2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

A Deep Reinforcement Learning-based

Resource Management Scheme
for SDN-MEC-supported XR Applications

Bao Trinh
Insight SFI Research Centre for Data Analytics
Dublin City University
Dublin, Republic of Ireland
bao.trinh @insight-centre.org

Abstract—The Multi-Access Edge Computing (MEC)
paradigm provides a promising solution for efficient computing
services at edge nodes, such as base stations (BS), access points
(AP), etc. By offloading highly intensive computational tasks
to MEC servers, critical benefits in terms of reducing energy
consumption at mobile devices and lowering processing latency
can be achieved to support high Quality of Service (QoS) to many
applications. Among the services which would benefit from MEC
deployments are eXtended Reality (XR) applications which are
receiving increasing attention from both academia and industry.
XR applications have high resource requirements, mostly
in terms of network bandwidth, computation and storage.
Often these resources are not available in classic network
architectures and especially not when XR applications are run
by mobile devices. This paper leverages the concepts of Software
Defined Networking (SDN) and Network Function Virtualization
(NFV) to propose an innovative resource management scheme
considering heterogeneous QoS requirements at the MEC server
level. The resource assignment is formulated by employing a
Deep Reinforcement Learning (DRL) technique to support high
quality of XR services. The simulation results show how our
proposed solution outperforms other state-of-the-art resource
management-based schemes.

Index Terms—SDN, NFV, Edge computing, QoS, extended
Reality

I. INTRODUCTION

The fast pace of technology advancements in both hardware
and software [1] [2] has provided support for many innovative
applications, including eXtended Reality (XR) ones. XR ap-
plications can be deployed on devices such as mobile phones,
smart glasses, etc., but they require high computing power,
storage capacity, and network bandwidth in order to guarantee
good Quality of Service (QoS) and consequently high user
Quality of Experience (QoE). For example, in Augmented
Reality (AR) applications, digital information such as text
or virtual objects are seamlessly integrated with real world
objects to achieve immerse experiences. Such applications
have employed deep learning-based object detection algo-
rithms, such as: Fast R-CNN [3], SSD [4], YOLO [5], [6]
that need high intensive computing and storage capabilities.
Such demands can overwhelm the mobile devices with limited
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processing power, storage and battery capacity. A possible so-
lution to address this issue is to offload the intensive computing
tasks to cloud servers, conserving energy and reducing the
processing needs at devices. Another example includes Virtual
Reality (VR) applications with 360° video streaming services.
Such applications require both high bandwidth and low latency
network connectivity for streaming rich video content [7].

The Mobile Cloud Computing (MCC) paradigm [8] was
introduced to help in these situations. However, despite their
many advantages in terms of large amount of storage capacity
and processing power, MCC systems suffer from excessively
long latency for mobile applications. Also, network bottleneck
can occur at the backhaul due to the high bandwidth traffic
required by users.

To address these MCC limitations, Multi-Access Edge
Computing (MEC) [9] was introduced to provide computing
capabilities at network edge, within the Radio Access Network
(RAN), in close proximity to the mobile user and achieve
latency and backhaul network traffic reduction. Various ap-
plications can benefit from deploying MEC, such as: Internet
of Things (IoT) system [10], [11], increasing QoS/QoE for
video delivery [12], [13]. However, in comparison to MCC,
MEC servers have limited resources in terms of storage and
computational power. There is a need for MEC servers to
manage these resources and solutions are needed, including
for resource-hungry XR applications.

The European Telecommunication Standards Institute
(ETSI) has established an industry specifications group (ISG)
to define MEC features to support a wide range of ap-
plications [9]. However, the existing work is dedicated to
non-computation-intensive applications, mostly bandwidth re-
source demanding, and to applications with homogeneous QoS
requirements. There is a gap for solutions to optimize the
resource utilization for high computation demanding applica-
tions such as XR with different QoS levels.

This paper proposes a novel Deep Reinforcement Learning-
based Resource Management scheme (DRL-RM) for SDN-
enhanced MEC architectures to support high quality XR
applications at mobile devices (MD). DRL-RM addresses
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challenges in terms of both network communication and
computing while guaranteeing heterogeneous application QoS
requirements. The main contributions of our proposed DLR-
RM are as follows:

« We employ SDN and NFV technologies to orchestrate
multiple wireless access technologies when inter-working
with the aim to increase the data traffic volume. Also, by
integrating the SDN controller with MEC servers, unified
control plane interfaces are provided by decoupling the
control plane from the data plane without placing new
infrastructures. With global network control, intelligent
traffic steering and efficient resource management can
be achieved to improve the overall resource utilization.
Furthermore, by enabling NFV in could-computing and
MEC servers, different network functions supporting XR
applications can be programmed on servers flexibly with
reduced provisioning cost.

o We formulate the resource utility optimization problem
in the context of a Markov Decision Process (MDP)
framework. The optimization problem considers both
overall resource utilization with heterogeneous QoS guar-
antee via computing task migration and radio bandwidth
slicing. Then the Deep Reinforcement Learning technique
is employed to derive the close-to-optimal resource as-
signment for each incoming requests from XR users with
regards to the heterogeneous QoS requirements.

o The proposed scheme is evaluated in a simulation envi-
ronment and benchmarked against other state-of-the-art
MEC resource management algorithms.

The rest of this paper is organized as follows: Section II
discusses some relevant works in MEC resource management.
The overall system architecture is introduced in section III.
The proposed DRL-based algorithm is described in section
IV and the simulations and results are discussed in section V.
Conclusions and future works end the paper.

II. RELATED WORKS

This section discusses some state-of-the-art resource man-
agement schemes for various use cases and employing a MEC-
based architecture.

The MEC paradigm has received much attention over last
several years in both academia and industry. As already
mentioned, a MEC Industry Specifications Group (ISG) was
established to standardize the adoption of MEC into RANs
[14]. The authors in [15] proposed a system architecture for
MEC server based on SDN and NFV concepts. However, none
of these proposals introduced any mechanism for supporting
heterogeneous resource requirements.

The authors of [16] proposed a SDN-based resource man-
agement scheme for connected and autonomous vehicles
(CAV) networks. The computing and storing resource manage-
ment is formulated as an optimization problem that maximizes
an objective network utility. The simulation results show how
the proposed scheme outperforms alternative solutions in terms
of network throughput. A similar solution that supports vehic-
ular networking by cooperating with MEC is proposed in [17].

This a scheme, based on the SDN concept, mainly focuses on
improving the mobility management of nodes, whereas also
guaranteeing QoS expectation. A SDN-based radio resource
management framework for eNodeB is proposed in [18]. In
this scheme, the management scheme that is executed at
the SDN controller is responsible for coordinating distributed
resources over multiple MEC servers.

The researchers authors of [19] proposed a joint solution
that considers both an offloading scheme at mobile devices and
a resource allocation algorithm at MEC server. The numerical
simulation results show how such proposed scheme performs
closely to the optimal solution in terms of both offloading
decision and resource allocation. [20] considered the multicast-
aware resource allocation for MEC system that optmize both
computing and caching scenarios.

In summary, most of the existing works mainly focus on
managing computing, storage, and bandwidth resources at
MEC server separately. However, XR applications require a
combination of these three resource types at different levels.
This article bridges this gap by proposing a resource manage-
ment scheme that takes into account all of these three resource
types for XR users.

III. DRL BASED RESOURCE MANAGEMENT FOR
SDN-BASED MEC SYSTEMS

A. System Model

We consider a number of base stations (BS) connecting with
a single MEC server that is located at the edge of core network
as illustrated in Figure 1. Each BS is directly connected to
the MEC server through a well-provisioned wired network
such as we can ignore the communication latency between
them. The serving MEC server also has connections with the
central cloud and another MEC server in order to migrate the
computation tasks. Although the radio resource management
is conducted at BS, we assume that the MEC system might
be able to monitor the radio resource status via the interface
between MEC server and BS.

The MEC server is able to provide computation offloading
service to multiple users simultaneously. Different from other
scenarios, XR applications normally require high computation
and bandwidth resources for running highly computational
tasks and/or streaming video content to multiple devices. So,
the computing resources made available at each MEC server
includes computing/storing resources plus the bandwidth as-
signed for a specific request. After receiving the offloaded task
from a XR user, it will execute the task on the behalf of the
user, and finally return the output result back to the user. The
MEC server is also responsible for streaming the video to VR
users.

B. Problem Formulation

Denote B,,az, Cmaz, and Sp,.. as maximum network
bandwidth, computing and resource capacity at MEC server,
respectively. Figure 2 illustrates the network resource man-
agement architecture based on the concept of SDN/NFV that
includes the following components:
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Fig. 1. Example of general architecture of an MEC system

TABLE I
NOTATIONS & DEFINITIONS

Bmaz Maximum bandwidth at MEC server
Cmaz Maximum computing capacity at MEC server
Smazx Maximum Storage capacity at MEC server
(bi,cirsi) | - Resourc; required fo.r request ¢ '
P in terms of bandwidth, computing, storage capacity
Lt Latency required for request ¢
0 Actor network parameter
w Critic network parameter
U Resource utility value of MEC server
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Fig. 2. SDN/NFV based resource management at MEC server

e Physical resources consists of bandwidth, computing, and
storage modules. These are the physical resources related
to virtual machine, storage and network bandwidth, re-
spectively.

o Virtualization layer refers to the abstraction of the phys-
ical resources and runs on top of a hypervisor platform.

o Virtual resources includes vCompute, vStorage, and

vNetwork modules. The Data Plane includes the VNFs
which are controlled and managed by the SDN-controller
via Southbound API using the OpenFlow protocol. MEC
Applications communicates with SDN-Controller via
Northbound API to monitor and manage the flow tables
in the data plane.

o Virtual network function (VNF) manager module man-
ages the life-cycle of VNFs including instantiation, up-
grading, termination.

e NFV Orchestrator module is responsible for coordinating
the network bandwidth, computing, and storage resource
to provide cloud-based services and applications.

We define the QoS requirement for an incoming request

i as a set of Q; = {b;, s;,¢;} where b;, s;, and ¢; denotes
downlink bandwidth, storage, and computing, respectively.
Then the queue at MEC server with heterogeneous QoS levels
is specified by Q = Q1,Qs2,...Qr where T is the queue
length. For each QoS level request, the MEC server decides a
corresponding set of resources in terms of computing, storing
and bandwidth. A computing unit can be a set of containers
or a virtual machine (VM) with specified Central Processing
Unit (CPU) and memory. For generalization, we denote Ci,,q,
as the maximum unit of computing resource at the MEC
server. For storing the offloaded data for further processing
or video streaming, the MEC server needs to allocate some
storage capacity. We denote S,,,, as the maximum storage
that MEC server is capable of allocating. Finally, we assume
that the bandwidth is reused and sliced among the BSs
connected to the same MEC server. Then, the maximum
bandwidth that MEC server can allocate to users is B,,q-

MDP-based Problem Formulation

In order to obtain optimal computing and storing resource
allocation while balancing the trade-off between increasing
the computing/storing resource utilization and reducing the
task migration cost, we formulate the problem of resource
management by using the MDP framework as follows:

« State space: including QoS set of incoming request (); =
{bi, ci,s;} and L; as the latency required by such request
before it moves to the next BS.

o Action space: optimal corresponding resource allocation
set including {b;, é;, $;} OR migrate the incoming request
to central cloud / other MEC server.

o Reward function: the reward value is used as feedback
of the quality of chosen action. In this paper, we define
reward value as resource utility U; minus the task migra-
tion cost M; as follows:

ri =U; — M,; ey
The formula to of U; can be derived as:
B'{'emain Cremain Sf'emai7n
Ui — 2 3 3 2
B7TL(L£ + Cmaac + SmaT ( )

where Bfemain  (Cremain and Sremain refer to current
remaining resources managed at the MEC server at time
step ¢. For generalization, we consider M; as a scalar
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value referring to the migration cost, that can be extra
latency or bandwidth consumption.

C. DRL-RM Algorithm

Figure 3 illustrates the Long Short Term Memory (LSTM)
Actor Critic (AC) based architecture for solving the MDP.
LSTM is a powerful artificial neural network architecture that
is widely used in prediction and classification, such as in time
series data [21]. We employ LSTM in this paper to learn
the temporal regularity of continuous state space in terms of
bandwidth, computing, storage, and required latency of users.
The details of LSTM AC are as follows:

o Representation network incorporates a fully connected
(FC) layer and an LSTM layer. This network is respon-
sible for detecting the temporal correlation of states. The
FC layer takes the buffer B as input and then feeds
the extracted feature tensor to the LSTM layer. The
output of the LSTM layer is the variation regularity of
states from the last 7' observation vectors in the buffer.
After T updates, last LSTM cell outputs a completed
representation of the environment h; that is then used as
input for both Actor and Critic networks.

e Actor network comprises one FC layer that takes the
output from the representation network and generates
actions for the current states that is specified by a Softmax
function. The output of Softmax function is a probability
of different available actions (a;|s¢). Then, the taken
action is sampled following 7(a;|s).

e Critic network estimates value of current state and in-
corporates two FC layers. The first FC layer takes the
h; from representation network and extract value-related
features. Then, the second FC layer output the estimated
state value V' (s;)

Algorithm 1 presents the details of the DRL-RM scheme.
Denote # and w as Actor and Critic network parameters,

respectively. We use a buffer B with length 7" to concatenate
a series of states to feed into LSTM layer. We initialize the
buffer via running a loop with 7' iterations to take a series of
states in to B. From the beginning of each loop, all states in
the buffer B is concatenated and fed into the representation
network. The output h; is then considered as input of both
critic and actor network. The action a; is taken via sampling
from the output of actor network and the next state s; is
then appended into the buffer B. The output of critic network
is the estimated value of V'(s;). Next, the agent continues
concatenating the data from buffer B to form another input
Si+1 to representation network. The value V(s;) is then
estimated from the output of critic network. We calculate
the Temporal Difference (TD) error § via using equation
0 = ri + YV (st41) — V(st). aa and a¢ are learning rate
of actor and critic network, the values of § and w are updated
according to equation (3) and equation (4), respectively.

Algorithm 1 DRL based Resource Allocation Algorithm

Input: Incoming request
Output: Optimal computing/storage/bandwidth resources, B
Initialisation
Actor network parameters 6
Critic network parameters w
An empty replay buffer B of length T’
for i =1to T do
Randomly choose an action a; € A and perform a;
The agent takes the next state O;
Append O; to buffer B
end for
while True do
Concatenate states in the buffer B to form s; =
{Ot—T; ey Ot—l}
11:  Feed O, to the representation network and take the
output hy
12: Feed h; to Critic network and calculate V (s;)
13:  Feed h; to Actor network and take 7(a¢|s;) and perform
Q¢
14:  The agent receives the reward r, and gets the new
observation O,
15:  Append O; to the buffer B
16:  Concatenate observations in the buffer B to form
St+1 = {Ot7T+17 s Ot}
17 Feed O;41 to the representation network and take the
output hyyq
18:  Feed hyy; to Critic network and calculate V' (s;41)
19:  Calculate Temporal Difference (TD) error § = r; +
YV (st41) = V(se)
20:  Update 6 of the Actor network following equation (3)
21:  Update w of the Critic network following equation (4)
22: end while
23: return P

R AN A ol

4

The parameters 6 for Actor network and w Critic network
can be updated with the following equations:

0+ 0+ asdVinm(at|st, 6) 3)
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W+ W+ acdVi(s, w) “4)

IV. SIMULATION TESTING

This section describes how the proposed DRL-RM was
evaluated in comparison with alternative approaches.

A. Simulation Settings

We have implemented the proposed DRL-RM solution by
using Mininet version 2.2.2 [22] with Ryu-SDN controller [23]
on Ubuntu 18.0 LTS. The DRL-RM algorithm is built upon
using the Tensorflow library [24] for Python.

We assume that the incoming requests from XR devices
have heterogeneous QoS requirements in terms of bandwidth,
computing and storage. In more details, the bandwidth re-
quirements vary between 1 — 25 Mbps. The requirements
for computing can be specified in terms of Virtual Machine,
Container or Central Processing Unit (CPU)-related metrics.
We use Gigabyte to describe the storing requirements. We
assume that such values are then normalized in the 0—1 range,
so that they can be fed into a neural network as inputs. The
number of XR devices is set to 20.

To evaluate the performance of DRL-RM, we take into
account two key metrics: the cumulative resource utility over
time as described in equation (1) and the average throughput
achieved at XR devices.

Finally, the proposed DRL-RM is benchmarked against the
following two alternative resource management-based solution
for MEC:

« DRL-CAV [16]: A SDN-based approach for resource
management for MEC systems. However, DRL-CAV is
designed for small data size exchange in Automated
Vehicle networks.

e Greedy method: This method always migrate the low QoS
requests to the central cloud or other MEC server and
only serve high QoS levels. We consider Greedy method
as baseline to compare against.

B. Simulation Results

Figure 4 illustrates the average throughput measured at XR
devices over time. DRL-RM achieves an average throughput
of 16.27Mbps, in comparison to 11.51Mbps and 15.04Mbps of
SDN-CAV and greedy methods, respectively. The main reason
why the greedy method achieves better performance than
SDN-CAV is due to the priority of serving high QoS requests
and migrate the low QoS ones to other servers. In contrast, our
proposed solution DRL-RM takes into account the wide range
of heterogeneous QoS requirements and performs appropriate
resource management. Throughout the learning phase, DRL-
RM takes a close-to-optimal decision about serving or migrat-
ing the request. DRL-RM’s average throughput is higher with
41.3% and 8.1% in comparison to those of SDN-CAV and
greedy methods, respectively.

Figure 5 illustrates the overall utility value of all schemes.
It is observed that, the greedy method has the most unstable
results due to the prioritizing high QoS level requests and

—— DRL-RM
2 SDN-CAV
—e— Greedy

Throughput (Mbps)

13 2000 4000 6000 8000 10000
Time step (second)

Fig. 4. Average throughput measured at XR devices

—— DRL-RM
SDN-CAV
—+— Greedy

Resource Utility value

13 2000 4000 6000 8000 10000
Time step (seconds)

Fig. 5. Resource utility

TABLE 11
SIMULATION RESULTS.

Average Improvement
DRL-RM 27.74
Resource utility SDN-CAV 20.90 32.7%
Greedy 16.21 71.12 %
DRL-RM 16.27
Throughput (Mbps) | SDN-CAV 11.51 41.3%
Greedy 15.04 8.1%

migrating the low QoS ones to the cloud server or another
MEC server. This results in using all resources. On the
other hand, SDN-CAV scheme does not take into account the
bandwidth resource utilization when allocating computing and
storage resources. Neither of these approaches are positive,
so DRL-RM achieves better results with 32.7% and 71.12%
in terms of resource utility in comparison to SDN-CAV and
greedy schemes, respectively.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a SDN-based resource man-
agement solution for MEC systems. The solution specifically
addresses the issues of high demanding services such as
XR applications with heterogeneous QoS requirements. We
formulate the problem of resource management by employing
the MDP framework and use the DRL technique to derive
the resource assignment decision. The simulation results show
how our proposed scheme improves the results of other
resource management algorithm in terms of throughput and
utility value.

Future works will focus on the issues of resource man-
agement in a broader context, with multiple MEC servers.
Additionally, we will try to validate the proposed solutions
in specific scenarios, such as: education, healthcare, etc.
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