
Machine Learning Subsystem for Autonomous
Collision Avoidance on a small UAS with

Embedded GPU
Nicholas Polosky, Tyler Gwin, Sean Furman, Parth Barhanpurkar, Jithin Jagannath

Marconi-Rosenblatt AI/ML Innovation Lab, ANDRO Computational Solutions, LLC, Rome NY
{npolosky, tgwin, sfurman, pbarhanpurkar, jjagannath}@androcs.com

Abstract—Interest in unmanned aerial system (UAS) powered
solutions for 6G communication networks has grown immensely
with the widespread availability of machine learning based auton-
omy modules and embedded graphical processing units (GPUs).
While these technologies have revolutionized the possibilities of
UAS solutions, designing an operable, robust autonomy frame-
work for UAS remains a multi-faceted and difficult problem. In
this work, we present our novel, modular framework for UAS
autonomy, entitled MR-iFLY, and discuss how it may be extended
to enable 6G swarm solutions. We begin by detailing the chal-
lenges associated with machine learning based UAS autonomy
on resource constrained devices. Next, we describe in depth,
how MR-iFLY’s novel depth estimation and collision avoidance
technology meets these challenges. Lastly, we describe the various
evaluation criteria we have used to measure performance, show
how our optimized machine vision components provide up to 15X
speedup over baseline models and present a flight demonstration
video of MR-iFLY’s vision-based collision avoidance technology.
We argue that these empirical results substantiate MR-iFLY as a
candidate for use in reducing communication overhead between
nodes in 6G communication swarms by providing standalone
collision avoidance and navigation capabilities.

Index Terms—UAS Autonomy, machine learning, machine
vision, embedded device

I. INTRODUCTION

In this work, we design and demonstrate our approach to an
autonomy engine deployable on a small UAS equipped with an
embedded GPU-capable device. The proposed technology is a
novel, general-purpose UAV autonomy framework providing
robust perception, collision avoidance, and human-machine
teaming for small UAS missions. The full capabilities of
our framework are enabled using only basic inertial sensors
and a monocular RGB camera. These capabilities are pow-
ered by both machine learning based and analytic autonomy
components whose interaction provides state-of-the-art sensor
enhancement and robust algorithmics. The developed frame-
work has been successfully flight tested on commercial-off-
the-shelf (COTS) quadcopters equipped with embedded GPU
devices. We call the presented framework Marconi-Rosenblatt
framework for intelligent autonomous UAV (MR-iFLY).

ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER: (a) This
material is based upon work supported by the US Navy Contract No.
N6833520C0964. (b) Any opinions, findings and conclusions or recommenda-
tion expressed in this material are those of the author(s) and do not necessarily
reflect the views of the US Navy.

Autonomous capabilities for UAS have the potential to
revolutionize a multitude of industries and applications [1].
This potential, along with increasingly affordable costs of
GPU-enabled embedded devices, has garnered significant in-
terest in drone-powered solutions within the communications
industry [2]. In particular, UAS swarm and 6G technologies
have great potential to impact everyday life. The higher
frequencies associated with 6G technology often require line-
of-sight (LOS) or minimally occluded communication links.
With the current communication infrastructure consisting of
base stations, these high frequencies pose major challenges
for the quality of service and network coverage. To mitigate
such challenges, solutions employing swarms of small UAS
to provide mobile hotspots with advantageous vantage points
have been proposed to provide customers with high data-
rates [3] [4].

While this solution provides LOS and minimally occluded
links, the feasibility of such a solution remains in question
due to the challenges associated with swarm operation. Impor-
tantly, it is infeasible for human operators to control swarms
due to their number, thereby necessitating autonomous UAS
capabilities to enable 6G swarm technologies. In addition
to this obvious problem, autonomous swarms will need to
possess capabilities to evade aerial obstacles and other swarm
members; the latter of which has garnered solutions involving
communicating and relaying swarm members’ locations across
the network. Unfortunately, such network traffic reduces the
bandwidth available for the customer below.

Contribution. In response to the described problem, we
propose a unique autonomous UAS framework, MR-iFLY,
designed to operate on an embedded GPU device with a
low SWaP sensor configuration. We augment state-of-the-art
machine vision models via model reduction and hardware-
specific optimization techniques to allow for efficient inference
on embedded GPU devices. MR-iFLY subsequently employs
these optimized models in conjunction with traditional analytic
autonomy components to provide robust collision avoidance
and navigation. Furthermore, MR-iFLY has been successfully
deployed on a small UAS equipped with an embedded GPU
and requires a minimal sensor configuration.

Impact. Robust, vision-based collision avoidance and au-
tonomy for UAS can minimize, if not eliminate, the need for
communication overhead in 6G swarm networks. Enhanced

ar
X

iv
:2

11
2.

01
68

8v
1 

 [
cs

.R
O

] 
 3

 D
ec

 2
02

1



with onboard machine perception, UAS repeaters may perceive
each other and environmental obstacles, and subsequently plan
actions to avoid collisions while freeing bandwidth for users.
Further, efficient implementations provide lower decision-
making latencies preventing the vulnerability of broken links
in cloud-based solutions. We believe that the work described
herein is a step towards confirming the feasibility of an
autonomous UAS solution which, in the future, could be
extended to aid a 6G swarm solution.

II. CHALLENGES AND DESIGN PHILOSOPHY

In this section, we provide a brief overview of the challenges
that engineers meet when designing an autonomy framework
for embedded deployment. For each challenge, we discuss how
our design philosophy meets these challenges.

A. Sensor Selection

The selection of UAS sensors has implications that affect
almost every other aspect of the design of the framework;
the sensor selection will determine the degree to which the
UAS can perceive the operational environment and the amount
of computational resources required to process sensor data.
In addition to sensor selection, it is important to account
for particular algorithmic components that will enhance or
supplement sensor readings.

We believe that the majority of the necessary environmental
information can be captured using a sensor suite consisting of
a monocular RGB camera, inertial measurement unit (IMU)
sensors, optical flow sensors, and GPS. Each of the afore-
mentioned sensors is monetarily inexpensive and offers high
sample rates. For these reasons, we believe that the described
sensor suite renders MR-iFLY an affordable and effective
solution for applications such as 6G swarm technologies. We
note that, should other sensors be available aboard deployment
UASs, they may be used to enhance the perceptual components
of MR-iFLY, but that our goal in sensor selection was to ensure
universality via the framework’s minimal sensor requirement.
To supplement our sensor suite, we employ machine learning-
based computer vision techniques to extract information from
the RGB observations. The field of machine learning based
computer vision is burgeoning with techniques to enhance
monocular camera-based systems, allowing for the replace-
ment of traditional sensors (such as stereo, LiDAR, etc.) with
software algorithms (depth estimation). In MR-iFLY, we posit
that the reduction in sensing fidelity is worth the reduction in
sensing overhead, power consumption, and data processing.

B. Computational Resources

On a small UAS with an embedded computing system, the
computational complexity of the algorithmic components and
data processing techniques is of paramount importance. Many
applications require near real-time response times and thus
each component of the data processing pipeline should be
carefully engineered to operate as efficiently as possible. This
often requires re-implementing or adjusting out-of-the-box or

open-source software solutions to fit the computational needs
of the application.

Out-of-the-box neural network models often require pro-
hibitively long inference times to yield their outputs. Accord-
ingly, using such models in an embedded autonomy framework
requires manipulating the models to reduce latency. In MR-
iFLY, we use two separate techniques to this end: model
reduction via knowledge distillation and hardware-specific
optimization using TensorRT. Knowledge distillation reduces
model size by teaching a smaller network to mimic a larger
pre-trained network. TensorRT operates by running multiple
tests on the embedded hardware to determine how to optimize
each network operation. In some cases, these techniques are
not enough and engineers should consider training custom
networks. If this latter option does not yield desirable results
traditional computer vision methods may be investigated.

C. Robustness

While algorithmic efficiency is critical, algorithmic robust-
ness is tantamount. UASs often encounter varied operational
scenes and environments yielding very different sensor read-
ings and interference conditions. Creating an overall robust
solution requires ensuring each of the subcomponents of the
framework is robust and for machine learning components,
robustness is tightly coupled with the composition of the
training data set. We believe that utilizing models which have
been explicitly trained to be robust to varying scene and
environmental characteristics is of key importance. Addition-
ally, using analytic autonomy components in place of end-to-
end learning components can mitigate issues associated with
the lack of a robust training data set. Further, such analytic
algorithms can often be explicitly redesigned by the engineer
to inherently increase robustness and cautiousness.

Overall, employing both machine learning based and tradi-
tional analytic solutions for autonomy allow for reaping the
benefits of both approaches. Machine learning components
offer significant increases in representational power and gen-
eralization capability which undoubtedly improves the overall
autonomy solution; however, it is beneficial to exploit analytic
components, when possible, to reduce the complexity of the
task we assign the machine learning components to learn.

III. DESIGN OF MARCONI-ROSENBLATT FRAMEWORK
FOR INTELLIGENT AUTONOMOUS UAV (MR-IFLY)

We now describe in detail the subcomponents of MR-iFLY
and discuss their relationships as outlined in Figure 1.

The input into our architecture includes an RGB image
collected from an FPV camera onboard the drone, and IMU
readings used within the planning module. The collected RGB
image is passed into two submodules: the disparity estimation
module and the depth tracking module, producing, a dense
estimate of image disparity and a sparse estimate of metric
depth, respectively. Within the disparity module, machine
learning based convolutional neural network (CNN) and visual
transformer models predict disparity values for each pixel in
the RGB input, where the disparity is defined as the pixel



distance between the same observed scene location in the
right and left images of a stereo pair. The disparity module
thereby obtains an estimate of values often gathered using
a stereo camera system, further providing an advantage over
other autonomy solutions by reducing the sensor requirements
of our architecture. Within the depth tracking module, classical
computer vision methods are used to estimate a sparse metric
depth map which is subsequently used to scale the dense
disparity map producing a dense metric depth map.

This metric depth map is transformed into a point cloud us-
ing the camera’s intrinsic characteristics and is then discretized
and binned to produce the 3D occupancy grid containing
binary obstacle labels. Finally, the 3D occupancy grid is passed
into the planning module which outputs a sequence of UAS ac-
tions to perform in the environment. In the present architecture,
we have implemented the analytic path planning algorithm
based on the Fast-Marching Method (FMM) which solves for
shortest time paths given a cost function. A baseline cost
function considers obstacles as locations with infinite cost but
more complex functions accounting for other environmental
factors may be used at no further computational cost.

RGB
Depth 

Tracking 

Module

Disparity 

Estimation 

Module
Disparity

Metric 

Depth

Scaled 

Disparity 

(Depth)

Point 

Cloud
3D 

Occupancy 

Grid Planning Module 

(Fast Marching 

Method (FMM))

Environment 

Actions

IMU

Fig. 1: MR-iFLY System Diagram

A. Depth Estimation

Estimating the depth of objects and obstacles in the en-
vironment surrounding the UAS is a crucial step in any
motion or path planning algorithm. In traditional autonomy
frameworks, this step often leverages dedicated depth sensors,
such as 3D LiDAR, or utilizes a stereo camera system, from
which, estimates of the metric depth can be obtained. In our
framework, we employ a combination of classical computer
vision and novel deep learning techniques, as described below,
to estimate metric depth from monocular RGB images.

1) Machine learning based depth estimation: The first step
MR-iFLY takes toward ascertaining metric depth - the raw
distance values from a scene point to the camera lens -
is to use a disparity estimation neural network. Disparity
estimation networks have recently grown in popularity as the
scale-invariant properties of disparity allow for networks to
be trained on larger data sets whilst constraining the range of
output values the network is required to learn. Accordingly,
disparity estimation networks are often more robust to changes
in scene and zero-shot transfer scenarios, as evidenced in [5].

Despite their desirable zero-shot and robust estimation prop-
erties, network architectures such as those proposed in [6] [7]
are often prohibitively large for embedded device deployment,
requiring substantive inference times, even on a GPU-equipped
embedded device. To reduce inference times, there exist two
primary avenues outside of increasing compute resources:
model size reduction and platform-specific optimizations. To
reduce the size of our depth estimation model, we leverage the
knowledge distillation techniques proposed in [8]. Knowledge
distillation is the process of training a smaller, student network
to learn the function represented by a larger, teacher network
via a semi-supervised learning scheme. To implement this
scheme, we curated a data set of real-world images represent-
ing the expected distribution of scenery that our UAS solution
will encounter, and supplemented this data set with images
selected from the OpenImages [9] and COCO [10] data sets.
The final data set consisted of 42,159 self-collected images,
371,159 images from OpenImages, and 75,880 images from
COCO. In our knowledge distillation pipeline, we used the
MiDaS network developed in [6] as the teacher network. For
the student architecture, we employed the same architecture
from [8]. The student network output was then regressed to
match the output of the MiDaS network on our curated dataset.
Finally, we were able to achieve a 2X inference time speedup
by converting our pretrained student network into the Tensor
RT framework offered by NVIDIA. The final model runs at
an average inference time of 25ms when no other processes
are running on the board.

2) Classical depth estimation: As noted before, the outputs
of the MiDaS network, and our trained student network,
contain estimates of disparity rather than metric depth. Since
disparity is equal to metric depth up to shift and scale,
obtaining metric depth amounts to obtaining the shift and scale
parameters which transform disparity to depth. In MR-iFLY,
we employ classical triangulation and re-projection algorithms
based on intrinsic properties of the UAS’s onboard camera to
estimate the shift and scale parameters.

Estimating the shift and scale parameters first requires
sparse estimates of metric depth obtained by treating con-
secutive frames in the UAS’s camera stream as a pseudo-
stereo system. We use ORB feature matching algorithms [11]
implemented in OpenCV to ascertain matching key-point lo-
cations in consecutively captured frames and use Lowe’s ratio
test to remove poor quality matches. The top n = 16 matches
are used in triangulation and re-projection error minimization.
The triangulation is done in homogeneous coordinates; given
a feature location p = [xl ,yl ,1] in the first image and its
matching location in the second image p′ = [xr,yr,1], we wish
to ascertain the scene point observed through these pixels,
P = [x,y,z]. We construct the matrix:

A =


xlM3−M1
ylM3−M2
xrM′3−M′1
yrM′3−M′2

 (1)

where M,M′ are the camera matrices with both intrinsic and



extrinsic parameters for the “left” and “right” images, respec-
tively. The expressions for the above matrix A are generated
by enforcing epipolar geometric constraints on the scene point
P [12]. The triangulation for the scene point P is done by
solving AP = 0 for P using singular value decomposition
(SVD). The above method provides an initial solution for
the depth of the scene point, which is further refined by
minimizing the re-projection error of the computed P. This
is done by solving the following minimization problem:

minimize
P̂

‖MP̂− p‖2 +‖M′P̂− p′‖2 (2)

In our implementation, the solution for P̂ is obtained using the
Trust Region Reflective algorithm for non-linear least squares.
We employ the soft-L1 loss function:

loss(x) = 2(
√

1+ x−1) (3)

for its robustness to outlier values. The final depth value
obtained from the re-projection error minimization problem
is subsequently used in the scale parameter estimation. Each
of the depth values for the n selected scene points is obtained
using the above methods. Predicted disparity values are then
scaled separately for each estimated depth and the average
over scaled disparities is taken as the metric depth map.

To ascertain the minimum depth in the scene, we use the
pixel location of the minimum predicted disparity and find the
corresponding pixel location of the minimum disparity scene
point in the ”right” image using a sliding normalized 2-norm
distance filter, selecting the pixel location in the ”right” image
that yields the minimum filter distance. These pixel locations
from the ”left” and ”right” images are then used in the
triangulation and re-projection error minimization procedures.
Once the estimated minimum depth is obtained, we add it
to the scaled disparity map to obtain the final estimated
metric depth. In practice, the minimum and maximum depths
obtained via the described estimation procedures can still be
quite noisy due to camera sensor and pose sensor errors.
Accordingly, we maintain a windowed average of the most
recent 6 estimations for these values rather than using the
direct estimate at each frame.

B. Occupancy Grid

Once the metric depth map has been estimated, an occu-
pancy grid is generated for use in the planning module. The
depth map is converted into a point cloud by projecting the 1-
dimensional depth values into 3 dimensions using the camera’s
intrinsic parameters. After the point cloud is constructed,
points within a predetermined local vicinity of the agent are
added to the occupancy grid by setting a binary flag to denote
the presence of an object. The occupancy grid is the collection
of these flags and is represented by a binary array. Grid
resolution and radius are pre-set algorithmic parameters.

C. Planning Module

The occupancy grid is used in the planning module to
generate the UAS actions. In MR-iFLY, we use the Fast-
Marching Method (FMM) [13] planning algorithm to obtain

action sequences. The FMM planner is based on physical
models of wavefront propagation and is able to solve high-
dimensional planning problems efficiently. To generate a plan,
we set a local goal to serve as a destination point. This local
goal may be provided by a separate autonomy component, a
user or operator, or it may be set statically prior to execution
of the UAS autonomy program. If the local goal is outside the
radius of the occupancy grid we project the goal point into the
occupancy grid. The FMM planner is then used to compute
the shortest distance from each point in the occupancy grid to
the goal location. The actions along the shortest distance path
from the UAS to the goal are recorded.

In our implementation, we commit three actions along the
shortest path in each planning cycle. After action execution,
a new depth map is obtained and the planning module is run
again. Lastly, we pad the occupancy grid with an extra binary
flag around each of the obstacle points to restrict the planning
of a path that maneuvers the UAS too closely to an obstacle.

IV. EXPERIMENTAL EVALUATION AND DEMONSTRATION

In this section, we describe the physical implementation and
evaluation of MR-iFLY. Due to the nature of the tasks and
problems that each subcomponent is employed for, some of
the evaluation criteria are both qualitative and quantitative.
In either case, we substantiate the validity of the evaluation
criteria and subsequent analysis of results.

A. Hardware Implementation

To demonstrate the real-world applicability of our proposed
framework, we implement and demonstrate the autonomy
solution on two separate hardware platforms, depicted in
Figure 2.

The first platform, the Bitcraze Crazyflie 2.1 drone, features
a lightweight frame measuring 9 cm by 9 cm, a 27-gram
unloaded weight, and the ability to attach expansion modules
called decks. We equip the Crazyflie with the Flow-v2 deck
which provides a relative positioning system and a first-person
view (FPV) camera. A 3D printed mount was designed to hold
the FPV camera to the drone. Connection to the Crazyflie
is achieved via the Crazyradio module. Bitcraze provides a
python API to connect to the Crazyflie and perform both low-
and high-level controls.

The second platform, the NXP KIT-HGDRONEK66
quadrotor kit, includes a carbon fiber frame, the Flight Man-
agement Unit (FMU), RC receiver, RC transmitter, power
module, power distribution board, Electronic Speed Con-
trollers (ESCs), motors, GPS, FMU debug adapter, and pro-
pellers. Additionally, the frame contains rails for attaching
sensors in a standard mount format. A telemetry radio is added
to the platform and the NXP is equipped with the ArduCam
High Quality Camera. This sensor is a 12.3 MP camera that
supports frame rates of 1920 x 1080 at 60 fps and 4032 x
3040 at 30 fps. The selected version of the camera is the
“mini” version that uses has a smaller camera board and lens
suitable for use on a UAS.



Fig. 2: NXP (left) and Crazyflie (right) UAS
platforms used for demonstrating the pro-
posed autonomy framework.

Fig. 3: Examples of disparity estimation (bottom) from RGB (top) and
qualitative evaluation features.

To run our algorithms, we utilize both the NVIDIA Jetson
Nano and Jetson Xavier embedded GPU development boards.
For the Crazyflie platform, algorithmics and actions are com-
puted on the board and sent over a wireless link to be executed
on the UAS. For the NXP UAS, we attached the embedded
GPU boards to the UAS’ frame via custom mounts. In Table I,
we provide technical specifications of the embedded devices.

TABLE I: Computational performance specification compari-
son between NVIDIA Jetson Nano and NVIDIA Jetson Xavier

Spec. Nano Xavier

CPU Cores (#) 4 6
RAM (GB) 4 8

AI Performance 472 (GigaFlops/s) 21 (TensorOps/s)
GPU Cores (#) 128 384, 48 Tensor Cores

B. Disparity Estimation

The task of disparity estimation has straightforward evalua-
tion criteria in the case when ground truth disparity maps are
available. A suitable regression metric, such as mean squared
error or mean absolute error, may be used to characterize
how well the estimation model fits the disparity data. While
this approach to evaluation is theoretically sound, it is often
the case that ground truth disparity is not available for the
deployment platform, sensors, and environment in real-world
implementation scenarios. Accordingly, there exist two options
for evaluating the efficacy of the disparity estimation model
for a specific real-world task: collect ground truth disparity
maps and evaluate the model in the usual way, or manually
inspect the output of the model and qualitatively evaluate the
model’s efficacy. The former may often be infeasible if the
appropriate sensors are not available or deployable on the
target deployment platform. For these reasons, we now discuss
how we qualitatively evaluated disparity estimation models.

Perhaps the most important qualitative evaluation charac-
teristics of a disparity estimation model are object continuity,
relative consistency, and robustness to interference. For object
continuity, we inspect images to ensure that the disparity
assigned to pixels that represent the same object do not jump
wildly over many values, and further, that jumps do occur at

object boundaries. This is displayed in the rightmost image
of Figure 3. The arrow indicates the location of the human
in the disparity output and it can be seen that the disparity
values assigned to the pixels associated with the human are
continuous. Furthermore, the human’s boundaries are seen
clearly in the disparity output. For relative consistency, we
mean that the relative ordering of disparity values assigned to
different objects in the scene obeys the depth ordering that
we would expect from manual observation. This is clearly
observed in the leftmost image in Figure 3 with the bracket
showing how disparity values decrease for each of the further
trees in the scene. Lastly, illumination interference can greatly
affect the veracity of the disparity estimation module. For this
reason, we desire a model which is robust to such interference.
In Figure 3, it can be observed that the disparity model’s output
is robust to illumination interference in the areas enclosed by
the ellipses. The model’s output is robust to both the bright
light from the sun and the shadow from the tree.

C. Runtimes

While disparity estimation accuracy is important, it is per-
haps equally as important that the model’s inference does
not incur prohibitive latency. In this section, we report the
inference times of the disparity estimation model at various
points throughout the model reduction and optimization pro-
cess. These inference times are recorded in Table II.

TABLE II: Inference times on the NVIDIA Jetson Xavier.

Large MiDaS Py. Mobile PyDnet Py. (#) Mobile PyDnet TRT

386ms 55ms 25ms

The large MiDaS Py. model is the open-source model
proposed in [5] without any reduction or optimization. The
Mobile PyDnet Py. employs the model architecture proposed
in [8] trained on our own procured data set. This model is the
knowledge distillation of the large MiDaS model without any
optimizations, running in Python. The Mobile PyDnet TRT
model is the final model employed in our framework. It is
generated by using the TensorRT hardware-specific optimiza-
tion framework to optimize the Mobile PyDnet network. As



is observed in Table II, the model reduction and optimization
techniques employed in our work lead to 15X speedups in
model inference, allowing for real-time operation of MR-iFLY.

D. Flight Test

Fig. 4: Still frames from the flight test demonstration video.
Each frame contains: RGB observation (top left of frame),
depth estimation (bottom left of frame), occupancy map (right
side of frame, green) and the motion planner’s output (red).

To test the efficacy of the overall solution, we have run
demonstration flight tests on basic navigation and collision
avoidance tasks. The tasks consist of flying to a goal location
behind either a single stack or multiple stacks of boxes. A
video of the successful demonstration involving two stacks of
boxes provides insight into the inner workings of our frame-
work and is provided at the link in [14]. Figure 4 depicts still
frames from videos of demonstrations involving two stacks
of boxes. In each frame, there exist three panels displaying
the RGB observation (top left), depth estimation (bottom
left), and the constructed occupancy map (right side). The
2D occupancy maps in the video represent UAS-level slices
from the constructed 3D occupancy grid. Accordingly, they
may be readily interpreted as a birds-eye view of the UAS’
representation of the environment where the UAS is located in
the center of the bottom of the grid. Additionally, the panels on
the right side of the frames include the computed paths through
the environment towards the goal beyond the boxes. These
paths are denoted by the red pixels in the map portion of the
frame and provide insight into how the autonomy framework
makes decisions about avoiding collisions. These successful
flight tests substantiate our lightweight framework as a viable
solution to UAS autonomy.

V. RELATED WORK

Due to the multi-faceted nature of the presented work, there
exists a multitude of related literature. In this section, we focus

on reviewing literature from two divisions of the field. First,
we discuss algorithmically relevant works, often coming from
the visual simultaneous localization and mapping (VSLAM)
community. Secondly, we discuss works focusing on actual
hardware implementations of UAS autonomy.

Simultaneous localization and mapping (SLAM) is the task
of estimating an autonomous robot’s position in the world
whilst constructing a map representation of the world in which
it is operating. While MR-iFLY is not strictly a SLAM solution
- our goal is not to construct a globally consistent map of
the environment - many of the autonomy components overlap
with the components employed in SLAM solutions. This is
especially true in Visual-SLAM solutions, where the primary
sensors employed to solve the SLAM task are RGB cameras.
For these reasons, we cover V-SLAM works with similar
components in this subsection.

One of the most popular V-SLAM algorithms is that of
ORB-SLAM [15], which employs a feature-based key-point
selection algorithm for use in constructing a triangulation
system to discern pose and perform environment mapping. The
major difference between MR-iFLY and the components of
ORB-SLAM is that we aim to produce dense depth maps with
the aid of a machine learning-based depth estimation module
(which utilizes a very sparse triangulation method) while
ORB-SLAM performs sparse depth estimation without the use
of any machine learning. In recent work, LIFT-SLAM [16],
machine learning based feature detection is used to compute
key-point locations that are passed into the V-SLAM pipeline.
The authors of [16] demonstrate improved results on test data
sets and provide a solution that is a hybrid between machine
learning and traditional autonomy components. Therefore, the
design concepts of MR-iFLY and [16] are similar in nature.
Active neural V-SLAM [17] employs a similar design. The
authors propose a machine learning and traditional autonomy
hybrid architecture to perform active SLAM - controlling a
UAS with the specific intent of constructing a map of the
environment. Their work employs a similar depth estimation
and planning module, however; they only consider a 2-
dimensional internal environment representation rather than
the 3-dimensional representation in our work. Lastly, each of
these works differs from ours in that they are only evaluated
on a static data set or in simulation, rather than actually
implemented on hardware which is a daunting task.

Works with UAS hardware implementations are also abun-
dant. In [18], the authors introduce a UAS autonomy frame-
work for drone racing that employs both machine learning
based and traditional analytic autonomy algorithms. The au-
thors train a vision system to recognize gates and output the
location of the desired goal based on gate location. In their
follow-up work [19], the authors improve upon their solution
by training the vision system completely in simulation to
avoid the necessity of collecting large real-world data sets.
They show the success of their zero-shot sim-to-real transfer
technique in a real-world drone racing setup on an in-house
quadcopter. While these works are similar to ours in design
philosophy - both works employ a combination of machine



learning and analytic autonomy - there are fundamental dif-
ferences that separate our framework. First, in our work, we
focus on robust collision avoidance rather than on optimizing
trajectories through gates. Accordingly, the real-world exper-
iments conducted by the authors of [19] are set up in an
open environment, free of obstacles. Secondly, our work builds
an internal representation of the environment via occupancy
grid construction, which may be extensible to autonomy tasks
beyond collision avoidance, such as exploration, semantic
question answering, etc. In [19], only trajectories are computed
without constructing a world representation.

In [20], the authors introduce a machine learning based col-
lision avoidance system for small UAS. The proposed frame-
work utilizes optical flow input to track dynamic obstacles
through the environment and subsequently avoid collisions.
The authors test their methods on a commercial UAS with
commercial vision sensors and demonstrate that the UAS
successfully avoids a ball thrown toward the hovering UAS.
These experiments differ from ours in that they explicitly
consider non-stationary obstacles with a stationary UAS. In
our work, we focus on achieving UAS movement whilst
avoiding collisions with stationary obstacles.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented our novel, modular solution
to UAS autonomy, entitled MR-iFLY, which leverages tech-
niques from both machine-learning and traditional autonomy
algorithms. We have described, in detail, the workings of
the algorithmic components of MR-iFLY and have elucidated
how each component interacts with one another. We have
described the various evaluation criteria we have used to
measure performance and shown how our optimized machine
vision components are robust to environmental factors and
provide up to 15X speedup over the original model. Further,
we have provided a demonstration video highlighting a suc-
cessful flight test on a UAS with an embedded GPU board.
These empirical results, along with our design philosophy,
meet and mitigate the demands of vision-based autonomous
UAS problems associated with various industrial applications.
Accordingly, we believe that MR-iFLY may be leveraged
by 6G communications swarms to reduce communication
overhead between nodes by providing standalone collision
avoidance and navigation capabilities.

In future work, we plan to extend MR-iFLY in various
ways. First, we expect to add a further machine learning
component that computes the directive local goals that the
present framework will use in planning and navigation. This
component is expected to be learned via a reinforcement
learning scheme, in which a policy would be learned to output
a sequence of waypoints, which together, achieve some over-
arching mission goal. In addition, we wish to investigate the
use of probabilistic planners in the motion planning module.
In our current implementation, the FMM planner assumes that
obstacles and objects in the planning grid are static, and thus
the computed plan may only be valid for a short time over
which the static obstacle assumption is reasonable. Lastly,

we wish to employ MR-iFLY in a swarm mission, and test
to see if each of the UAS in the swarm can avoid each
other without the need for communication, thereby further
substantiating MR-iFLY as a potential solution for autonomy
in 6G communications swarms.

REFERENCES

[1] J. Jagannath, A. Jagannath, S. Furman, and T. Gwin, Deep Learning
and Reinforcement Learning for Autonomous Unmanned Aerial Systems:
Roadmap for Theory to Deployment, pp. 25–82. Cham: Springer
International Publishing, 2021.

[2] H. Cheng, L. Bertizzolo, S. D’Oro, J. Buczek, T. Melodia, and E. S.
Bentley, “Learning to Fly: A Distributed Deep Reinforcement Learning
Framework for Software-Defined UAV Network Control,” IEEE Open
Journal of the Communications Society, pp. 1–1, 2021.

[3] L. Bertizzolo, T. X. Tran, J. Buczek, B. Balasubramanian, R. Jana,
Y. Zhou, and T. Melodia, “Streaming from the air: Enabling high data-
rate 5g cellular links for drone streaming applications,” 2021.

[4] J. Buczek, L. Bertizzolo, S. Basagni, and T. Melodia, “What is a wireless
uav?,” Proceedings of the 15th ACM Workshop on Wireless Network
Testbeds, Experimental evaluation & CHaracterization, Oct 2021.

[5] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “To-
wards robust monocular depth estimation: Mixing datasets for zero-shot
cross-dataset transfer,” IEEE Trans. on Pattern Analysis and Machine
Intelligence (TPAMI), 2020.

[6] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for dense
prediction,” ArXiv preprint, 2021.

[7] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” in CVPR, 2017.

[8] F. Aleotti, G. Zaccaroni, L. Bartolomei, M. Poggi, F. Tosi, and S. Mattoc-
cia, “Real-time single image depth perception in the wild with handheld
devices,” Sensors, vol. 21, 2021.

[9] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-
Tuset, S. Kamali, S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and
V. Ferrari, “The open images dataset v4: Unified image classification,
object detection, and visual relationship detection at scale,” IJCV, 2020.

[10] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision – ECCV 2014 (D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, eds.), (Cham), pp. 740–755, Springer
International Publishing, 2014.

[11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in International Conference on Computer
Vision, pp. 2564–2571, 2011.

[12] K. Hata and S. Savarese, “Cs231a course notes 4: Stereo systems and
structure from motion.”

[13] J. A. Sethian, “A fast marching level set method for monotonically
advancing fronts,” Proceedings of the National Academy of Sciences,
vol. 93, no. 4, p. 1591–1595, 1996.

[14] “Flight test demonstration video.” https://youtu.be/YT0-OyYEbNg.
[15] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. M. Montiel, and

J. D. Tardós, “Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Trans. on Robotics, pp. 1–17,
2021.

[16] H. M. S. Bruno and E. L. Colombini, “Lift-slam: a deep-learning feature-
based monocular visual slam method,” Neurocomputing, vol. 455,
pp. 97–110, 2021.

[17] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov,
“Learning to explore using active neural slam,” in International Confer-
ence on Learning Representations (ICLR), 2020.

[18] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun,
and S. Davide, “Deep drone racing: Learning agile flight in dynamic
environments,” Conference on Robot Learning, pp. 133–145, 2018.

[19] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and
S. Davide, “Deep drone racing: From simulation to reality with domain
randomization,” IEEE Trans. on Robotics, pp. 1–14, 2019.

[20] D. Pedro, J. P. Matos-Carvalho, J. M. Fonseca, and A. Mora, “Collision
avoidance on unmanned aerial vehicles using neural network pipelines
and flow clustering techniques,” Remote Sensing, vol. 13, 2021.


