
Computation-Bandwidth Trading for
Mobile Edge Computing

Sabyasachi Gupta, Angel Lozano
Universitat Pompeu Fabra (UPF), 08018 Barcelona, Spain.

Email: {sabyasachi.gupta, angel.lozano}@upf.edu

Abstract—We consider the problem of mobile computation
offloading to both an edge cloud and to peer devices, and propose
bandwidth incentives for those peer devices. Based on this idea,
we formulate a joint optimization of the share of computations
that are offloaded to the cloud and to peers, the identity of those
assisting peers, and the allocation of computational resources at
the cloud. The solutions derived from this optimization allow
reducing by roughly 40% the completion time of computation
tasks at the mobile devices, thereby facilitating the operation of
latency-demanding applications.

I. INTRODUCTION

As mobile devices gain popularity, new applications (e.g.,
face/fingerprint/iris recognition, augmented reality, natural
language processing, and interactive gaming) continue to
emerge that have intensive computing needs. This motivates
the concept of mobile edge computing, whereby cloud facili-
ties become available at the edge of radio access networks,
in close proximity to the mobile users, such that mobile
computations can be offloaded [1]–[6].

In delay-sensitive systems with many computing user equip-
ments (CUEs) having computationally intensive tasks, it is
not always wise to offload the tasks of all the CUEs to the
cloud, as the computing resources therein are finite [7]. The
processing capability of mobile devices has increased steadily
and, today, the performance of a mid-range mobile processor,
say the Intel Atom x5-Z83xx, is already 10% that of a cloud
processor, say the Intel Xeon D-15xx [8]. Thus, offloading
the tasks of too many mobile devices would overwhelm the
cloud.

At the same time, many mobile devices do not fully utilize
their processors, and thus offloading tasks to these peers
is an enticing alternative. The possibility of having a CUE
offload its task to both the cloud and a mobile peer has been
investigated in [9] under the assumption that each CUE has a
pre-selected mobile peer for that purpose.

In this paper, we push this idea further and consider the
joint procedure of (i) identifying peers with idle computation
resources, (ii) deciding which computations to offload to these
peers and which ones to the cloud, and (iii) allocating cloud
computing resources to users. The design objective is to
minimize the completion time of the tasks at the CUEs. We
apply the term helper user equipment (HUE) to refer a peer
that can assist a CUE. And, as these HUEs need not be willing
to consume their limited energy to compute for others, we
introduce the idea of a bandwidth incentive and explore the
benefits of trading computating activity for bandwidth.

II. MODELS AND FORMULATION

Consider a base station (BS), associated with an edge
cloud, serving N CUEs C = {1, 2, .., N} each having a
computationally intensive task to execute. There are also M
HUEs, H = {1, 2, ..,M}, with idle processors. To motivate
an HUE to assist a CUE, the latter lends to the former some
of its available bandwidth. Each CUE has two choices.

• Offload a share of its task to the cloud. In this case, the
full bandwidth of the CUE is available for the offload
and thus the offloading delay is minimized, but less
computational power is then applied to the task.

• Lend some of its bandwidth to an HUE, and subsequently
offload a share of its task to the cloud and another share
to that HUE. Here, only a fraction of the bandwidth is
available to offload, meaning that the offloading delays
increase, but more computing power is applied.

For the latter option, we assume that each HUE can assist
at most one CUE, a limitation that is not fundamental and
could be lifted in follow-up work. While the specifics of
the bandwidth lending process are beyond the scope of this
work, a straightforward way would be to bill the CUE for the
lent bandwidth that the scheduler reassigns to the HUE. User
mobility and handover are not considered; these aspects could
be the subject of follow-up work.

A. Communication Model

As starting point, a bandwidth B (in Hz) is available to each
CUE. Let αi,j ∈ (0, 1) be the share of bandwidth that HUE
j requires as incentive to assist CUE i. When CUE i offloads
to HUE j and (through the BS) to the cloud, the respective
channel capacities (in b/s) from CUE i to HUE j and to the
BS in ergodic Rayleigh fading are [10]

Ri,j = (1− αi,j)B exp

(
(1− αi,j)N0B

Pi gi,j

)
· E1

(
(1− αi,j)N0B

Pi gi,j

)
log2 e (1)

and

Ri,MEC = (1− αi,j)B exp

(
(1− αi,j)N0B

Pi gi,MEC

)
· E1

(
(1− αi,j)N0B

Pi gi,MEC

)
log2 e (2)

where E1(x) =
∫∞

1
t−1e−xtdt is an exponential integral, gi,j

and gi,MEC are the large-scale channel gains from CUE i to
HUE j and to the BS, respectively, Pi is the transmit power
of CUE i, and N0 is the noise spectral density.

On the bandwidth lent by CUE i, HUE j achieves a bit rate

Rj,i = αi,j B exp

(
αi,j N0B

Pj gj

)
E1

(
αi,j N0B

Pj gj

)
log2 e (3)

to its intended receiver, to which the large-scale gain is gj .
In cloud-only offloading, CUE i retains its full bandwidth.

Therefore, its bit rate to the BS is R′i,MEC, given by (2) with
αi,j = 0.

B. Computation Model: Cloud-HUE Offloading

CUE i has a computation task φi = (bi, βi) where bi and
βi are, respectively, the size in bits and the processor cycles
required to compute one bit. The methods proposed in [11]
can be applied to determine bi and βi.

Suppose that CUE i offloads bji task bits to HUE j and then
bMEC
i task bits to the cloud. The remaining (bi − bji − bMEC

i)
bits are computed locally at the CUE. Let fi be the processing
power (in cycles/s) at CUE i. The computation time of the
local share of φi at CUE i is

T ji =
βi (bi − bji − bMEC

i)

fi
(4)

while, from Section II-A, the delay in offloading bji bits to
HUE j and bMEC

i bits to the cloud are

τi,j =
bji
Ri,j

(5)

τi,MEC =
bMEC
i

Ri,MEC
. (6)

Let fj be the processing power of HUE j and let Fi be the
cloud’s processing power allocated to CUE i. The cloud has
a total processing capability F , meaning that

∑
i∈C Fi ≤ F .

Then, the computation times of the shares of φi at HUE j and
the cloud are

T ij =
βi b

j
i

fj
(7)

T iMEC =
βi b

MEC
i

Fi
. (8)

Since CUE i offloads sequentially to HUE j and to the cloud,
the overall completion times at HUE j and at the cloud are
τi,j + T ij and τi,j + τi,MEC + T iMEC, respectively. Hence, the
overall completion time for task φi is

Ti,j = max
(
T ji , τi,j + T ij , τi,j + τi,MEC + T iMEC

)
. (9)

We disregard the time spent in sending back the results of the
computations, as the size of the output data tends to be small
relative to the input data [2]–[5].

C. Computation Model: Cloud-only Offloading

Suppose now that a CUE k (k ∈ C, k 6= i) offloads a share
of its task solely to the cloud. The overall completion time is
now

Tk = max
(
Tk, τk + T kMEC

)
(10)

where τk = bMEC
k /R′k,MEC and Tk = βk (bk − bMEC

k)/fk are,
respectively, the offloading delay and the local computation
time at CUE k.

D. Problem Formulation

Let π denote a set partition of all users (i.e., of C ∪ H) in
which each subset has a CUE and at most one HUE, and let
Π denote the set of all such possible partitions. For instance,
with C = {1, 2} and H = {1} we have three partitions and

Π =
{
{1, 1}, {2}

}
,
{
{1}, {2, 1}

}
,
{
{1}, {2}

}
. (11)

In each subset, the first and second terms are, respectively, the
CUE and HUE. For instance,

{
{1}, {2, 1}

}
means that CUE 1

offloads only to the cloud while CUE 2 offloads to the cloud
and to HUE 1. Let ζπ and ρπ denote the collections of all
the subsets of π with cardinalities two and one, respectively.
For instance, if π =

{
{1, 1}, {2}

}
, we have ζπ = {1, 1}

and ρπ = {2}. Then, the problem of deciding which HUE
to pair with each CUE, which task shares to offload to the
paired HUE and to the cloud, and how to partition the cloud’s
resources among users, can be formulated as

min
π∈Π,F ,bπ,αζπ

max

(
max
{i,j}∈ζπ

Ti,j ,max
k∈ρπ

Tk

)
s.t.

N∑
i=1

Fi ≤ F

Rj,i ≥ Rj,th ∀{i, j} ∈ ζπ (12)

where Rj,th is the bit rate that HUE j requires on CUE i’s
bandwidth in exchange for its computational assistance and
bπ is the vector of all values of bji , b

MEC
i and bMEC

k . In turn,
αζπ and F are, respectively, the vectors of all values of αi,j
and Fi for {i, j} ∈ ζπ , k ∈ ρπ . Since αi,j < 1,

Rj,th < Rmax
j,th

= B exp

(
N0B

Pj gj

)
E1

(
N0B

Pj gj

)
log2 e. (13)

If HUE’s rate request Rj,th is equal to Rmax
j,th or more, no CUE

can support it and hence such HUE is not part of (12).

III. FIXED HUE ASSIGNMENTS

Before facing (12) in its full generality, let us begin by
solving a slightly less general version whereby the assignment
of HUEs to CUEs is fixed, and the optimization extends to
the task shares to offload and to the partition of the cloud’s
resources among users.

A. Optimum Solution

For a given HUE assignment π, (12) becomes

min
F ,bπ,αζπ

max

(
max
{i,j}∈ζπ

Ti,j ,max
k∈ρπ

Tk

)
s.t.

N∑
i=1

Fi ≤ F

Rj,i ≥ Rj,th ∀{i, j} ∈ ζπ. (14)

Since Ti,j and Rj,i increase with αi,j , Rj,i = Rj,th, from
which the optimum α∗i,j is obtained. Then, by removing the
second contraint and introducing the slack variable

V = max

(
max
{i,j}∈ζπ

Ti,j ,max
k∈ρπ

Tk

)
(15)

in (14), we obtain

min
F ,bπ

V

s.t. T ji ≤ V ∀{i, j} ∈ ζπ
s.t. τi,j + T ij ≤ V ∀{i, j} ∈ ζπ
s.t. τi,j + τi,MEC + T iMEC ≤ V ∀{i, j} ∈ ζπ
s.t. Tk ≤ V k ∈ ρπ
s.t. T kMEC + τk ≤ V k ∈ ρπ

s.t.

N∑
i=1

Fi ≤ F (16)

where τi,j is a function of α∗i,j . While (16) is nonconvex, it can
be converted into a geometric programming (GP) problem via
the single condensation method [12]. A fractional constraint
with a posynomial in the numerator and a monomial in the
denominator can be converted to a convex function. And, if
the constraint is a ratio of posynomials, the denominator can
be approximated into a monomial. The following inequality
is useful: if f(x) is a posynomial whose monomials are f`(x),

f(x) =
∑
`

f`(x)

≥ f̂(x)

=
∏
`

[
f`(x)

δ`

]δ`
(17)

where δ` > 0 and
∑
` δ` = 1. Then, for δ` = f`(x̂)/f(x̂), f̂(x̂)

is the best monomial approximation of f(x) near x = x̂ [12].
We apply an iterative technique to optimally solve (16). At

each iteration t, the first constraint therein is converted into a
monomial using (17) via

βibi

(
V (t)fi
δ1(t)

)−δ1(t)
(
βib

j
i (t)

δ2(t)

)−δ2(t)

·
(
βib

MEC
i (t)

δ3(t)

)−δ3(t)

≤ 1 {i, j} ∈ ζπ (18)

where δ1(t), δ2(t) and δ3(t) are obtained from the solution at

the (t− 1)th iteration as

δ1(t) =
V (t− 1)fi

V (t− 1)fi + βib
j
i (t− 1) + βib

MEC
i (t− 1)

δ2(t) =
βib

j
i (t− 1)

V (t− 1)fi + βib
j
i (t− 1) + βib

MEC
i (t− 1)

δ3(t) =
βib

MEC
i (t− 1)

V (t− 1)fi + βib
j
i (t− 1) + βib

MEC
i (t− 1)

. (19)

Similarly, at each iteration t, the fourth constraint therein is
converted into a monomial using (17) via

βkbk

(
V (t)fk
γ1(t)

)−γ1(t)(
βkb

MEC
k (t)

γ2(t)

)−γ2(t)

≤ 1 k ∈ ρπ
(20)

where γ1(t) and γ2(t) are obtained from the solution at the
(t− 1)th iteration as

γ1(t) =
V (t− 1)fk

V (t− 1)fk + βkb
MEC
k (t− 1)

γ2(t) =
βkb

MEC
k (t− 1)

V (t− 1)fk + βkb
MEC
k (t− 1)

. (21)

Altogether, the overall optimization problem to be solved at
iteration t is

min
F (t),bπ(t)

V (t)

s.t. (18), (20)

s.t.
bji (t)

Ri,j
+
βib

j
i (t)

fj
≤ V (t) ∀{i, j} ∈ ζπ

s.t.
bji (t)

Ri,j
+
bMEC
i (t)

Ri,MEC
+
βib

MEC
i (t)

Fi(t)
≤ V (t) ∀{i, j} ∈ ζπ

s.t.
βkb

MEC
k (t)

Fk(t)
+
bMEC
k (t)

R′k,MEC
≤ V (t) k ∈ ρπ

s.t.

N∑
i=1

Fi(t) ≤ F. (22)

The iterations stop when |V (t)−V (t−1)| ≤ ε with 0 ≤ ε� 1.
Presented next is Algorithm 1, which converges to the global
solution of (16) [13].

Algorithm 1 GP-based algorithm for fixed HUE assignment.

1: Set t = 1, initialize V (t), Fi(t), bji (t), bMEC
i (t), bMEC

k (t)
∀{i, j} ∈ ζπ , k ∈ ρπ such that the feasibility of (16) is
preserved.

2: while true do . infinite loop
3: t = t+ 1
4: Calculate δ1(t), δ2(t) and δ3(t)
5: Find the optimum V (t), Fi(t), b

j
i (t), b

MEC
i (t), bMEC

k (t)
solving (22), ∀{i, j} ∈ ζπ ,k ∈ ρπ , using GGPLAB [14]

6: if |V (t)− V (t− 1)| ≤ ε then
7: Break
8: end if
9: end while

B. Suboptimum Cloud Resource Allocation

In the general formulation in (12), the optimum allocation
of the cloud’s resources depends on the HUE assignments.
Here, we formulate an efficient suboptimum allocation that
is independent of those assignments. For this purpose, we
consider the situation where each CUE offloads only to the
cloud, i.e.

min
Fi,bMEC

i ,∀i∈C
max
i∈C

Ti

s.t.

N∑
i=1

Fi ≤ F. (23)

The above optimization problem is similar to (16), and there-
fore can be solved optimally using GP-based algorithm. The
value of Fi obtained by solving (23), which we distinguish as
Fi, is the sought suboptimum allocation.

C. Fixed Cloud Resource Allocation

For a given cloud resource allocation such as Fi ∀i, (16)
reduces to independently minimizing the completion time of
each CUE, i.e., minimizing Ti,j over bji , b

MEC
i for {i, j} ∈ ζπ

and minimizing Tk over bMEC
k for k ∈ ρπ . These optimizations

can be posed as

min
bji ,b

MEC
i

V1

s.t.
βi (bi − bji − bMEC

i)

fi
≤ V

s.t.
bji
Ri,j

+
βi b

j
i

fj
≤ V

s.t.
bji
Ri,j

+
bMEC
i

Ri,MEC
+
βi b

MEC
i

Fi
≤ V (24)

and

min
bMEC
k

V2

s.t.
βk (bk − bMEC

k)

fk
≤ V

s.t.
bMEC
k

R′k,MEC
+
βk b

MEC
k

Fk
≤ V (25)

where V1 and V2 are slack variables. The optimization in
(24) is a linear programming problem that can be solved
optimally with a complexity that is polynomial in the number
of variables and bits [15]. Let bMEC,j

i and bji be the ensuing
solutions for the number of bits offloaded to the cloud and
to HUE j, respectively. The completion time for cloud-HUE
offloading in (24) can be expressed as

Ti,j =
βi
(
bi − bji − b

MEC,j
i

)
Fi

. (26)

The first and second constraints in (25) respectively decrease
and increase with bMEC

k . Hence, the optimum number of bits

offloaded to the cloud is obtained when both contraints are
satisfied with equality, giving

b
MEC
k =

βkbkR
′
k,MECFk

R′k,MECβk(fk +Fk) + fkFk
k ∈ ρπ (27)

The completion time of CUE k with cloud-only offloading is

Tk =
βk(bk − bMEC

k)

Fk
. (28)

To solve the HUE assignment in (12) with low complexity,
Fi can be set to Fi as obtained from (23) and bji , b

MEC
i , bMEC

k

to bji ,b
MEC
i ,bMEC

k as obtained from (24)–(25).

IV. OPTIMUM HUE ASSIGNMENTS

The optimal solution of (12) can be obtained by searching
over all possible HUE assignments with application, to each,
of the optimization described in Section III-A. However, this
requires searching over (M + N)!/M ! HUE assignments.
Alternatively, from the suboptimum solutions derived in Sec-
tions III-B and III-C for the cloud resource allocation and the
number of offloaded bits, (12) reduces to the simpler HUE
assignment problem

min
π∈Π

max

(
max
{i,j}∈ζπ

Ti,j , max
k∈ρπ

Tk

)
, (29)

which we proceed to solve optimally by means of a graph-
theoretic matching algorithm.

We begin by reviewing some concepts of bipartite graph
theory matching [16], [17]. A graph G comprising a vertex
set V and an edge set E is bipartite if V can be partitioned into
V1 and V2 (the bipartition), such that every edge in E connects
a vertex in V1 to one in V2. Fig. 1(a) shows an example of a
bipartite graph with two sets of vertices, V1 = {v1

1 , v
2
1} and

V2 = {v1
2 , v

2
2}, and an edge set

E =
{

(v1
1 , v

1
2), (v1

1 , v
2
2), (v2

1 , v
1
2), (v2

1 , v
2
2)
}
. (30)

A matching in G is a subset of E such that every vertex
v ∈ V is incident to at most one edge of the matching. A
maximum matching M∗ in G contains the largest possible
number of edges. For the bipartite graph in Fig. 1(a), the
two possible maximum matchings are {(v1

1 , v
1
2), (v2

1 , v
2
2)} and

{(v1
1 , v

2
2), (v2

1 , v
1
2)}.

Returning to (29), first the network is represented as a
weighted bipartite graph in which each CUE i ∈ {1, .., N},
and each HUE j ∈ {1, ..,M} are represented by vertices
v1
i ∈ V1 and v2

j ∈ V2, respectively, and the weight of the
edges (v1

i , v
2
j) is expressed as

ω(vi1,v
j
2) = Ti,j . (31)

A maximum matching for this graph corresponds to a
pairing between CUEs and HUEs. To subsume the cloud-
only offloading option, we add N dummy vertices to V2, with
the ith dummy vertex representing the cloud-only offloading
option for CUE i. The edge weight between vertices vi1 ∈ V1

����������	
���������
�� �����������������������������

�

�

�

�������
�����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 1: Graph construction and BM output

and vM+i
2 ∈ V2 is assigned as per the completion time for

cloud-only offloading, i.e.,

ω(vi1,v
i+M
2) = Ti i ∈ {1, .., N}. (32)

The HUE selection problem in (29) can be expressed as a
bottleneck matching (BM) problem of the graph defined by
the maximum matching whose the largest edge weight is as
small as possible, i.e.,

min
φ∈Φ

max
(vi1,v

j
2)∈φ

ω(vi1,v
j
2) (33)

where Φ contains all possible maximum matchings and the
constructed bipartite graph has MN +N edges and 2N +M
vertices. Thus, the HUE assignment problem can be solved
optimally using the BM algorithm proposed in [17] with
complexity O

(
max(N2

√
M,M2

√
N)
)
. If a vertex vi1, i ∈

{1, .., N}, is paired with its dummy vertex, i.e., vertex vM+i
2

in the BM of the graph, CUE i offloads only to the cloud.
Fig. 1 shows a graph construction and BM output for a

network with CUEs {1, 2} and HUEs {1, 2}. The completion
times, with and without an assisting HUE, are T1 = 6,
T2 = 2, T1,1 = T2,2 = 3, T1,2 = 7 and T2,1 = 5. The
vertex sets {v1

1 , v
2
1} and {v1

2 , v
2
2} correspond to the CUEs

and HUEs, respectively. The vertices v3
2 and v4

2 are the
dummies corresponding to the cloud-only offloading option
for CUEs 1 and 2, respectively. The resulting BM output is
{(v1

1 , v
1
2), (v2

1 , v
4
2)}. Hence, CUE 1 offloads to HUE 1 and to

the cloud while CUE 2 offloads only to the cloud.

V. RESULTS

For the evaluations that follow, the CUEs and HUEs are
uniformly distributed on a circular region of radius 50 m
having the cloud-associated BS at its center. The HUE’s own
transmissions are directed to the BS itself. The rate threshold
for each HUE equals 0.3Rmax

j,th . The remaining parameters,
based on [4], [6], [18], are provided in Table I. The results
are averaged over 300 network realizations, pushing the 99%
confidence interval below 10−3.

Based on the analysis in the paper, we have the following
strategies.

TABLE I: Simulation Parameters

Parameter Value

fi, fj Uniform in [0.5, 1.5] GHz

βi Uniform in [500, 1500] cycles/bit

bi Uniform in [100, 500] Kb

Pi, Pj 200 mW

B 1 MHz

N0 −147 dBM/Hz

ε 10−5

• “HUE-cloud BM,” for which the offloaded bits are given
by (24)–(25) and the HUE assignment is obtained via the
BM algorithm in Section IV.

• “HUE-cloud BM-GP,” for which the offloaded bits and
HUE assignment are first obtained as above, and the
offloaded bits and cloud resource allocation are subse-
quently updated by solving (16) via Algorithm 1.

For both foregoing strategies, the first step is to obtain
a cloud resource allocation from (23). For these strategies,
the optimization problems need to be solved in a centralized
fashion at the BS. For this purpose, the BS needs to be privy
to the processing power of CUEs and HUEs as well as the
large-scale channel gains.

As baselines, we further have the following.

• “HUE-cloud random,” for which the offloaded bits are
the solution to (24)–(25) and each CUE is randomly
assigned an HUE. The complexity of this baseline is
O
(

min(N,M)
)
.

• “Cloud only,” whereby the offloading is only to the
cloud. This is the traditional choice for task computation
[1]–[6], [18].

Fig. 2 compares the completion time of the various strate-
gies as the cloud’s computing power varies from 4 to 20 GHz,
with 30 CUEs and 50 HUEs in the network. Two observations
are in order. First, that the benefits of offloading to both
the cloud and an HUE are substantial, even if the HUEs

4 6 8 10 12 14 16 18 20

Cloud CPU Power (GHz)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32
C

o
m

p
le

ti
o

n
 T

im
e

 (
s
)

Cloud only

HUE-cloud random

HUE-cloud BM

HUE-cloud BM-GP

Fig. 2: Completion time vs. cloud computing power with 30
CUEs and 50 HUEs.

Cloud only HUE-cloud BM HUE-cloud BM-GP
0

0.05

0.1

0.15

0.2

0.25

T
a

s
k
 T

im
e

 (
s
)

Local Computation Time

Offloading Delay

Cloud Computation Time

HUE Computation Time

Fig. 3: Computation time and offloading delay comparison
with 30 CUEs and 50 HUEs

are randomly assigned. Second, that the further advantage of
applying Algorithm 1 is small, and the simpler “HUE-cloud
BM” strategy is highly competitive.

In Fig. 3, we scrutinize the offloading delay and computa-
tion times for the task of a particular CUE, to further under-
stand the performance of the proposed strategies. Specifically,
we examine the CUE that represents the bottleneck for “cloud-
only” offloading and break down its computation (local, at the
HUE and at the cloud) and offloading times. The computation
time, which is otherwise well balanced among the various
processors, is seen to dominate over the offloading time.

VI. SUMMARY

The offloading of computations to an edge cloud can
be complemented, via bandwidth incentives, by a further
offloading to mobile peers. In the example we have shown, this

reduces the overall computation time by 35%–40%. Although
this figure might vary in other settings or with different
parameters, we expect a significant benefit in many situations
of interest.

Although a complete optimization (of the bits offloaded to
peers and to the cloud, the identity of the assisting peers,
and the allocation of computational resources at the cloud)
is exceedingly complex, we have identified suboptimum ap-
proaches that perform satisfactorily with acceptable degrees
of complexity.

ACKNOWLEDGMENT

Angel Lozano’s work is funded by the European Research
Council (ERC) under the European Union’s H2020 Frame-
work Research Programme (grant agreement No 694974).

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing-A key technology towards 5G,” ETSI White Paper, vol. 11,
2015.

[2] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 974–
983, Apr. 2015.

[3] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[4] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task
offloading and resource optimization in proximate clouds,” IEEE Trans.
Veh. Technol., vol. 66, no. 4, pp. 3435–3447, Apr. 2017.

[5] H. Q. Le, H. Al-Shatri, and A. Klein, “Efficient resource allocation in
mobile-edge computation offloading: Completion time minimization,”
in IEEE Int. Symp. Info. Theory (ISIT), June 2017, pp. 2513–2517.

[6] C. You, K. Huang, H. Chae, and B. H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[7] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation parti-
tioning for latency sensitive mobile cloud applications,” IEEE Trans.
Comput., vol. 64, no. 8, pp. 2253–2266, Aug. 2015.

[8] [Online]. Available: https://www.cpubenchmark.net/
[9] N. T. Ti and L. B. Le, “Computation offloading leveraging computing

resources from edge cloud and mobile peers,” in IEEE Int. Conf.
Commun. (ICC), May 2017, pp. 1–6.

[10] W. C. Y. Lee, “Estimate of channel capacity in Rayleigh fading
environment,” IEEE Trans. on Vehicular Technology, vol. 39, no. 3,
pp. 187–189, 1990.

[11] L. Yang, J. Cao, S. Tang, T. Li, and A. T. S. Chan, “A framework for
partitioning and execution of data stream applications in mobile cloud
computing,” in IEEE Int. Conf. Cloud Computing (CLOUD), Jun. 2012,
pp. 794–802.

[12] M. Chiang, C. W. Tan, D. P. Palomar, D. O’Neill, and D. Julian, “Power
control by geometric programming,” IEEE Trans. Wireless Comm.,
vol. 6, no. 7, pp. 2640–2651, Jul. 2007.

[13] G. Xu, “Global optimization of signomial geometric programming
problems,” Eur. J. Oper. Res., vol. 233, no. 3, pp. 500–510, 2014.

[14] GGPLAB: A simple MATLAB toolbox for geometric programming.
[Online]. Available: http://www.stanford.edu/boyd/ggplab/

[15] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization.
Belmont, MA, USA:Athena Scientific, 1997, vol. 6.

[16] R. Burkard, M. DellAmico, and S. Martello, Assignment Problems.
Philadelphia, PA, USA: SIAM, 2009.

[17] A. P. Punnen and K. P. K. Nair, “Improved complexity bound for the
maximum cardinality bottleneck bipartite matching problem,” Discrete
Applied Mathematics, vol. 55, no. 1, pp. 91 – 93, 1994.

[18] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and
resource allocation in mixed fog/cloud computing systems with min-
max fairness guarantee,” IEEE Trans. Commun., vol. PP, no. 99, pp.
1–1, 2017.

