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Abstract—There is a growing research interest in Federated
Learning (FL), a promising approach for data privacy preserva-
tion and proximity of training to the network edge where data is
produced. Resource consumption for Machine Learning training
and inference is an important issue for edge nodes, but most of
the proposed protocols and algorithms for FL are evaluated by
simulations. In this demo paper, we present an environment based
on distributed mini-PCs to enable the experimental study of FL
protocols and algorithms. We have installed low-capacity mini-
PCs within a wireless city mesh network and deployed container-
based FL components on these nodes. We show FL clients and
server deployed at different nodes in the city and demonstrate
how an FL experiment can be set and run in a real environment.

Index Terms—edge cloud computing; mini-PCs, testbed, feder-
ated learning

I . I N T R O D U C T I O N

The recent Machine Learning (ML) approach of Federated
Learning (FL) distributes the effort of training ML models
over many small nodes [1]. With federated learning there is
now the opportunity to perform ML model training on edge
devices, thus exploiting the increase of edge nodes’ computing
power and the emergence of lightweight ML frameworks such
as TensorFlow Lite1.

FL can unlock the obstacles faced by centralized ML
approaches. One important feature is privacy preservation of
the local training data. Since trained models are exchanged
between server and clients and not raw data, the characteristics
of the private local data are embedded in the trained models,
and methods like differential privacy help to reduce what
remains from the exposition of private data through these
models. [2]. Among popular applications are Apple’s Siri,
which also leverages privacy-preserving FL2.

1Deployed ML models on mobile and IoT devices.
https://www.tensorflow.org/lite

2How Apple personalizes Siri without hoovering up your data:
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-
siri-federated-learning/

Figure 1. Commodity devices as testbed nodes deployed in the GuifiSants
city mesh network with installed FL components.

While several variations of FL algorithms have been pro-
posed and evaluated on multiple datasets, the practical aspects
of FL are less well understood. Indeed, research in federated
learning is still only a few years old, and most of the new
ideas are validated in simulation only. Therefore, there exists
a certain gap between the established theoretical knowledge
and the answer to the question of what would be the building
blocks of FL operating in real edge scenarios. However, there
are a few works towards this direction like, for instance that of
Gao et. al. [3], in which experimentation with FL is performed
in controlled conditions with Raspberry Pi nodes.

In this demo paper, we present an experimental environment
deployed within a wireless network in which FL can be
researched under real conditions. Figure 1 illustrates the testbed
nodes when they are used for an experiment. The nodes are
connected to the routers of a wireless mesh network called
GuifiSants3 in the city of Barcelona.

3GuifiSants monitor. http://dsg.ac.upc.edu/qmpsu/index.php
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Figure 2. FL server web interface with the list of registered FL clients.

I I . E X P E R I M E N TAT I O N E N V I R O N M E N T

The hardware used for the testbed nodes consists of Minix
mini-PCs4 and PC Engines APU25. The original operating
system of these devices was replaced by Debian 10 Buster.

The GuifiSants wireless mesh network is part of the larger
Guifi.net community network6. Therefore the testbed nodes, as
part of Guifi.net, have routable IP addresses within Guifi.net
assigned from the 10.0.0.0/8 network segment. Access to the
testbed nodes can either be remotely from the public Internet
for which we have created a Wireguard and VPN access, or
by connecting locally to a Guifi node.

We use an FL implementation with client and server compo-
nents implemented in Python language [4]. The design of the
implementation is modular, allowing to experiment different
ML models or application cases. For the experimentation
example, we use an image classification task, for which a
Convolutional Neural Network (CNN) is trained at each client.
The code is packed in Docker images for the deployment at
different nodes. We have installed a Docker registry and Debian
repository proxy within Guifi.net for nodes with limited or no
Internet access. Thus, newly-built Docker images, which the
experimenter creates for the testing of changes in protocols and
algorithms, are pushed to the local Docker registry, and from
there they can be pulled by any testbed node within Guifi.net.

The experimentation can aim to study different parameters
of the FL design space. One aspect can be the application
level, e.g., analyzing the effects of different protocols and
algorithms on ML inference accuracy. Another focus can be
the architecture, in terms of client and server designs and their
interactions. For edge scenarios, where nodes have limited
bandwidth and computational capacities, the resource usage
pattern of different FL designs and algorithms are important
to understand. An option to control the experimentation is to
do it through the Web interface of the FL server (Figure 2).

Since the experimentation goals can be very broad and
diverse, we use more than a single monitoring tool. For

4Minix NEO Z83-4, with Intel Atom x5-Z8350 processor and 4GB DDR3
RAM. https://minix.com.hk/products/neo-z83-4-pro

5PC Engines APU2 with AMD Embedded G series GX-412TC processor
and 4 GB DDR3 RAM. https://pcengines.ch/apu2e4.htm

6https://guifi.net/

Figure 3. Grafana dashboard for FL node monitoring.

enabling general long-term monitoring of experiments, we have
implemented a Prometheus-Grafana solution. For example, Fig.
3 shows a dashboard which monitors for an experiment the
CPU, memory and bandwidth consumption of the federated
learning server. Periodic patters can be observed, correspond-
ing to the federated learning training rounds. For short-time
experimentation, we have installed other open-source tools in
the testbed nodes for measuring resource consumption and
traffic of the FL component at the level of seconds.

I I I . E X P E R I M E N TAT I O N

The experimentation in this demo aims to show the capa-
bilities and potential of the testbed environment in terms of
conducting FL experiments for research by showing:

1) The preparation of an experiment by choosing and regis-
tering a set of FL clients to the server and configuration
options.

2) Running of an FL experiment on several distributed
testbed nodes.

3) The steps for the analysis of results and examples of
detected behavior.

4) Our on-going work on extensions of the FL experimen-
tation environment.
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