
EdgeMORE: improving resource allocation with

multiple options from tenants

Andrea Araldo∗, Alessandro Di Stefano† and Antonella Di Stefano†

∗ Télécom SudParis

Institut Polytechnique de Paris France

Email: andrea.araldo@telecom-sudparis.eu

† Dept. of Electrical, Electronics and Information Engineering,

University of Catania

Italy

Email: alessandro.distefano@phd.unict.it, ad@diit.unict.it

Abstract—Under the paradigm of Edge Computing (EC), a
Network Operator (NO) deploys computational resources at the
network edge and let third-party Service Providers (SPs) run
on top of them, as tenants. Besides the clear advantages for SPs
and final users thanks to the vicinity of computation nodes, a
NO aims to allocate edge resources in order to increase its own
utility, including bandwidth saving, operational cost reduction,
QoE for its users, etc. However, while the number of third-party
services competing for edge resources is expected to dramatically
grow, the resources deployed cannot increase accordingly, due
to physical limitations. Therefore, smart strategies are needed to
fully exploit the potential of EC, despite its constrains.

To this aim, we propose to leverage service adaptability, a
dimension that has mainly been neglected so far: each service
can adapt to the amount of resources that the NO has allocated
to it, balancing the fraction of service computation performed
at the edge and relying on remote servers, e.g., in the Cloud, for
the rest. We propose EdgeMORE, a resource allocation strategy
in which SPs express their capabilities to adapt to different
resource constraints, by declaring the different configurations
under which they are able to run, specifying the resources needed
and the utility provided to the NO. The NO then chooses the most
convenient option per each SP, in order to maximize the total
utility. We formalize EdgeMORE as a Integer Linear Program.
We show via simulation that EdgeMORE greatly improves EC
utility with respect to the standard where no multiple options
for running services are allowed.

Index Terms—Edge Computing, Resource Allocation, Cloud-
Edge offloading

I. INTRODUCTION

Edge computing (EC) brings computation and data storage

closer to the location where it is needed, to improve response

times and save bandwidth, e.g. traffic going out from the

access networks. EC is complementary to Cloud, i.e., the usual

assumption is that a part of service computation is peformed

at the Edge and the rest on the Cloud and similarly a part of

the required data seats at the Edge and the rest on the Cloud.

We consider a Network Operator (NO), owning computa-

tional resources in its Edge network, which must decide how

distribute these resources to different Service Providers (SP).

The goal of the NO is to maximize its own utility, which can

represent bandwidth or operational cost saving or improved

experience for his users [1], [2].

A novelty of our approach is that we exploit the opportunity

of running services at the Edge in different ways, i.e., the

SP can balance between using more memory or more CPU,

depending on the available resources, transparently to final

users. For instance, in scenarios as video streaming, the SP

has to deliver different representations of the same video

and can choose either to store all of them, which requires a

high amount of storage, or exploiting Just In Time Packaging

(JITP) store just few representations and package the missing

ones on-the-fly, only when needed, which saves storage but

incurs more CPU usage (pag 6 of [3] and [2]). These applica-

tions show the emergence of what we call service elasticity:

in the Edge, since resources are limited, they cannot scale

with services’ requirements, instead services must adapt to the

available resources and run on the Cloud all the computation

that cannot take place at the Edge. Partitioning limited Edge

resources among third party “elastic” services is the novel

core of this work. We show that by exploiting the different

configurations at which SPs can run, the NO can increase its

utility with respect to the classical case of one monolithic

configuration per SP, as if more resources were vitrually

available at the Edge than the real ones, whence the name

EdgeMORE of our strategy.

Furthermore, we consider the distributed nature of Edge

resources, which can be scattered across different nodes and

the fact that services follow a microservice architectural

style (Sec. V.B of [4]): a service is composed of different

microservices running on containers. This allows fine-grained

and responsive service adaptivity and resource exploitation ,

which makes containers attractive for Edge computing [5]. We

also consider resources are multi-dimensional (memory, CPU,

bandwidth, . . .).

The contribution of this work is: (i) we introduce the multi-

tenant multi-dimensional multiple-nodes resource allocation

problem, which represents the decisions of the NO to allocates

multi-dimensional resources, distributed on several nodes,

1

among third party SPs, whose services are composed of

different containers (§ III); (ii) we propose an architecture for

this setting (§ IV) (iii) we provide an ILP formulation (§ V);

(iv) we finally evaluate its performance in simulation (§ VI).

II. RELATED WORK

Under the taxonomy of [5], [6], the scenario in which we

study the resource allocation problem is Metro Edge Cloud

and Mobile Edge Computing. Since literature on EC is vast,

here we just focus on work concerning resource allocation.

a) Multi-Tenant Resource Allocation: Resource alloca-

tion among third party tenants is currently done in Cloud

computing via pricing. However, in the Cloud resources are

assumed to be infinite, so they can be granted as long as

the tenant is willing to pay. At the Edge, instead, resources

are limited and the NO, which owns them, want to allo-

cate them in order to increase its own utility. Allocation of

finite resources among different service providers (tenants),

which compete for their consumption, has not vastly been

explored in the context of EC. Some examples of this kind

of problems can be found in [1] and [7], where resource is

mono-dimensional (storage) and the utility is the bandwidth

reduction, QoS and fairness.

b) Resource Provisioning: There is agreement that Edge

and Cloud computing form a unique pool of resources, orga-

nized hierarchically and services can use both simultaneously.

In this context, there is vast literature in resource provisioning,

which regards the decision of how much resource should be

deployed at the Edge nodes or at the Cloud [8], [9]. We

emphasize that our resource allocation problem is different, as

we assume the amount of resources at the nodes has already

been decided, nodes are already deployed, and we optimize

their usage by third party SPs.

c) Network Slicing: Network slicing consists in cre-

ating virtual network slices on top of a physical network

infrastructure, whose owner has to allocate resources among

slices. In this context, resources are mainly mono-dimensional

(bandwidth [10]), with some exception ([11], [12] consider

also CPU).

d) Service Adaptability: Some work assumes, as we

do, that services can run under different configuration, thus

adapting to the resources provided. Services span from Fed-

erated Machine Learning [13] to video streaming [2]. Other

work [14], [15] assumes that multiple configurations result in

different multi-dimensional resource usage and different QoE.

However, most of this work, considers one only tenant.

e) Resource allocation for container-based EC: The

micro-service architecture is particularly suitable for resource

allocation, as services can adapt to the resources avail-

able by launching/destroying the containers hosting micro-

services [16]–[18].

f) Task-oriented models: It is important to emphasize

that most of the aforementioned literature and other work [15],

[19], [20] model workload as a sequence of jobs or tasks,

and deals with allocating resources among them. While this

models are suitable for grid computing environments, we

adopt instead a service-oriented viewpoint, which we believe

is more indicative of the current interactions between users

and services in the Internet. Indeed, in order to live at the

Edge, services consume persistent resources, which are not

tightly coupled to the single user request. For instance, a

content provider consumes memory to store its most popular

objects, independent from the single user requests. This would

not be reflected by task-oriented models.

III. SYSTEM MODEL

We consider an edge cluster, composed of m = 1, . . . ,M
nodes, owned by the Network Operator (NO). These cluster

nodes may be servers installed on a Central Office or machines

installed in a base station. Nodes have resources of different

types, e.g., RAM and CPU. We denote the types of resources

as l = 1, . . . , L, where l = 1 may indicate CPU, l = 2 may

indicate RAM, etc. Each node has a limited amount of each

resource type. We denote with cl,m the capacity of node m

in terms of resource type l. Node resources are virtualized so

that third party Service Providers (SPs) can concurrently run

their services there. Virtualization of resources is based on a

container platform, like Docker, which allows to run many

virtual environments, called containers, each hosting a third

party piece of software.

SPs are denoted with i = 1, . . . , N . For simplicity, and with

no loss of generality, we assume that one SP runs one and only

one service.1 Each service is decomposed in a set of micro-

services, each hosted in a container. Moreover, each service

i can run in multiple possible configuration options j =
1, . . . , J i. Each configuration option j of service i requires

concurrently running a set of containers z = 1, . . . , Zi,j . Each

SP i declares the possible configurations under which it is

capable to run and the NO decides (i) which configuration

option to accept and (ii) for all the containers belonging to

that option, which node they should run to. These decisions

are based on utility and resource consumption.

As in [14], we assume that each configuration option j of

SP i brings a certain utility ui,j to the NO. For instance,

suppose SP i is a video streaming service. If the NO selects

a configuration option j that includes containers with large

memory limits, the SP will be able to cache more content and

thus to serve more user requests locally, only generating traffic

from/to some remote server or Cloud only for the content that

is not cached at the Edge. In this case, the utility ui,j for the

NO would be big, in terms of traffic saved.

Ideally, the NO would like to choose for each SP the option

that provides the largest utility. Unfortunately, this is in general

not possible, due to the scarcity of resources available in the

Edge nodes. Indeed, each container consumes resources. We

denote with w
i,j
l,z the amount of resource of type l consumed by

the z-th container of the j-th option of SP i. Each Edge node

can host different containers, from different SPs. Obviously,

the sum of resource type l consumed by the containers running

1The terms “service” and “service provider” will thus be used interchange-
ably.

2

Playback
Application

Steering
ServiceOCA

Edge

Cloud

OCA

Edge

OCA

Edge
1

2
3

4

Fig. 1. Netflix architecture for OCAs CDN

in a certain node m cannot exceed its capacity cl,m, for

any resource type l = 1, . . . , L. Therefore, the NO must

optimally choose one option per SP, trading off utility and

resource consumption and, at the same time, optimally place

the containers of the chosen options in the available Edge

nodes, without exceeding their capacities.

Note that we do not define a per-container utility, but only

the utility ui,j of an entire option. The rationale is that running

containers individually is not useful at all. For instance, to

provide an on-line gaming service, we might need a container

for authenticating users, another for retrieving video frames

and another to transcode them. They might all be needed

together. Running the authentication server alone, may be

senseless. Either the containers of an option run all or no

one. Therefore, utility comes from the concurrent run of all

the containers of a configuration option, and not from any

single container. Since the different sets of containers that can

collectively provide a service depend on the service itself, we

let the SP declare the possible configuration options. Note

also that we adopt a snapshot model, i.e., we assume time

is divided in slots of few minutes and we focus on a single

slot. At the beginning of each time slot the SPs declare their

configuration options, the NO decides to accept one option

per SP and assigns each container belonging to that option

to one Edge node. We assume all the quantities mentioned in

this section are known at the beginning of the time slot.

IV. REFERENCE ARCHITECTURE

We now describe the architecture in which our system

model can materialize. In order to ground our architecture

into an existing and practical technology, we briefly outline

a successful solution widely adopted by Netflix. Then, we

describe our proposed architecture.

A. An existsing implementation of Edge Computing

Netflix is one of the largest content providers. It deploys

its own hardware appliances, called Open Connect Appliances

(OCAs) [21], into Internet access networks. OCAs store a part

of the content catalog and can serve directly a fraction of

local users’ requests, without generating inter-domain traffic.

For this reason, NOs often accept to install this hardware in

their premises. Requests are processed as in Fig. 1: (1) A user

requests a video. (2) A micro-service in the Cloud selects the

files to be sent to the user. (3) The steering service determines

the OCAs closest to the user based on its IP address and

generates a list of URLs pointing to the OCAs. (4) The user

client uses the URLs list to play the video.

While this solution is currently successful and effective, it

is not future-proof: it is infeasible that hundreds of SPs, like

Fig. 2. Overview of the proposed architecture. SPs run part of their service
in their premises or in remote Clouds, which we denote as Headquarters.

Youtube, Netflix, gaming providers, IoT providers, etc., will

each install physical boxes into thousands of access networks:

installing and maintaining such physical infrastructure would

have an enormous cost for both SPs and NOs. Moreover,

there is no physical space to host many physical boxes in

the network locations at the Edge. However, the case of the

OCA shows that both SPs and NOs have interest in EC, to

run services at the Edge. To make EC feasible, we propose to

let the NO owns the computational resources and to vitrualize

them, in order to allocate them to third party SPs, acting as

tenants. Each SP can then behave individually similarly to

Fig. 1.

B. EdgeMORE architecture

The components of the proposed architecture are (Fig. 2):

• Edge slave nodes: owned by the NO, they run the SPs’

containers.

• Edge Master: a process controlled by the NO, respon-

sible for (i) monitoring resource usage (e.g. using fine

grained monitoring functions available in containerized

environments like Kubernetes [22]); (ii) collecting the

different deployment options from SPs; (iii) deciding the

options to be deployed; (iv) informing the SPs about

the authorized options and receiving back the containers

descriptors (e.g. Dockerfile or Pods YAML); (v) running

the containers in the Edge slaves. The optimization

strategy of § V runs in the edge master.

• SP Scheduler: each SP has its own scheduler; First,

it declares the set of possible configuration options to

the Edge Master, specifying resource requirements and

utility. After the Edge Master selects one of these options,

the SP Scheduler forwards to the Edge Master the relative

3

containers descriptor files to deploy its application at the

Edge;

• SP Load balancer: each SP has its own load balancer;

it intercepts user requests as in [23] and, based on the

amount of requests served by the Edge it decides to

forward the request to a remote Cloud or to handle it

within the Edge [20].

C. Edge Master workflow

The Edge Master is the core component of the proposed

architecture. Periodically, it performs the following operations.

1) It monitors the available resources and receives the set

of options from the SPs schedulers; it is given as a

list containing, for each option, the relevant amount

of utility estimated and information on the resource

requirements for each container;

2) It executes the placement algorithm to select the best op-

tion for each SP according to the collected information

in point (1). The decision is sent to the SPs schedulers;

3) It receives the (chosen) option descriptors files (e.g.

Dockerfiles, Smarm configurations files, Kubernetes

YAML. . .) for the authorized options and runs these

containers in the slaves nodes;

4) Finally, it communicates to SPs’ load balancers the

addressing data to reach the Edge internal containers.

Based on the occupied resources the load balancers

redirect the user requests to the Edge resources or to

the Cloud.

V. OPTIMAL RESOURCE ALLOCATION

The NO aims to maximize its overall utility, i.e., the sum of

the utilities coming from all the selected options. In order to

do so, the NO must concurrently take two decisions: (i) Option

selection: the NO must select at most one configuration option

per SP. (ii) Container placement: the NO must deploy each

container of the selected options to one of the available nodes
The following is an Integer Linear Programming (ILP)

formulation of the problem. The decision variables modeling
the Option selection are xi,j , which is 1 if the j-th option of
the SP i is chosen. Container placement is instead represented
by the decision variables yi,jz,m, which is 1 if the z-th container
of the j-th option of SP i is placed on node m. The objective
is

max

N
∑

i=1

Ni
∑

j=1

u
i,j

· x
i,j

(1)

The following constraints must be satisfied.

M
∑

m=1

y
i,j
z,m = x

i,j

i = 1 . . . N
j = 1 . . . J i

z = 1 . . . Zi,j (2)

N
∑

i=1

Ji
∑

j=1

Zi,j
∑

z=1

y
i,j
z,m · w

i,j

l,z ≤ cl,m
l = 1 . . . 2
m = 1 . . .M

(3)

Ji
∑

j=1

x
i,j

≤ 1 i = 1 . . . N
(4)

Equations (2) guarantee that each container z of the chosen

option j by the SP i (xi,j = 1) is deployed (∃m ∈ {1 . . .M} :
yi,jz,m = 1); constraints (3) guarantee that the sum of the

requirements for the set of containers deployed on a node m

for each resource l is less than the total amount of available

resources in node m so that these containers can actually

run on the node; finally the constraints (4) guarantee that a

service provider can deploy at most one option in the Edge

cluster. If we have one only option per SP and a unique

dimension, e.g. memory, the problem is similar to a Set-union

Knapsack problem [24] and it has been solved via Dynamic

Programming or via bio-inspired algorithms like bee-colony

optimization [25]. If we have a single node, we can just

consider for each option the total memory and the total CPU

needed by all the containers composing the option. We can

thus forget about the different containers and in this case we

have a Multiple-Choice Multi-Dimensional Knapsack Problem

(MCMDKP) [26], like in [14], although the authors do not

clearly state it. Considering just one option per SP and one

node, the problem reduces to a multi-dimensional knapsack

problem (l-KP), which is a challenging problem. Methods

based on the Lagrangian dual exist but difficult to apply in

practice (Sec.9.2 of [27]). Moreover, Fully Polynomial Time

Approximation Schemes cannot exist unless P=NP (Sec.9.4.1

of [27]), which motivates the several greedy-type heuristics

proposed in the literature (Sec.9.5 of [27]). However, they

cannot be directly used in our problem, which is more

complicated than l-KP, since we need to cope with multiple

options, nodes and containers. In our future work, we will

explore the design of efficient heuristics to solve the problem.

VI. NUMERICAL RESULTS

Here we present results that show how enabling service

elasticity by allowing multiple configuration options to SPs

notably improves the utility of the Edge. We compare the

performance of EdgeMORE, computed with the ILP (§ V),

with a naive allocation, which consists in randomly option

selection and container placement. The code of the ILP in glpk

and the python code to orchestrate the simulation are available

as open-source [28], together with the scripts to reproduce the

results presented here. The simulations run in a Intel Xeon

CPU E5-4610 @ 2.30 GHz with 256GB RAM, the results

are averaged across 20 runs and 95% percentiles are reported.

a) Scenarios: In our simulations the edge cluster con-

sists of M machines with 16 cores and 32GB RAM. For

each simulation N = 50 SPs compete to gain resources in

the Edge, each declaring the same number J of configuration

options. Each option consists of Z = 8 containers. The CPU

and RAM required by a container are drawn from uniform

random distributions with mean w̄l. They are expressed as

dimensionless values representing CPU time for CPUs while

the memory is expressed in GB. To obtain w̄l, we first fix a

load factor K = 1.8 and then compute

w̄l · Z ·N = K · cl,tot; l = {CPU,RAM} (5)

4

where cl,tot =
∑M

m=1
cl,m is the total amount of resource

of type l available at the edge. In other words, on average we

allow services to request K times the available resources.

The utility is also a random variable. As common in the

literature [1], [7] we assume there is a concave relation

between the resources used and the utility: the more resources

are used by an option, the larger one should expect the utility

to be, but the additional utility tends to decrease with the

resources. The utility is the following function of the required

resources:

u
i,j = α

i,j
·

(

w
i,j

CPU

cCPU,tot

) 1

β
i,j
CPU

+ (1− α
i,j) ·

(

w
i,j
RAM

cRAM,tot

) 1

β
i,j
RAM

(6)

where αi,j ,β
i,j
CPU,β

i,j
RAM are randomly thrown, for each option,

from the random uniform distributions between 0 and 1 for

αi,j and between 1 and 5 for β
i,j
CPU and β

i,j
RAM. Note that the

formula above would be a concave increasing function if the

parameters αi,j ,β
i,j
CPU,β

i,j
RAM were fixed. Choosing the param-

eters from a random distribution complicates the scenario. We

did this on purpose since: (i) although the relation utility vs.

resources can be reasonably assumed to broadly show a con-

cave and increasing behavior, in realistic scenarios this relation

may not be as “clean” as assuming a perfectly increasing

and concave function; (ii) we want to check the performance

of our solution in pessimistic and ‘unclean” situations. For

this reason, (6) is aimed to “loosely” show monotonicity and

concavity. We underline that this characterization would be

much more accurate if real datasets were available, which is

unfortunately not the case. On the other hand, research on

allocation strategies must not be paralyzed by the absence

of datasets, and fortunately is not. Researchers have coped

with it by proposing reasonable assumptions on the relation

between resources and utility [1], [7], [14], [29] and following

them, which is enough to evaluate the benefits of allocation

strategies. We follow here this line.

The utility reported in the following plots is a percentage

of the maximum utility, which is N because ui,j ∈ [0, 1] as a

consequence of (6).

b) Benefits of multiple options: In Fig. 3 we report the

effect of varying the number of options provided by each SP,

assuming always M = 8 Edge nodes available. The utility

increases with the number of options declared by SPs. Note

that the classic assumption correspond to the first point of

the plot, SP=1. While varying the number of options from 1
to 8 the utility has a gain almost equal to 1.6. This means

that all the approaches adopted in the literature lose the

opportunity to gain 60% of utility (at least in our scenario),

which instead EdgeMORE can grasp by allowing SPs declare

multiple options. This is the core result of the paper and also

justify the name EdgeMORE: by letting SPs express their

service-elasticity, it is like increasing virtually the available

resources, as the ones that are available can be used better.

The second plot of Fig. 3, reports that Naive uses ∼ 3.3 times

the resources of EdgeMORE, despite its poor utility, which

Fig. 3. Benefits of multiple options.

shows that careful option selection and container placement

is of paramount importance.

c) Insensitivity to cluster scaling: In Fig. 4 we increase

the number of nodes, considering J = 5 options per SP. We

keep K = 1.8, thus increasing the resources requirements

proportionally (5). We also keep all the other parameters at

their default values. In other words, we are testing here how

the performance is affected when varying the scale of the

problem, in terms of size of resources available and required.

Fig. 4 shows that the utility of EdgeMORE remains unchanged

with the scale of the problem. This means that the results

presented here are likely to consistently appear both on tiny

instances of EC as well as in larger clusters of servers available

at the Edge.

d) Computation time: The bottom plots show that the

computation time of EdgeMORE may be too high if respon-

sive dynamic re-allocation is envisaged. This motivates to

explore faster heuristics in our future work.

5

Fig. 4. Insensitivity to cluster scaling

VII. CONCLUSION AND FUTURE WORK

This paper presented EdgeMORE, a strategy for resource

allocation for Edge Computing (EC), where tenants are third

party Service Providers (SPs). The novelty of this work is

that it exploits service elasticity: by allowing SPs to declare

the different configurations (aka options) in which they can

run, we show that the Network Operator (NO) owning EC

resources can greatly increase utility. Relying on service

elasticity is crucial in resource-constrained environments as

EC. A future work will be devoted to a heuristic for the ILP

and scenarios where jobs arrive in different times, exploiting

a time-batched implementation of EdgeMORE. Moreover, the

architecture and the strategy itself can be expanded in order to

take into account different NOs (Edge roaming) and to account

for inter-container communication, leveraging our previous

work [30].

REFERENCES

[1] A. Araldo, G. Dán, and D. Rossi, “Caching encrypted content via
stochastic cache partitioning,” IEEE/ACM Trans. Netw., vol. 26, no. 1,
pp. 548–561, Feb 2018.

[2] Y. Jin, Y. Wen, and C. Westphal, “Optimal Transcoding and Caching
for Adaptive Streaming in Media Cloud,” IEEE Trans. Circ. and Sys.

Video Tech., vol. 25, no. 12, pp. 1914–1925, 2015.
[3] Limelight Networks, “Comprehensive cybersecurity defenses for con-

tent delivery,” Limelight Networks, Tech. Rep., 2018.
[4] C. Pahl and B. Lee, “Containers and Clusters for Edge Cloud Architec-

tures – a Technology Review,” in IEEE FiCloud2, 2015.
[5] K. Dolui and S. K. Datta, “Comparison of edge computing implemen-

tations: Fog computing, cloudlet and mobile edge computing,” 2017

Global Internet of Things Summit (GIoTS), pp. 1–6, 2017.
[6] B. P. Rimal, M. Maier, and M. Satyanarayanan, “Experimental Testbed

for Edge Computing in Fiber-Wireless Broadband Access Networks,”
IEEE Commun. Mag., vol. 56, no. 8, pp. 160–167, 2018.

[7] W. Chu, M. Dehghan, J. C. Lui, D. Towsley, and Z. L. Zhang, “Joint
cache resource allocation and request routing for in-network caching
services,” Computer Networks, vol. 131, pp. 1–14, 2018.

[8] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in IEEE INFOCOM, 2016.

[9] P. Schmitt, F. Bronzino, S. Ayoubi, G. Martins, R. Teixeira, and
N. Feamster, “Inferring streaming video quality from encrypted traffic:
Practical models and deployment experience,” 2019.

[10] P. Caballero, A. Banchs, G. De Veciana, and X. Costa-Perez, “Net-
work Slicing Games: Enabling Customization in Multi-Tenant Mobile
Networks,” IEEE/ACM Trans. Net., vol. 27, no. 2, pp. 662–675, 2019.

[11] B. Xiang, J. Elias, F. Martignon, and E. D. Nitto, “Joint Network Slicing
and Mobile Edge Computing in 5G Networks,” in IEEE ICC, 2019.

[12] Josilo and Dan, “Wireless and computing resource allocation for selfish
computation offloading in edge computing,” in IEEE INFOCOM, 2019.

[13] S. Wang et al., “Adaptive Federated Learning in Resource Constrained
Edge Computing Systems,” IEEE JSAC, vol. 37, no. 6, 2019.

[14] C. Lee et al., “A scalable solution to the multi-resource QoS problem,”
in IEEE Real Time Systems Symp., 1999.

[15] D. Zarchy et al., “Capturing resource tradeoffs in fair multi-resource
allocation,” in IEEE INFOCOM, 2015.

[16] J. Monsalve, A. Landwehr, and M. Taufer, “Dynamic cpu resource
allocation in containerized cloud environments,” in 2015 IEEE Int. Conf.

on Cluster Computing, Sep. 2015, pp. 535–536.
[17] Y. Tao, X. Wang, X. Xu, and Y. Chen, “Dynamic resource allocation

algorithm for container-based service computing,” in IEEE Int. Symp.

on Autonomous Decentralized System (ISADS), March 2017.
[18] D. Zhang et al., “Container oriented job scheduling using linear pro-

gramming model,” in ICIM, 2017.
[19] H. Mao et al., “Resource management with deep reinforcement learn-

ing,” in ACM HotNets. ACM, 2016.
[20] M. Enguehard et al., “A popularity-based approach for effective cloud

offload in fog deployments,” in ITC, vol. 01, Sep. 2018, pp. 55–63.
[21] Openconnect service by netflix. [Online]. Available:

https://openconnect.netflix.com/en/
[22] Resource usage monitoring on kubernetes. [On-

line]. Available: https://kubernetes.io/docs/tasks/debug-application-
cluster/resource-usage-monitoring/

[23] J. Liang et al., “When https meets cdn: A case of authentication in
delegated service,” in IEEE Symp. on Security and Privacy, May 2014.

[24] A. Arulselvan, “A note on the set union knapsack problem,” Discrete

Applied Mathematics, vol. 169, pp. 214 – 218, 2014.
[25] Y. He, H. Xie, T.-L. Wong, and X. Wang, “A novel binary artificial

bee colony algorithm for the set-union knapsack problem,” Future

Generation Computer Systems, vol. 78, pp. 77 – 86, 2018.
[26] M. M. Akbar et al., “Solving the multidimensional multiple-choice

knapsack problem by constructing convex hulls,” Comp. & Op. Res.,
vol. 33, no. 5, pp. 1259 – 1273, 2006.

[27] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems, 1st ed.
Springer, 2004.

[28] A. Di Stefano, “EdgeMORE Repository,”
https://github.com/aleskandro/cloud-edge-offloading.

[29] S. Ghosh, R. Rajkumar, J. Hansen, and J. Lehoczky, “Scalable resource
allocation for multi-processor QoS optimization,” in IEEE ICDCS, 2003.

[30] A. Di Stefano, A. Di Stefano, G. Morana, and D. Zito, “Coope4m:
A deployment framework for communication-intensive applications on
mesos,” in 2018 IEEE 27th Int. Conf. on Enabling Technol.: Infrastruc-

ture for Collaborative Enterprises (WETICE), June 2018, pp. 36–41.

6

