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Abstract—Current Software Defined Networking (SDN) tech-
niques allow improving network control and flexibility. However
its use in IoT is not trivial because IoT networks are unreliable
and highly resource-constrained. Among some of the existing
solutions proposed in the literature, Whisper enables SDN-like
control over the packet forwarding and cell allocation of IoT
devices by injecting in the network artificial, but still standard
compliant messages that alter the default protocol behavior.
Since Whisper uses carefully computed routing and scheduling
messages that are compatible with the distributed protocols run
in the network, it reduces the overhead in the network and
operates without modifying the IoT devices’ firmware. However,
as other SDN-on-IoT technologies, Whisper is currently limited
to the IoT network scope and remains as yet another independent
network management silo. In this paper we propose a new higher-
level architecture that allows to fully integrate the IoT SDN
network management into a network operating system, such as
ONOS, by using Whisper in order to provide an integral end-
to-end softwarization. We also describe the interaction between
the Whisper platform and the orchestrator and test our solution
with real 6TiSCH-compatible hardware in the ONOS platform.
Finally, we discuss the requirements and technical challenges to
fully leverage Whisper to provide an efficient and programmable
end-to-end control over an heterogeneous network domain.

Index Terms—IoT, SDN, 6TiSCH, RPL, ONOS, Whisper

I. INTRODUCTION

Software Defined Networking (SDN) is considered today

the tipping point that changed how networks are built and

operated. SDN allows a network programmability level and

a fine-grained resource management that is almost impossible

to obtain with traditional distributed network protocols. While

operators are widely using SDN in wired and optical pro-

duction networks, the development and deployment of SDN

in wireless networks is still on-going, specially in Internet of

Things (IoT) networks.

IoT networks are highly resource-constrained in terms of re-

liability, energy and throughput. Since these limitations impede

a direct mapping of wired SDN techniques to IoT, a significant

research effort has been done in order to accommodate the IoT

constraints to the SDN environment [1]. Although some SDN-

on-IoT solutions can cope with most of the constraints, the in-

band signaling overhead, the increase in energy consumption

and the uncoupling between the routing and scheduling layers

still leave partially unanswered the question of: “Is SDN

actually interesting for IoT networks?”.

In order to shed more light to that question, we previously

proposed Whisper [2] to “softwarize” the already existing IoT

distributed protocols to provide the network with centralized

control. Specifically, it leverages the Routing Protocol for

Low-power and Lossy Networks (RPL) [3] and the 6Top

Protocol (6P) [4] in the 6TiSCH stack to exert control in both

routing and scheduling layers without adding a new SDN-

specific protocol in the network nodes. This allows offering

SDN-like capabilities with reduced overhead and energy con-

sumption, while being compatible with current IoT standards.

However Whisper is currently limited to isolated IPv6 Low-

power Wireless Personal Area Networks (6LoWPANs). This

means that it is not possible to have a complete end-to-end

network management from the very same IoT devices’ to the

core network. The contribution of this work is first, to propose

a new fully end-to-end SDN architecture that includes and

considers the IoT domain and second, to enhance Whisper for

its integration within a network operating system, including

the design of a new south-bound protocol. Finally we discuss

the implementation details, present results in real hardware in

order to validate the full platform, and give further insights

on the potential benefits of using Whisper to provide a full

network softwarization that includes the IoT network segment.

II. BACKGROUND

A. What is Whisper and why to use it?

The use of IoT in industrial deployments to monitor and

manage mission control critical infrastructures demands high

reliability, reduced latency and low energy consumption. Al-

though current Industrial IoT protocols such as the ones

included in the 6TiSCH protocol stack already fulfill most

of these requirements [5], they implement statically defined

decisions (i.e., how routing and scheduling planes accomplish

a predefined objective function). However real industrial de-

ployments require additional flexibility and dynamic network

management in order to react to malfunctioning nodes, blocked

wireless channels or sudden battery depletion in nodes.

Current literature on flexibility and programmability of IoT

networks focus on importing the SDN paradigm [6], [7].

However the use of SDN on Low-power and Lossy Networks

(LLNs) networks is challenging since in an LLN, nodes

are highly resource-constrained devices, links are unreliable
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Fig. 1: Example of how Whisper can alter packet forwarding

through the injection of “fake” RPL messages. Nodes 5 and

6 can avoid to forward packets towards node 3 upon battery

depletion in node 3, and re-route their traffic through node 2

(to not overload node 4).

and limited in bandwidth, and the multi-hop wireless mesh

topology implies the need for in-band signaling. Nonetheless,

a number of works have engineered solutions to circumvent

these constraints [8]–[10]. However these solutions still rely

on a reliable in-band signaling channel and face important

challenges due to the significant signaling overhead when scal-

ing up the network. Other works such the one we presented,

Whisper [2], partially solve these problems by combining SDN

techniques with distributed IoT protocols.

In order to exert network control, a Whisper controller

delivers carefully computed standard messages to the nodes to

artificially change their routing and scheduling behavior. By

doing this, IoT networks can be managed without modifying

any bit in the firmware of the already deployed nodes (e.g.,

no additional SDN-specific software is needed). Due to the

presence of the standard distributed protocols, signaling is

minimum and the IoT network can fully perform even without

the continuous presence of an SDN controller. However, this

comes with the cost of a slight reduction in the network

programmability. For example, routes are required to form a

Direction Oriented Directed Acyclic Graph (DODAG) since

RPL is a gradient-based routing protocol.

Whisper is currently designed for 6TiSCH networks since its

implementation is based on RPL for the routing management

and on 6P for the scheduling management. Figure 1 shows

an example of how Whisper works. It shows a DODAG

where each node receives a rank, which is the metric used

in RPL to calculate the best path towards the root (R). Ranks

are distributed through DODAG Information Objects (DIOs)

messages and allow each node to select the neighbor with

lowest perceived rank as its preferred parent. Whisper injects

altered DIO messages in the network with an artificial rank to

alter the parent choice. This implies that Whisper can centrally

alter the routing table of the decentralized RPL protocol.

Whisper SB
Protocol

OpenFlow

Southbound
(discover, observe, program, configure)

Distributed Core
(scalability, availability, performance)

Northbound – Application Intent Framework
(policy enforcement, conflict resolution)

Reactive 
FWD

Intent
based

L2 FWD

SDN-IP
peering

Whisper ...

Applications

Protocols

Whisper ProviderOpenFlow Provider

Fig. 2: ONOS platform architecture.

Scheduling is controlled in an equivalent way. Whisper

relies on the 6P protocol and, by default, on the Minimal

Scheduling Function (MSF) [11]. In 6TiSCH, nodes allocate

cells (formed by a timeslot and a channel offset) in a local

manner according to the traffic demands using a specific

scheduling function (e.g., MSF). However Whisper can build a

complementary scheduling function on top of MSF (e.g., that

optimizes latency) by delivering 6P commands that add or

delete the required cells in the nodes. By doing this, Whisper

allows network programmability with minimal signaling over-

head and without the need of a new SDN-specific protocol.

B. The need for Network Operating Systems

However, Whisper has been presented as a solution for

a single 6LoWPAN only, without supporting the integration

with other SDN environments. Yet a full end-to-end network

softwarization that includes both wired and wireless segments

is crucial for a network operator. Assume for example that a

wired link in the core network fails. An SDN controller could

re-route its traffic through other available paths. If a sink node

in an IoT network fails as well, traffic from the sensor nodes

would also need to be re-routed to other sinks if possible. An

efficient traffic re-routing that takes in account the state of the

core network would only be possible by having an integrated

end-to-end SDN controller that controls all network domains.

1) Related work: In the optical/wired segment the use

of Network Operating Systems (NOS) [12], [13] is already

common to program network layers in a platform agnostic-

manner. One of the most extended NOS solutions in both

research and production environments is the open-source Open

Network Operating System (ONOS) project [14]. ONOS is a

distributed, modular SDN control platform that allows high

levels of scalability, availability and performance in large

operator networks. While ONOS is mainly focused on the

optical/wired segments, some works have studied how to

extend the control to wireless sensor networks as well [15]–

[17] (e.g., by using SDN-WISE [8]).
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Fig. 3: Example of the orchestration architecture using Whisper.

2) ONOS details: A simplified layered architecture of

ONOS is shown in Figure 2. In ONOS, network devices are

abstracted independently of the underlying network architec-

ture to allow interoperability between heterogeneous networks.

Network devices (e.g., OpenFlow [18] switches) are managed

using their specific control protocols. For each device, ONOS

includes a driver that implements its communication protocol.

The translation between the protocol-specific operations and

the abstractions used in the upper layers is done by the

Providers, located in the Southbound sublayer. In this sublayer,

discovery and configuration functions are also implemented.

The Distributed Core, stores all the information maintained

by the system (e.g., topology, states, etc.) and provides the

upper layers with path computation functions (e.g., to create

and compile path Intents). Finally, the Northbound sublayer

manages the network abstractions through flow rules and poli-

cies. This sublayer allows applications (e.g., a DHCP service,

a learning switch controller, etc.) to consume and manipulate

aggregated information from the Core sublayer. Application

functionality ranges from displaying network topologies to

complex traffic engineering for different traffic classes.

III. END-TO-END ORCHESTRATION FOR IOT

In order to allow Whisper to inter-operate with other

SDN systems, we present a new orchestration architecture

that integrates the existing Whisper controller in a wider

SDN context to enable the convergence of IoT networks

with wired/optical networks through SDN-based global control

(detailed in Section III-A). This is done by implementing

a Whisper module compatible with a NOS (e.g., ONOS) to

abstract the IoT network. This abstraction allows monitoring

and controlling the IoT network in both routing and scheduling

planes. In order to translate high-level control abstractions

to actual Whisper primitives, we have also implemented a

new Southbound Whisper protocol (detailed in Section III-B)

which is available at the controllers through a REST API and

is eventually exerted in the 6LoWPAN networks through a

local Whisper controller located in the IoT sink (root).

A. Proposed Architecture

In order to provide full end-to-end softwarization, the SDN

capabilities should be present in all the systems present in

the network, from sensor to host, including the 6LoWPAN

segments. In Figure 3 we present a holistic architecture that is

orchestrated by ONOS and where the LLN is softwarized by

Whisper. The ONOS controller (it can be distributed) manages

directly the wired switches through OpenFlow. However, in

order to have control over 6LoWPAN networks, the controller

interacts with the local Whisper controllers to translate and

relay the controller messages for the IoT nodes. The Whisper

controllers are run in the or 6LoWPAN Border Routers (6LBR)

and can control the sensor network either directly through

the 6LBR itself, or through the Whisper nodes, specific

wireless nodes that can be strategically placed in the network

to augment the monitor and control capabilities. With such

architecture, an orchestrator is able to abstract both wired and

wireless networks providing integral end-to-end control

Whisper controllers periodically report to the ONOS con-

troller with network statistics (e.g., topology, link costs, sched-

ules, etc.) through the Whisper REST API (see Section IV for

details). With this information, the ONOS controller updates

its internal topology stored in its core, and performs actions

according to the policies and applications’ requirements when-

ever needed. These actions are delivered through OpenFlow

to the SDN-capable switches and through the Whisper South-

bound protocol to the IoT nodes (see Section III-B). Traffic
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WSB Segment Dir Name Arguments Output

DL ParentSwitch NodeA,NodeB ResponseCode
ONOS Controller DL AddCell NodeA,NodeB,Cells* ResponseCode,CellList

Whisper Controller DL DeleteCell NodeA,NodeB,Cells*,Clear* ResponseCode
UL NetworkUpdate NodeID,Topology*,LinkCost*,Schedules* Json file

DL SwitchRemote TargetNode,FirstHop,Rank,ReliableSwitch* ResponseCode
DL SwitchImpersonate WhisperNode,TargetNode,ImpID,Rank,ReliableSwitch* ResponseCode

Whisper Controller DL PropagateRank Rank,NodeID ResponseCode
6TiSCH DL 6PRequest NodeA,NodeB,Cells* ResponseCode,CellList

DL UpdateSolicitation NodeID,Ranks*,Topology*,LinkPDR*,Schedules*,State* ResponseCode
UL UpdateReport NodeID,Ranks*,Topology*,LinkPDR*,Schedules*,State* Stats

TABLE I: Most representative messages of the Whisper Southbound (WSB). Optional fields are denoted with *.

OFP_HELLO

WSB_NetworkUpdate
WSB_Stats

OFP_FLOW_MOD

WSB_ParentSwitch
WSB_Switch

OF Switch Whisper Cont. SensorONOS

Fig. 4: Example of the messages exchanged, using OpenFlow

for the wired segments and the Whisper Southbound protocol

(WSB) to manage the 6LoWPAN network.

flows are routed through end-to-end Intents from the sensor

node to the destination. This way, changes in the traffic paths

do not compromise the performance of the flows, since Intents

ensure an end-to-end path based on agreed constraints. Upon

network changes, the Intent will re-route automatically the

flow to accomplish its constraints.

B. Whisper Southbound protocol

The Whisper Southbound protocol is an enhanced, gener-

alized version of the Whisper primitives described in [2] to

make them compatible with a generic SDN controller. Table I

describes the most relevant messages. The ONOS Controller

- Whisper Controller segment is an abstraction of the full

Whisper protocol that hides the complexity of the 6TiSCH

network to the SDN controller (e.g., ranks, RSSI, etc.). It

consists only by 4 messages: ParentSwitch to perform the re-

routing of next hop of a sensor node, AddCell/DeleteCell to

manage nodes’ schedules and NetworkUpdate, which contains

incoming aggregated information from the 6TiSCH network.

In the ONOS Controller - Whisper Controller segment, the

protocol is augmented with the characteristics of each specific

6TiSCH network. This means that the Whisper controller

translates the abstracted messages from the SDN controller

to the actual Whisper primitives needed to perform SDN con-

troller’s orders (e.g., Figure 4). For example, the ParentSwitch

message has to be translated to one or more messages in

the 6TiSCH network (e.g., it could require a SwitchRemote

message and a PropagateRank message each of them with

specific Rank values). Likewise, a number of UpdateReports

from different Whisper nodes are aggregated at the Whisper

controllers in one single NetworkUpdate message destined to

the ONOS core. Each one of the control messages sent in

the ONOS Controller - Whisper Controller segment can be

directly mapped to one of the Whisper primitives [2].

IV. IMPLEMENTATION DETAILS

A. Whisper module for ONOS

The Whisper module for ONOS mainly consist of two parts:

the Whisper Provider submodule and the Whisper Protocol

submodule (see Figure 2). The Whisper Provider is in charge

of communicating the network abstraction to the ONOS core,

adding and updating links, devices, hosts and intents. The

Whisper Protocol feeds the Whisper Provider with information

coming from the Whisper Southbound protocol. In order to

send and receive NetworkUpdate messages, a REST API is

deployed in the ONOS controller to be accessible for all the

local Whisper controllers. Control messages are also delivered

through the REST API deployed at the Whisper controllers.

From the point of view of ONOS, sensor nodes are treated

as “special” switches. However, since sensor nodes are IPv6-

enabled, the Whisper Provider adds virtual hosts to each sensor

node to assign them IPv6 addresses. This way path Intents

can be created end-to-end directly from sensor nodes to hosts.

Finally, additional elements at the application level have been

included to modify the graphic user interface and to add a

Whisper command line interface.

B. Local Whisper controller

The local Whisper controllers run inside OpenVisualizer,

a tool to interconnect a 6TiSCH network into the Internet.

OpenVisualizer is included in the OpenWSN project [19],

which is currently the most up-to-date implementation of

6TiSCH. On one side, the Whisper controller communicates

with the ONOS controller using REST operations. Parallelly,

the controller also deploys the same REST API to receive

commands from the orchestrator (see again Figure 3).

The Whisper intelligence is located at the Whisper con-

troller. First, it needs to aggregate and compile partial in-

formation from the 6TiSCH network to be delivered to the

ONOS contoller in a NetworkUpdate message. Some network

information is directly available in the Whisper controller. For

example, the DODAG topology is directly obtained from the

4



Destination Advertisement Object (DAOs) messages, which

arrive to the Whisper controller through OpenVisualizer. How-

ever, in order to obtain nodes’ ranks the Whisper controller

require to send UpdateSolicitation messages either to the

DODAG root or to the Whisper nodes. They subsequently

will internally send unicast DODAG Information Solicitation

(DIS) messages to request the rank and report it back to the

controller. Scheduling information and 6P sequence numbers

are obtained by tracking 6P messages in the root and Whisper

nodes. Finally, links between neighbors and their PDR, are

tested and managed through source routed pings, DIS mes-

sages and 6P commands.

On the other hand, the Whisper controller also needs to

receive the control messages from the ONOS controller and

perform the required actions. In this sense, the Whisper

controller needs to calculate which primitives are needed

for a specific action. While scheduling related primitives are

mapped directly to their corresponding Whisper Southbound

message (the Whisper ONOS module performs the scheduling

management), routing related primitives requires to calculate

which primitives have to be sent and with which artificial

rank value. This is done using the algorithm Switch Parent

algorithm described in [2].

V. RESULTS

In order to experimentally validate the integration between

ONOS and Whisper, we use a small 6TiSCH network and

a wired SDN-enabled network where we test the end-to-

end routing and scheduling management use case. We have

deployed 6 OpenMotes-CC2538 nodes [20] running Open-

WSN REL-1.24.0 to build the 6TiSCH network. For the wired

network, we have emulated 7 OpenFlow-enabled switches

through Mininet [21]. In order to orchestrate both networks

we use ONOS 2.1.0 which includes the Whisper module1.

Figure 5 shows the tested network. Each sensor node sends

periodic data (1 packet every 3 seconds) to a host connected

to the switch S2 through an Intent (bold lines in the figure).

In the wireless segment, the actual physical path of the data

packets is directly mapped to the logic topology of the 6TiSCH

network. The test simply consists of performing a routing

change by the decision of the ONOS controller, first in the

wireless segment, which also includes scheduling control, and

later, a path change in the wired network.

In order to test this, we log the traffic from the wireless

sensor node T (target) to a host connected to the switch S2.

Figure 6 shows the evolution of the latency of that traffic

during the experiment, showing the latency in the wireless

segment, the latency in the wired segment and the total end-

to-end latency (TSCH+Wired). In this experiment we show

how the same ONOS controller instance can alter the paths in

both the wired and the wireless segment.

From the bootstrap of the network, the Whisper node probes

the network nodes, obtaining the full physical topology by

1All Whisper related implementation developed for ONOS and OpenWSN
is available in https://github.com/imec-idlab/whisper-repository

(a) Topology before.

(b) Topology after.

Fig. 5: Topology graph displayed in the ONOS web GUI

before and after the two path changes.

augmenting the already known DODAG with the existing

physical links. This will let ONOS know that the parent switch

for node T is actually feasible. Around t = 300 s, the ONOS

controller triggers the message ParentSwitch to change the

next hop of T from O (old parent) to N (new parent). Upon

receiving the order, the Whisper controller located in the root

of the 6TiSCH network commands the Whisper node to pro-

actively allocate cells between node T and node N beforehand

in order to perform an smooth parent switch without packet

loss. Since the new route has one wireless hop more, the TSCH

latency increases in about 1.1 s. This latency increase will

depend on the nodes’ scheduling configuration along the path.

The hacksaw pattern shown in Figure 6 for the TSCH la-

tency is a common behavior in 6TiSCH networks when timers

for sending packets are uncoupled with the TSCH period.

Also, several peaks in latency of about 1 s are observed, which

are caused by packet re-transmissions (i.e., a PHY drop). If a

packet is dropped, it will be re-transmitted in the next TSCH

frame, after 101 slots x 10 ms timeslot = 1.01 s.

Afterwards, around t = 600 s, the ONOS controller orders a

subsequent path change in the wired network (e.g., the last link

before S2 is down). In order to do this, the ONOS controller re-

compiles the path Intent and distributes the required OpenFlow

commands to each of the switches. This causes a re-route

around the ring topology that increases the latency in 125

ms (i.e., 5 extra hops). Wired links are configured each with

an artificial added delay of 25 ms in order to clearly perceive

the path change. Consequently, the accumulative delay also

increases in 125 ms.
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VI. CONCLUSION AND FUTURE WORK

Currently a number of solutions address the implementation

of SDN on IoT networks in order to obtain network pro-

grammability and flexibility. In between a fully centralized

management of the IoT network and a fully distributed one,

Whisper stays as a trade-off solution, merging both SDN

worlds. It allows to perform centralized network management

but still depends on standard distributed IoT routing and

scheduling protocol to control the nodes.

In this work we have presented a new higher-level or-

chestration architecture for Whisper that allows full end-to-

end control including the wired segments. We have shown an

implementation of a Whisper module for ONOS that allows

the orchestrator to interact with both 6TiSCH and wired

networks in order to exert an holistic network management,

without renouncing to the robustness and efficiency of dis-

tributed protocols in the 6TiSCH segment. Additionally, we

have created the Whisper Southbound protocol that allows to

shift the Whisper scope from the edge to the controller. Finally

we have tested the full system composed by an emulated

OpenFlow-enabled switch network and a 6TiSCH network

using real hardware. Results show that the ONOS controller

is able to control the routing in both network segments, and

for the case of the 6TiSCH network, also its scheduling

plane. Regarding the question, “Is SDN actually interesting

in IoT?”, these results seem to point towards: “SDN is not

only interesting, but also essential for end-to-end flexibility”,

and may open a promising research path on efficient IoT

management, if not for all IoT deployments, definitively for

IoT legacy deployments. The integration with other SDN-

on-IoT approaches also remains as an interesting research

direction.
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