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Abstract—802.11 positioning systems are established as a low-
cost solution to positioning within context aware computing. Prior
research has mostly focused on either indoor positioning within
commercial environments, where access points are prevalent, or
outdoors positioning over large areas, using discovered networks
to augment GPS. In this paper we test 802.11 positioning in
a medium sized domestic house with only a small number of
access points, examining its suitability in a domestic context
aware computing system.

We use a signal strength fingerprint map approach, in which
empirical signal strength data is gathered over the area prior
to use. Estimation then involves comparing the online input to
the map, and selecting the best position, and direction, based
on similarity. We compare different strategies for gathering
signal strength, and implementations of the Nearest Neighbor
and Bayesian methods. Our results demonstrate that with good
placement, only two access points are sufficient to estimate
position with an error of less than 4 meters 90% of the time.

I. INTRODUCTION

802.11 Wireless LAN infrastructure has been used in several
contexts for positioning, in addition to its usual data transport
function. Prior research has established the performance of
802.11 positioning in office and laboratory environments [1]–
[9]. It provides a cheap, low-cost solution in indoors environ-
ments where satellite positioning is unavailable.

In this paper, we examine the performance of 802.11
positioning in the context of a domestic house. In several re-
spects, the domestic context differs from office and laboratory
environments: cost, and hence the number of access points
(APs), are both severely restricted, the areas involved are
proportionally smaller, and the surveying phase must require
a minimum of effort.

Many smart home applications rely on room occupancy
sensing, such as automated air conditioning and lighting.
Currently these services are mostly driven by infra-red sensors.
We aimed to determine whether 802.11 positioning could
provide sufficient accuracy to perform the same function.
Occupants could be tracked by wireless signals transmitted
by either portable consumer devices such as mobile phones,
or low power 802.11 tags. Assuming that any smart home will
already have a domestic wireless network, this could reduce
costs by avoiding the need for sensor infrastructure.

We simulate a low number of APs by testing various
arrangements of only one and two APs, achieving distance
errors less than 5 and 4 meters respectively in 90% of cases,
and we demonstrate that the calibration phase of our system
takes only 10 minutes for a 100m2 house.

II. METHODS OF POSITIONING

802.11 positioning systems infer position from signal
strength information incidental to the operation of 802.11
wireless LAN. Received radio signal strength varies according
to the distance from the transmitter and how the signal
path is reflected, absorbed, and scattered by objects in the
environment. This propagation can be simulated by specialized
software, but a more accurate image can be constructed by
empirically surveying the area [1], [8]. During the surveying
process, a signal strength map is constructed that characterizes
the environment by associating signal strength with position.
Each entry in a signal strength map is known as a fingerprint,
named such because the signal strength it contains identifies
the associated position as uniquely as possible. The exact
format of these fingerprints varies according to the method
used, but generally it involves some kind of representation of
the signal strength to be expected at that position, such as the
mean.

During positioning, the incoming input of signal strength
is compared to the signal strength map, and the similarity
between each fingerprint and the input is calculated. The
output is a list of the fingerprints in the map ranked such that
the first is the fingerprint calculated as closest to the current
position, and the last is the furthest away. Several different
methods have been used to perform the similarity test; in this
paper we use the Nearest Neighbor and Bayesian methods.

A. Point and Sector sampling

The surveying process is complicated by the fact that the
human body affects signal strength readings as it both attenu-
ates and reflects the RF signal. Hence, at different directions
for a particular position, different readings can be observed as
the signal path is attenuated, or not, by the body of the person
holding the device. The way the device is held also affects
readings: a device in the user’s pocket is reached by different
signal path than a device held in their hand.

In surveying, two prior approaches have been used: point
surveying, in which signal strength is gathered at a number
of discrete locations over the environment facing north, south,
east and west [1], [4], [8] and sector surveying, where data
is associated with room sized sectors as the surveyor sweeps
the area while walking around it [3], [5], [7]. Each method
has its advantages. Point sampling generates a limited im-
age of the space because it records data at a small set of
positions within the relatively larger area, but because data
is recorded directionally, it allows estimation of the mobile



agent’s direction as well as their heading [10]. However, point
sampling can generate fingerprints distorted by pockets of
multi-path interference peculiar to their point location, but
unrepresentative of the immediate surrounds; this results in an
inaccurate signal strength map. In contrast, sector sampling
results in a more complete image of the space as the surveyor
sweeps the device through the entire sector, but the data can
contain no direction information. In the experimental section,
we compare the accuracy available using each method.

B. Nearest Neighbor method

The Nearest Neighbor algorithm, proposed by [1], calculates
the p-norm distance between signal strength vectors to deter-
mine similarity. The problem is modeled using a state space
of fingerprint locations L = {l1, . . . , ln}, and an observation
space O = {o1, . . . , om}. Each state li corresponds to the
location at which fingerprint i was recorded. Each observation
is a signal strength vector o = {λ1, . . . , λn}, where λj is a
signal strength reading from AP j.

Fingerprints are generated by standing at a location in the
coverage area and recording signal strength data for some
period of time. Using this data, the mean signal strength for
each AP is calculated; each mean forms an element in a
signal strength vector associated with that location. Hence, a
fingerprint can be expressed as fNN

i = (li, {µi,1, . . . , µi,n}),
where li is the location of the fingerprint, and µi,j the mean
signal strength for APs bj at location li. Here the location l
can refer to either a Cartesian coordinate, with or without a
direction (in the case of point sampling), or refer to a less
well defined region such as a room or part of a hallway, as is
common with sector sampling.

Once this map has been generated, online positioning is
performed by calculating the distance between the currently
observed signal strength o and each fingerprint. The finger-
prints are then ranked according to this distance, with the top-
ranked fingerprint containing the most likely position and the
bottom-ranked fingerprint the least likely.

The p-norm distance is used to calculate the distance
between the fingerprint and observation vectors.

D(fi, o) =

∑
j

|µi,j − λj |p
1/p

(1)

[1] used the Euclidean distance, p = 2 to calculate the
distance between vectors, although any p ≥ 1 can be used.

C. Bayesian methods

Bayesian algorithms [3], [9], [11] use Bayes’ rule to calcu-
late the mobile agent’s location. The final output is a discrete
probability distribution, −→P , over L, representing the likely
location of the agent. −→P (li) expresses the probability that the
mobile agent is at the location of fingerprint i. In other words,
the output is a one to one mapping between each fingerprint
location and the probability of the agent being at that location.−→

P is calculated upon receiving each new observation o
using Bayes’ Rule as follows:

−→
P (li) = p(li|o) =

p(o|li)p(li)
p(o)

(2)

p(li|o) is a conditional probability representing the likeli-
hood that the mobile agent is at location li, given observation
o. This is known as the posterior probability. p(o|li) is the
likelihood function: the probability of making observation o
at location li. p(li) is the prior probability and represents
the probability that the device can be at location li. p(o) is
a normalizer that can be calculated within this context as∑n

i=1 p(o|li)p(li). It can also be used as a measure of the
confidence of the distribution.

The likelihood function can be calculated using the signal
strength map. Prior to positioning, we record the training data
similarly to the nearest neighbor method. However, instead of
associating each location li with a vector of average signal
strengths for each AP, we associate it with a vector of em-
pirical probability distributions. Fingerprints can be expressed
as fBayesian

i = (li, {Λi,1, . . . ,Λi,n}). Λi,j is the empirical
distribution at location li for signal strength from AP bj . Each
empirical distribution is generated by taking the recording of
signal strength values for an AP, calculating the frequency of
each signal strength value, and normalizing the frequencies.
Hence, Λi,j(λ) = p(λj |li): the probability of observing signal
strength λ from AP bj , at the location li.

The likelihood function is calculated by multiplying the
conditional probability of observing each reading in the ob-
servation vector o = {λ1, . . . , λn}:

p(o|li) =
∏
j

p(λj |li) =
∏
j

Λi,j(λj) (3)

This calculation assumes independence between the read-
ings from different APs for a fixed location. This is not strictly
true: proximate APs broadcasting on overlapping channels can
interfere with each other, but in a properly configured network
such interference is minimal. The alternative to this method
is to maintain multi-dimensional distributions, but this greatly
increases the complexity of the calculations and the size of the
signal strength map, and is unlikely to deliver better results
assuming the dependancy violation is insignificant.

The prior can be used to bias the result towards one
location or another; this can be useful for considering historical
information or the presence of impassable objects such as
walls. We used a uniform prior distribution, which introduces
no bias towards any particular location, for simplicity.

Within this framework, implementations can differ in their
derivation of Λi,j . It is possible to use the empirical distribu-
tions directly in the Bayesian framework, but the probability
distribution is only a rough estimation of the underlying prob-
ability based on a limited amount of data. Further grooming of
the distributions can lead to better results. We have used two
methods in our work: a histogram method similar to [11], and
summarization of the signal strength as a normal distribution
similarly to [7].



1) Histogram: The histogram method functions similarly to
the method described above, but generates a histogram Hi,j in
place of the empirical distribution Λi,j . Rather than calculating
the frequency of each signal strength value λ, the frequencies
are grouped into q contiguous bins {h1, . . . , hq} of fixed and
equal width w. Each bin covers a continuous, non-overlapping
range of signal strength values. The histogram constitutes a
discretized version of the original distribution Λi,j , and is used
directly in its place when calculating the likelihood function.

2) Gaussian: In the Gaussian method, Λi,j is summarized
as a Gaussian probability distribution by storing only its mean
µi,j and standard deviation σi,j . The probability of observing
signal strength λj at location li is given by

p(λj |li) =
1

σi,j

√
2π

exp

(
− (λj − µi,j)2

2σ2
i,j

)
(4)

Although the data is not necessarily Gaussian, or even uni-
modal, fitting the data to a Gaussian distribution reduces the
influence of outliers and smoothes any gaps in the distribution.
The Gaussian method can also result in a more compact finger-
print map than the Histogram method: only the mean and stan-
dard deviation need be stored for each AP rather than an entire
distribution. Fingerprints generated using this method can be
expressed as fGaussian

i = (li, {(µi,1, σi,1), . . . , (µi,n, σi,n)}).

D. Output Averaging

Taking the output ranking of fingerprints and their associ-
ated distances, we can spatially average the locations of the
k closest fingerprints. This technique is directly applicable to
point sampling, where each location is a Cartesian coordinate;
for sector sampling we use the geometric centre of the sector.
Either the arithmetic or weighted mean can be used. For
the Nearest Neighbor and Distribution Distance methods, the
weights are the inverses of the distances, and for the Bayesian
methods the probabilities can be used directly.

III. EXPERIMENTAL SETUP

Our experimental data was recorded using a Sony VAIO
U8G running Fedora Core 4 Linux, using the Kismet packet
sniffer. The U8G is a palmtop computer ideal for this scenario;
small enough to carry around with one hand but with the
power and programmability of a laptop computer. Kismet was
slightly modified so that we could extract per-packet signal
strength from it. The Kismet approach generalizes to a range
of hardware and the per-packet sampling allows a sampling
rate of at least 10Hz, the default rate at which beacon packets
are broadcast by most 802.11 APs. We used a simple Perl
script to connect to the Kismet server and gather the data for
a list of visually pre-selected fingerprint coordinates in a local
frame.

The setup is shown in figure 1. It contained six 802.11b
APs of various models, 19 fingerprint locations, and 39 test
point locations. Two types of fingerprint maps were recorded:
Point samples, facing north, south, east and west (relative to
the house’s orientation) for 10 seconds at each fingerprint lo-
cation, and corresponding sector samples, for 20 seconds each.

Fig. 1. House test bed, showing fingerprint, test point, and AP locations.

Each sector covered a 2m2 area centered on a corresponding
fingerprint location, such that coverage was contiguous. Each
sector was recorded by continuously sweeping the device
and changing direction, attempting to gather the most even
coverage possible. Sector sampling took around 10 minutes,
and point sampling took around 20 minutes. We recorded test
points at a separate set of locations spaced one meter apart
facing north, south, east and west, 5 seconds per direction, a
day after recording the fingerprint data.

For the sake of our accuracy analysis, each sector was
assigned a coordinate identical to the point fingerprint in it’s
centre. Note that it is not strictly necessary to have a raster
map and a coordinate frame for the area in order to perform
positioning. The fingerprints can be instead associated with
labels, such as room names, and output can be in terms of
these instead.

In this paper we focus on the performance available with one
and two APs rather than the complete set of six, to simulate
a realistic setup that might be found in a domestic house. The
advantage of using six APs to gather data is that only one
survey is required, but many lower density configurations can
be simulated by removing the superfluous entries from the
signal strength map and test data.

IV. EXPERIMENTAL RESULTS

We tested the data using a wide range of parameters for
the Nearest Neighbor and Histogram methods (the Gaussian
method has no parameters). For the Nearest Neighbor we
tested values of p between 1 and 10, finding the best values



were 2, 3 and 4. For the Histogram method, we tested w
between 1 and 40, finding the best results were achieved
between 5 and 15. The results of the Nearest Neighbor and
Histogram methods shown here are for the outright best
performing respective parameters p = 2 and w = 5.

When using output averaging, the point and sector maps
performed best with the non-weighted mean using k = 5
and k = 2 respectively. This is due to the differing spatial
coverage of the two types. In the point map, four fingerprints
represented a single point, one recording for each direction. In
the sector map, there was only one fingerprint for each sector.
For the point map, this meant that the first k fingerprints were
likely to share locations; for the sector map the fingerprints
represented unique locations. Hence, the best k represented
a wider spread of locations for the sector map. The results
shown were calculated using these k values.

Accuracy is described in terms of the distance error - the
distance between the output of the algorithm and the location
at which the test data was recorded. For each method, we
calculated the 50th percentile (median) error and the 90th per-
centile. The 50th and 90th percentile distance errors describe
the error which 50 percent and 90 percent of the results are
less than, respectively. Analysis of the 90th errors, in addition
to the 50th, provides some indication of the stability of the
method in pathological cases.

Figures 2 and 3 show the median and 90th percentile
distance errors when using each AP setup. The positions of
APs A-F are shown in figure 1. The results are fairly similar
for all methods, and for both types of surveying method.
The Nearest Neighbor usually performs marginally better than
the Bayesian methods. The sector surveying method usually
results in slightly lower median distance errors, but has similar
or slightly worse performance than point surveying in the 90th
percentile.

For single AP setups, the results are extremely sensitive to
placement. The best results were achieved for A and F - when
the AP was at either the north or south ends of the house. The
worst results were achieved using a single AP in the centre
of the house. In contrast, for double AP setups the results
seem to be relatively indifferent to placement. For example,
A,F represents placement of APs at either end of the house,
while A,B represents placement at the south end only, yet the
former shows only marginally better accuracy.

The sensitivity towards placement here can be explained
by considering the distribution of signal strength. Generally,
APs radiate power omni-directionally, such that similar signal
strengths will be found in concentric bands about each AP,
shaped by the obstacles in the environment. In our current
context, this means that when a single AP is placed in the
vertical centre of the house, there will be roughly symmetrical
signal strengths to the north and south of the AP. In other
words, the one dimensional signal strength data is ambiguous,
as the same signal strength is observed at positions north and
south of the AP. In the worst case, fingerprints at the extreme
north and south of the house are indistinguishable, leading
to the large errors we can observe for APs C and D. Under

TABLE I
POSITIONING ACCURACY EXPRESSED IN TERMS OF ROOM ESTIMATION.

BS Result Gaussian Histogram NN

A Correct 38.5 38.6 39.9
Adjacent 45.4 44.4 46.0

F Correct 46.0 40.5 45.7
Adjacent 48.1 53.6 47.6

A,E Correct 60.4 59.2 60.6
Adjacent 35.1 33.5 34.1

B,E Correct 55.9 51.9 55.3
Adjacent 37.9 42.1 38.2

All Correct 70.7 69.8 73.4
Adjacent 26.7 29.0 25.4

the same principle, placing APs at the north or south ends of
the house results in less ambiguous fingerprints within the area
of the house, and better positioning performance. Placement is
apparently less of a problem when there are two APs, probably
because the two dimensional data already contains an adequate
amount of unique combinations.

Note that the area used here is longer than it is wide, and
benefits from this effect more than a square area would. The
same approach might still be useful for a square area; if APs
are placed at the corners, or edges, the number of ambiguous
fingerprints should be reduced.

Table I shows the accuracy expressed in terms of room
estimation, for the two best performing single and double AP
setups. We calculated the percentage of tests in which the
positional estimate was in the same room as the test point, or
in an adjacent room. The system was very efficient in selecting
either the correct or adjacent room, but was not very effective
at determining the outright correct room. Using all six APs
only resulted in a 10% increase in correctness, which suggests
diminishing returns with a greater number of APs.

V. CONCLUSIONS

We have demonstrated that relatively good positioning
accuracy is achievable using only one or two APs, when
appropriately placed. Our results were similar for the different
positioning algorithms and surveying methods used.

The optimal placement for one AP was at the north or south
edge of the house, as this minimizes the ambiguity of the
resultant one dimensional signal strength data; this kind of
placement might penalize data transfer speed or connectivity
at the far side of the area. In a situation where this would be
problematic, two APs would be more appropriate. Double AP
setups were less sensitive to placement, but performed slightly
better when the APs were at opposite ends of the house.

In this paper, we have not analyzed the impact of human
traffic on positioning accuracy, which is likely to be significant.
In busy households, it is likely that a single AP would be
insufficient for positioning, as any unmapped obstacle to the
single signal path would result in an erroneous position.

The system’s room estimation could be refined further. For
example, we could weight each room according to the weights
associated with its constituent fingerprints, rather than just
taking the containing room of the final estimate as we do here.
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Fig. 2. Median distance errors obtained using the nearest neighbor, histogram, and Gaussian methods, using point and sector sampling.

A B C D E F A,F B,E A,E B,F A,B E,F All
0

2

4

6

8

10

12

14

16

Base Station Used

D
is

ta
nc

e 
E

rr
or

 (
m

)

 

 

Gaussian (Point)
Histogram (Point)
NN (Point)
Gaussian (Sector)
Histogram (Sector)
NN (Sector)

Fig. 3. 90th percentile errors obtained using the nearest neighbor, histogram, and Gaussian methods, using point and sector sampling.

Biasing the prior in the Bayesian methods could also improve
accuracy by preventing output in the middle of a wall or a
piece of furniture.

Given the low hardware requirements, the short surveying
time and the accuracy achievable, we believe single or double
802.11 AP setups are useful as a low-cost positioning solution
for smart home applications where the maximum accuracy re-
quired is to the actual or adjacent room. Increasing the number
of APs can provide a more robust estimate in situations where
the actual room is required.
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