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Abstract—Edge nodes are crucial for detection against multi-
tudes of cyber attacks on Internet-of-Things endpoints and is
set to become part of a multi-billion industry. The resource
constraints in this novel network infrastructure tier constricts
the deployment of existing Network Intrusion Detection System
with Deep Learning models (DLM). We address this issue by
developing a novel light, fast and accurate ‘Edge-Detect’ model,
which detects Distributed Denial of Service attack on edge nodes
using DLM techniques. Our model can work within resource
restrictions i.e. low power, memory and processing capabilities,
to produce accurate results at a meaningful pace. It is built
by creating layers of Long Short-Term Memory or Gated
Recurrent Unit based cells, which are known for their excellent
representation of sequential data. We designed a practical data
science pipeline with Recurring Neural Network to learn from
the network packet behavior in order to identify whether it
is normal or attack-oriented. The model evaluation is from
deployment on actual edge node represented by Raspberry Pi
using current cybersecurity dataset (UNSW2015). Our results
demonstrate that in comparison to conventional DLM techniques,
our model maintains a high testing accuracy of ~99% even
with lower resource utilization in terms of cpu and memory. In
addition, it is nearly 3 times smaller in size than the state-of-art
model and yet requires a much lower testing time.

Index Terms—Edge computing, Deep Learning, Internet of
Things, DDoS, Recurrent Neural Networks

I. INTRODUCTION

The Symantec 2019 Internet Security Threat Report [1] states
that recently Internet of Things (IoT) has become a new
infection vector for cyber attacks such as Distributed Denial
of Service (DDoS). However, attack detection is still an open
and challenging problem because of dynamic, distributed,
heterogeneous, and collaborative nature of the IoT devices.
With their resource constraints, a growing body of work
have postulated that threat detection function is best suited
to be pushed to the edge nodes as first line of defense [2].
However, the resource-intensive algorithms of Deep Learning
models (DLM) are unsuitable for the newly emerging network
infrastructure tier i.e. edge nodes.

Standard security datasets such as KDD Cup 99 [3], MIT
Lincoln Laboratory DARPA 2000 [4]], CAIDA 2010 [5],
and TUIDS DDoS dataset 2012 [[6] are outdated with the
advancement of computer network protocols and equipment.
According to best of our knowledge, a comprehensive dataset
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for the IoT or edge computing paradigm is currently nonex-
istent. From the state-of-art on attack detection using DLM,
DeepDefense model [7] produced some of the best results
in terms of prediction accuracy. Their efforts determined that
Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) are the most effective DLM for analyzing network
packets using the UNB ISCX Intrusion Detection Evaluation
2012 DataSet (now onwards ISCX2012 for short) [8].

Motivated by these inadequacies, we have designed the
Edge-Detect model to enable DDoS detection on edge devices
using light yet powerful and fast DLMs built by stacking
the FAST cells [9]]. The term ‘light’ emphasizes the resource
requirements and ‘fast’ denotes the processing performance.
Edge-Detect is targeted towards the IoT security architect
community, since the intended purpose is to safeguard IoT
endpoints. Fig. [T brings to contrast the prior DDoS detection
point located on the cloud server, which suffers from crucial
detection latency. Being deployed at the edge node, our model
becomes a faster path to examine the sequence of IoT network
packets for potential attack. We chose UNSW2015 [[10] dataset
for our evaluation, because it fulfilled all crucial criteria such
as relatively current compared to other dataset, clear separation
between training and testing sets, and correct labels for the
network features.

The input for our DLM pipeline is a sequence of individual
packets in the packet capture file, which are collated as win-
dows with fixed length. This transformation is accompanied
with reduced features and modification of attack label to
signify whether an attack occurred in that particular window.
These window sequences are processed through DLM which,
in essence, is a network of LSTM or GRU cells. Our results
verify that our model can outperform the state-of-art on
multiple levels namely accuracy, precision, size (Kilobytes)
and resource performance. To understand the model behaviour
and deployment issues we are evaluating it on Raspberry Pi
3 and observed that other regular processes on the edge node
are not starved. It maintains a high testing accuracy of ~99%
even with lower resource utilization, and yet requires a much
lower testing time.

Edge-Detect model is a significant improvement in the state-
of-art because of few important reasons. First, the light FAST
cells have not been used before to solve anomaly detection
in network security problem in a low resource computing
environment to the best of our knowledge. Secondly, al-
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Fig. 1. Proposed location of Edge-Detect in comparison to the previous detection point in the cloud side. Transferring data from the point of attack up the
hierarchy to cloud server causes crucial detection delays. Edge-Detect model (blue box) represents the edge node with added capabilities of our light and
fast recurring neural network (RNN) module. The packet capture files from the IoT endpoints become the input, which are parsed and analyzed for detection
purposes. This detection results can help drive the recommendation module for corrective actions.

though several DLMs are available for IoT, limited details
regarding model development, deployment and resource usage
is available according to our literature review. Hence, it is
very difficult to reuse and apply their work by IoT security
architects with limited man hours or DLM skills. We are
investigating practical design issues such as DLM network
layers and feature engineering to build a realistic model and
presented the validation results in this paper. In addition, our
model is available in the public repository [11] and can be
deployed by IoT security architect with minimal modification
or training.

The main contributions of this paper are listed below:

1) Design a light and fast Deep Learning based Edge-
Detect model by stacking layers of LSTM and GRU
cells for resource-constrained computers.

2) Model validation on a standard network security
UNSW2015 dataset and conducted trade-off analysis on
accuracy performance, and cost.

3) Highlight accuracy and system performance issues by
deploying our DLM on an actual edge node.

This paper has four main sections. In Section [[I, we are
presenting the summary of state-of-art about DLM and cy-
bersecurity analytics. Section |llI| is about Edge-Detect model
design. Model evaluation and discussion is part of Section
We are concluding with the highlights of our work in Sec-

tion [V]

II. RELATED WORK

The earliest works on statistical techniques for intrusion
detection in network packets [12] and [13] appeared about
two decades ago. The first comprehensive survey article [14]
addressing the anomaly detection problem using machine
learning techniques, appeared about a decade ago and called it
“Cyber-Intrusion Detection”. The techniques suggested in that
article includes Bayesian Networks, Neural Networks, Support
Vector Machines (SVM), Clustering and Nearest Neighbor.
Many early challenges in applying machine learning (ML)
techniques for network intrusion detection system (NIDS)
include understanding the threat model, keeping the model

scope narrow and lack of training dataset among others as
explained in [15].

Early survey article [16] to discuss specifically about the
‘network’ intrusion detection within the anomaly detection
area focused on the techniques, systems, datasets and tools
related to NIDS. They have categorized them in terms of
capability, performance, dataset used, matching and detection
mechanisms, among others. A few key challenges presented
in the paper include run-time limitation, dependence on the
environment, nature of the anomaly and lack of unbiased
dataset. Although DLM can solve some of these problems,
but the need for a quality dataset which reflects the operating
‘symptoms’ of an attack is still an unsolved issue.

RNN model comparison with different ML methods such
as J48, artificial neural network, random forest, SVM for the
NSL-KDD dataset [17] is shown in [18]. The benchmark is an
improved version of the earlier KDD dataset [3]. They have
evaluated the impact on accuracy w.r.t. classification (binary
and multiclass), number of neurons and diverse learning rate
reaching accuracy values of about 83%. We found out that
traditional ML or shallow neural networks are impractical for
large network traffic data which is set to reach the orders
of zettabytes by 2021. In contrast, DLM eliminates the need
for domain expertise by obtaining abstract correlations and
reduces human efforts in pre-processing.

DeepDefense model [7] is the earliest prominent work to
use RNN based DLM for this problem domain. Their solution
is based on RNN cells such as LSTM and GRU, because
they have proved to be suitable with other sequential data
problems such as speech recognition, language translation,
speech synthesis among others. They have evaluated their
DLM on the UNSB ISCX Intrusion Detection Evaluation 2012
dataset. We have advanced their work by building two different
light and fast network models which are deployed on an actual
edge node and achieving comparable accuracy margins on the
low resource platform. Although several prior work exist for
earlier datasets, we are ignoring them here for multiple reasons
such as: datset relevance, less accuracy w.r.t. current models,
inability to reproduce results which renders it unsuitable.



Recent work has proposed DLM for the cybersecurity
in IoT networks. The models provided very good detection ac-
curacy of 97.16%. In another excellent work [20]], the authors
have developed ‘deep hierarchical network’ by cascading two
types of networks (LeNet-5 and LSTM). They have applied
their model on the CICIDS2017 dataset, achieving an
accuracy of about 90%. However, they claim that their model
can automatically select temporal and spatial features from
existing input traffic without providing substantial details,
which is a hard problem even in the ML community.

A prominent effort for social IoT is using distributed
deep learning. Their model contains three hidden layers for
feature learning and soft-max regression (SMR) for the clas-
sification task. In comparison to their distributed approach
involving participating nodes exchanging multiple parameters
which is computationally intensive, our focus is a centralized
approach of maximizing the capabilities of each node. There
have been other significant efforts in using DLM for attack
detection in allied fields such as Software Defined Networks,
such as [23], [24] and [25]]. However, we have limited our
focus to IoT and edge devices for brevity.

III. EDGE DDOS DETECTION PIPELINE

Built using standard data science techniques, the main pipeline
stages in Edge-Detect are: (1) pre-processing, (2) neural net-
work model design, (3) training and optimization, and (4)
deployment on edge device. These stages are illustrated in
Fig. 2] The pre-processing stage uses the network packets
from the UNSW2015 dataset to select significant features
and convert individual packets into window sequences. Stage-
2 involves DLM design using the provably fast and light
FAST cells. They are suitable in comparison to the standard
RNN cells such as LSTM and GRU, due to the residual gate
connection [9]]. Stage-3 in pipeline consists of training and
optimization of RNN model from Stage-2. Finally, the model
is tested for deployement on an actual Raspberry Pi node
to detect packets undergoing DDoS attack from the normal
packets.

A. Stage 1: Pre-processing

UNSW2015 dataset is a network packet capture (pcap) CSV
file, which is correctly pre-labeled as normal or attack-
oriented. We are reducing it into a series of windows with
reduced features, due to the limited processing capabilities of
edge node. From the 49 features available in ICSX2012 (prior
dataset), produced remarkable results by applying DLM
on the 20 features. To determine whether further reduction
in the number of features is even possible, we used the 11
features of as our reference. We are summarizing this
feature selection process for the conciseness in this paper. We
performed a standard pre-processing technique called “one hot
encoding” on the feature termed as “state” in the dataset to
replace it by 15 additional features based on various category
values.

To build the comprehensive model about the network pat-
terns in the entire dataset, it is important to ‘learn’ the charac-
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Fig. 2. Edge DDoS detection pipeline consisting of these main steps: pre-
processing, developing neural network model based on FAST cells, model
training, optimization and testing on an edge device.

Stage 4: Deployment on Edge Device

Normal Packet

‘Ah\ ’Ah\l
\'-.') \"n

>'

DDoS Packet
Raspberry Pi )/

teristics from all preceding windows irrespective of the attack
occurrence. This issue is addressed with the sliding window
approach, where each window is moved by a single packet
to analyze whether the prior (7-1) packets have led to an
attack in the current packet. This is shown in Fig.[3] A single
window consisting of T packets with n features is reduced
to n’ features with the binary label for the entire window
depicting the occurrence of DDoS attack in the last packet.
This means that applying DLM on this window is equivalent to
learning from the information of its (7-1) constituent packets
to determine the attack occurrence in the T-th packet. The
m packets produce a total of (m — T + 1) windows due to
these sliding windows. Summarizing from the initial 49 (= n),
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Fig. 3. Packet to window transformation: In the Stage 2, input data from UNSW2015 dataset is transformed into window sequences using sliding window

approach for RNN model training.

the transformation in this stage yields to 25 (= n’) distinct
features. Overall, at the end of this stage from the initial size
of (m x n), the dataset at the end of this stage will have these
(m — T + 1) number of windows with each of them of the
size (T x n').

B. Stage 2: Edge-Detect Model Design

Our model is built using layers of FAST cells which are
either LSTM or GRU. In fact, GRU is a variant of LSTM.
The advantage of using LSTM and GRU cells is that each
unit ‘remembers’ the existence of specific feature present in
the input stream, which makes them successful for sequential
applications. These LSTM/GRU layers are followed by a dense
layer of 128 cells and finally the output layer as shown in
Fig.[d The activation functions used are ‘tanh’ for LSTM and
GRU layers, ‘ReLU’ for dense layer and ‘sigmoid’ for output
layer in all their models. We used the ReLU function as the
activation function of the hidden layers. This is a non-linear
activation function that can enhance the model performance by
expressing a complicated classification boundary better than a
linear activation function.

To signify whether it is associated with an attack, each
packet is labeled in binary values of 1s and Os in the (input)
dataset. This identification is inferred from probability values
when applying the model. In our case, the output layer assigns
certain probability values depending upon the weights learned
from the previous layer including up to the dense layer. In
order to determine whether the packets are normal or attack-
oriented, Edge-Detect model compares this probability with a
certain threshold value. The results reported in the paper are
with current value set as 0.8. The output layer is labeled as
“DDoS => (1-p)” as shown in Fig.

IV. MODEL EVALUATION

We are evaluating the standard metrics such as accuracy, loss,
precision and recall for the UNSW2015 dataset on edge node
represented by Raspberry Pi 3, as represented by Stage-3 and
4 in Fig. 2] The goal is to identify the most suitable DLM
which can meet accuracy as well resource usage criteria for
this newly emerging infrastructure tier.
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by a batch normalization layer to accelerate network training
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& represents tanh, 7 represents relu, represents sigmoid.

A. Experimental Results

The system-on-chip in our Raspberry Pi is Broadcom
BCM2837 with quad-core ARM Cortex-A53 operating at
frequency of 1.2GHz. In addition, it has a GPU of Broadcom
VideoCore IV and RAM of 1GB LPDDR2 running at 900
MHz. For training, we are using Google Cloud services, where
the CPU configuration is Intel Haswell with 8 virtual CPUS
with 32 GB memory and GPU Tesla p100 with 100 GB HDD.
We used Keras TensorFlow [26]] to enhance the FAST cells
and, stack them in layers of LSTM and GRU for developing
powerful networks with better accuracy.

We begin our investigation by regenerating the results of
DeepDefense model [7] using UNSW2015 dataset, since it
was based on the prior ISCX2012 dataset. Although our
study began with the DeepDefense models, it is crucial to
point out here that it is impossible to deploy them on the
edge (Raspberry Pi) node. This is true even after feature
engineering or scaling down the model by reducing number of
cells/layers. During our preliminary investigation, we observed
that these models are completely depleting the swap memory
on this resource-constrainted platform. The authors have also



TABLE I
PERFORMANCE EVALUATION OF EDGE-DETECT RESULTS

Cell type Accuracy | Loss | Precision | Recall
FastRNN 99.6% 4% 99.5% 99.75%
FastGRNN 99.5% 2.4% 99.5% 99.55%
TABLE 1T
COMPARING EDGE-DETECT WITH THE CORRESPONDING DEEPDEFENSE
MODELS

Category Cell type Weight Accuracy | Layers | Cells
DeepDefense LSTM 1684 KB 98% 4 64
DeepDefense GRU 1314 KB 98% 4 64
Edge-Detect FastRNN 598 KB 99% 1 128
Edge-Detect | FastGRNN | 609 KB 99% 1 128

concurred that building a light-weight model was not their
intended purpose.

Our model evaluation results for the key performance
metrics namely accuracy, loss, precision and recall on the
Raspberry Pi is summarized in Table [, The comparison with
the state-of-art is shown in Table [lIl In contrast to the high
memory requirement (third column) of DeepDefense model,
we have achieved a size reduction of 66% with slightly better
accuracy (fourth column). The weight drop is due to the
adequacy of single layer in our model, whereas four layers
requirement in their model. This is crucial for the platform
resource restrictions, since it is impossible to accommodate
large number of computations to achieve reasonable accuracy.
This table also shows the cell types used for each model in
the second column. Table [[TI] presents the AUC, Kappa and
F1 score for our model results as represented by the last two
rows of Table [

B. Resource Statistics

Motivated with our accuracy results, we performed a deeper
exploration to identify the most suitable and practical DLM
for DDoS detection on the edge node. This second part
of evaluation involves understanding the hardware execution
parameters and trends. Using ‘top’ (Linux utility), we are
measuring the average utilization of cpu per core, resident
and virtual memory in order to monitor the processor, swap
memory and RAM while DLM is executing on the Raspberry
Pi. We are using Linux ‘time’ command to gauge the model
testing time. These evaluations shown in Fig. 5] demonstrate
that comprehensively FastGRNN is slightly better suited for
our cyber-defense application. Our experiments also revealed
that Edge-Detect provides enough contigency for concurrent
execution for other processes on the Raspberry Pi. We have

TABLE III
RESULTS FOR EDGE-DETECT MODELS BUILT USING CELL TYPES:
FASTRNN AND FASTGRNN. BOTH THE MODEL INSTANCES ARE SINGLE
LAYER WITH 128 NEURONS.

AUC
99.96%

KAPPA
99.36%

F1SCORE
99.71

Average CPU and Memory Usage

FastGRNN 1 FastGRHMN2Z [ FastRNN 1 [ FastRNN 2
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(a) Hardware resource statistics from Raspberry Pi for the two variants
of our Edge-Detect model built using FastRNN & FastGRNN cells
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(b) Model testing time by executing Edge-Detect model on Raspberry Pi

Fig. 5. Resource statistics to study the impact of Edge-Detect model on the
memory and processing capabilities of the platform. Since both models have
similar accuracy, resource usage is another dimension to explore for model
selection.

done preliminary experimentation in this direction, however
detailed investigation is beyond the scope of this paper.

C. Discussion

The first main concept emerging out of the evaluation is that
Edge-Detect has similar accuracy results (~99%) for both
the cell types FastRNN and FastGRNN. This observation is
in alignment to the original FAST cell work [9]. Secondly,
windows with packets having fewer features is achieving
comparable accuracy w.r.t. DeepDefense models on the newer
dataset. By doing so, we reduce the number of required
computations on the edge node and improve training time. In
addition, the experiments verify that testing accuracy increases
after training the models with a selected feature dataset. This is
sustainable for the edge node, because loading windows with
all the features is resource-intensive and hence, impractical
for the Raspberry Pi. Thirdly, high number of layers does
not necessarily translate into better accuracy. For example,
64 neurons can produce similar accuracy and precision in a
single layer as compared to four layers. Overall, character-
istics of Edge-Detect defies important processor and memory
utilization concepts of prior DLM which has made it bulky for
resource-constrainted platform. Our work also evolved towards



the importance of feature engineering, which involves careful
hyper-parameter tuning of learning rate, decay rate, batch size,
among others. However, this is not the main objective of the
paper and is beyond the current scope.

V. CONCLUSION

Deploying cyber-defense solutions based on standard NIDS
techniques for IoT endpoints on network edge is a topic
of immense current interest among academic and industry
researchers. To analyze the exploding volumes of multi-modal
network packet data, the most prevalent technique is anomaly
detection based on ML/DLM. An appropriate deployment is
closer to the IoT attack surface i.e. edge nodes. However,
their minimal resources has imbalanced the trade-offs between
prediction cost, deployment speed and accuracy. In order to
overcome such limitations of the existing models, it is critical
to develop new designs for resource-constrainted edge com-
puting. In this paper, we are proposing Edge-Detect: a light
and efficient DLM-enabled DDoS detection with edge nodes
as deployment point. Built using temporally sensitive neural
networks such as LSTM and GRU, it learns from the network
packet behavior to identify whether it is normal or attack-
oriented. With minimal number of layers and light FAST
cells, it can work within resource restriction to produce very
accurate results with minimum training cost. We designed a
practical data science pipeline based on RNN layers, validated
it on a recent bulky UNSW2015 dataset and showed success-
ful deployement. The investigation results demonstrate that
in comparison to conventional DLM techniques, our model
maintains a high testing accuracy of ~99%, while operating
within the limited cpu resources such as memory, utilization
and testing time.

Our future work involves developing a mitigation frame-
work based on Edge-Detect design. We also plan on au-
tomating the feature engineering and simplifying the training
procedures of our model. Secondly, we want to incorporate
finer details of the packet features to make it more robust
for a larger dataset. Finally, it is important to build a dataset
which captures network behavior specifically for the IoT and
edge networks.
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