in OPPD

0

300

600

900

1200

1500

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

C
on

fe
re

nc
e

Si
ze

Time Slots
Real Size ADS Optimal ADS Heuristic

0

50

100

150

200

250

300

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

C
on

fe
re

nc
e

Si
ze

Time Slots
Real Size ADS Optimal ADS Heuristic

0

20000

40000

60000

Resource QoS Violation

T
ot

al
 C

os
t

ADS Optimal ADS Heuristic Greedy

0

3000

6000

9000

12000

Resource QoS Violation

T
ot

al
 C

os
t

ADS Optimal ADS Heuristic Greedy

Fig. 4. Costs of Resources and QoS
Violation in MMOG

Fig. 5. Costs of Resources and QoS
Violation in OPPD

