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Abstract— This paper presents a low-power and accurate time-

synchronization method for Internet-of-Things (IoT) sensors. 

Time synchronization between the base station and sensor nodes 

is important for realizing synchronized measurement and data 

collection from multiple sensor nodes. The proposed method is 

implemented within the application layer of the Bluetooth Low 

Energy protocol, and it only requires a 32.768-kHz real-time clock 

and an active flag of a power amplifier in the transmission circuit 

and a low-noise amplifier in the receiver circuit. This limited 

hardware requirement allows for the implementation of 

commercially available communication modules. The 

synchronization performance was evaluated with eight peripheral 

nodes and one central node, and the measurement results indicate 

that a 20-µs synchronization error was achieved on average for all 

the eight peripherals.  

Keywords— time synchronization, sensor network, Bluetooth 

Low Energy 

I. INTRODUCTION  

Time synchronization is a key component of the recent 
Internet-of-Things (IoT) sensor systems and sensor networks. 
Many applications of these systems require time-series 
measurements and accurate time stamps for performing data 
analysis. The time stamps of the data measured at multiple 
points should be synchronized with the base station or server. 
Thus, the sensor nodes must have a real-time clock, and the 
system requires a time-synchronization method. 

If the sensor is installed outdoors, highly accurate 
synchronization can be achieved with a global positioning 
system (GPS) or long-wave standard time radio wave. 
Unfortunately, these methods cannot be applied indoors or in 
heavily shielded areas. Alternatively, packet exchange through 
wireless communication and various other methods have been 
proposed [1-4]. For example, the network time protocol (NTP) 
is widely used on the Internet.  

 

Packet-exchange schemes involve a trade-off between the 
synchronization accuracy and cost. When numerous sensor 
nodes are deployed, the manufacturing cost and power 
consumption of sensor nodes should be considered for practical 
use. Herein, we propose a time-synchronization method based 
on the Bluetooth 5.0 standard protocol to satisfy both accuracy 
and cost requirements. 

Bluetooth is a communication standard defined for 
applications with limited power consumption (e.g., wearable 
devices and sensor networks). Bluetooth Low Energy (BLE), 
which has been added since Bluetooth 4.0, is based on the 
intermittent operation of the radio circuit to reduce its power 
consumption. The objective of this paper is to realize a low-
power time synchronization method that can be implemented 
over the BLE. The BLE defines two communication schemes: 
Broadcast and Connection. Broadcast is a one-way 
communication, which means that data can be transmitted from 
one sender node to multiple receiver nodes simultaneously. In 
contrast, the connection mode defines bi-directional 
communication. Although the advantage of the broadcast mode 
is that it can transmit data to multiple nodes with a minimum 
control communication, the connection mode is employed in the 
proposed method because it requires bidirectional control 
communication.  

For improving synchronization accuracy, conventional 
methods are often implemented in lower protocol layers. The 
lower the layer, the more accurate the timestamp can be since 
various delay factors are eliminated. The proposed method can 
be implemented in the application layer, whereas conventional 
methods are implemented in the lower protocol layer to improve 
the synchronization accuracy. It enables implementation using 
commercially available modules via a 32.768-kHz real-time 
clock and active flags of the transceiver circuit, which are 
provided by the wireless communication controller in the 
module. 
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II. TIME SYNCHRONIZATION USING WIRELESS COMMUNICATION 

A. Issues of time synchronization using wireless 

communication 

Each sensor node in the network has a different timer value 
driven by a built-in oscillator. In many cases, a timer is 
configured using a low-power real-time clock (RTC) to hold the 
time information. This timer must be synchronized to control the 
sensing timing for each node. Although there are various 
methods of synchronizing timer values between nodes, as 
mentioned earlier, we focus on the time-synchronization method 
using wireless communication and packet exchange. 

By sending the timestamp value in the packet, the receiver 
can determine the gap between the sender’s timer and its own 
timer. Although this is an effective method, regardless of the 
network topology, we assume a star network with one base 
station and multiple nodes connected by one hop. The sensor 
nodes send a timestamp to the base station, and the base station 
replies with the difference between that and its own timer. This 
operation synchronizes the time in the network and allows the 
base station to control the timing of sensing and communication. 

As shown in Fig. 1, there are various error factors in time 
synchronization via wireless communication. 

• Send : The time that elapses between the sending of a 
packet to the application layer and its passing to a lower 
layer 

• Access : The time it takes at the MAC layer to convert a 
packet into a sequence of bits and make it available to the 
radio circuit 

• Transmission : The time it takes to transmit a radio signal 
at the physical layer 

• Propagation : The time it takes for a radio wave to 
propagate through the air 

• Reception : The time it takes for a receiver to receive a 
radio signal at the physical layer 

• Receive : The time it takes to reassemble the received bit 
string into a packet and pass it to the application layer 

These error factors need to be addressed to improve the time-
synchronization accuracy. As mentioned in the previous section, 
getting the timestamp at a lower layer closer to the physical layer 
improves the accuracy. However, it is difficult to change the 
lower layers of the protocol stack in commonly available 

communication modules, and cost is an issue when using 
dedicated communication devices. Developing a dedicated 
communication device for time synchronization is costly and 
impractical in many cases. 

The RTC performance also affects the time-synchronization 
accuracy. The upper limit of the synchronization accuracy is 
determined by the frequency of the RTC. Although the accuracy 
can be improved using a clock with a shorter period, 32.768-kHz 
RTC is generally used in applications where low power 
consumption is required. 

The frequency variation and frequency drift of the RTC also 
affect the synchronization accuracy. Even if an RTC with the 
same specifications is used, the actual frequency will vary 
depending on the manufacturing variations and environmental 
conditions such as temperature differences. Even if the 
timestamp is exchanged and the offset corrected, the passage of 
time will cause another time shift. This problem is called clock 
drift. When the clock drift can be suppressed, the 
synchronization interval can be increased and the power 
dissipation can be suppressed. 

B. Related works 

Various time-synchronization methods have been proposed 
for applications that require low-power performance in IoT and 
sensor networks. 

Global Positioning System (GPS) can be used for accurate 
time synchronization. GPS is a satellite-based positioning 
technology that is used in car navigation systems and 
smartphones.  GPS satellites transmit positioning signals around 
the earth, and receivers can calculate its position using received 
signal from multiple satellites. The received signal and position 
calculation process are also used for time synchronization, 
because the satellites are equipped with atomic clocks, which 
can be synchronized with 10-ns order accuracy. However, 
positioning and time acquisition require data reception from at 
least four satellites, and it is difficult to be used indoors or in 
other environments with poor signal conditions. Another issue 
is the power consumption of the GPS receiver. 

Reference broadcast synchronization (RBS) [1] uses 
bidirectional communication to synchronize the times of 
neighboring nodes. The base station broadcasts the packet to the 
entire network, and each node records the reception time. 
Subsequently, the nodes exchange the received times with each 
other to achieve time synchronization. As the number of nodes 
increases, the accuracy improves, but the power consumption 
increases.  

The timing sync protocol for a sensor network (TSPN) [2] 
also realizes time synchronization using bidirectional 
communication, similar to the NTP, which is a time-
synchronization protocol used in the Internet. WPTP [4] is a 
synchronization protocol for multi-hop wireless networks. This 
algorithm is an extension of the PTP and it can reduce the 
convergence time and number of packets required for 
synchronization.  

WPTP [3] is a time synchronization protocol designed for 
wireless networks, based on the principles of PTP, a time 
synchronization protocol for computers. By taking advantage of 

 
Fig. 1.  Error factors in wireless communication. 
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the characteristics of broadcast communication, WPTP reduces 
the number of packets required without compromising 
synchronization accuracy.  

The flooding time-synchronization protocol (FTSP) [4] is a 
method that achieves highly accurate synchronization with only 
simple one-way communication.  By obtaining timestamps at 
the sending and receiving MAC layers when packets are first 
sent and immediately after they are received, errors in the MAC 
layer are eliminated as much as possible, thereby improving 
accuracy. However, since FTSP requires access to low-level 
layers, it is often not feasible for commercial devices. 

These protocols need to be implemented in layers lower than 
the media access control layer because the timestamp accuracy 
affects the accuracy. Therefore, these methods assume a 
dedicated protocol. It is necessary to process the data in the layer 
close to the physical layer to attach an accurate timestamp 
without the influence of fluctuation in processing time from the 
application layer to the physical layer. 

Reference [5] shows that IoT devices have a serious clock 
drift problem, and it proposes a clock compensation method 
with 15-ms accuracy. Reference [6] reports that the accuracy of 

time synchronization using BLE connections is ±750 µs. 
CheepSync [7] is a time-synchronization method that uses an 
advertisement mode of Bluetooth 4.2 (BLE) protocol. It aims to 
synchronize the time between BLE beacons and smartphones 
and achieves an average time-synchronization accuracy of 10 

µs. Another method [8] also uses the BLE advertising mode. The 
experimental results with two sensor nodes and one base station 

indicate that an average error of 3.2 µs was achieved without 
resynchronization for 10 min. However, it has a disadvantage in 

terms of power consumption because it requires a high-
frequency (16 MHz) timer clock and additional control 
communications using proprietary protocols. 

Reference [9] presents a method that uses the module’s 
transceiver active flag and hardware timestamp to obtain an 
accurate timestamp. The shunt resistor is used to obtain the exact 
active time of the radio transmitter and receiver; it is used for 
time stamping to minimize the error factors mentioned earlier. 

III. PROPOSED METHOD 

We aimed to develop a time-synchronization method that 
can be implemented in commercially available modules. To 
solve the problems encountered in previous research, we 
propose a method that can be implemented in the application 
layer of the Bluetooth protocol and can work with a 32.768-kHz 
RTC. 

A. Timestamp acquisition and wireless communication 

The protocol stack processing time of the microcontroller 
depends on factors such as the timing of interrupt signals and 
memory accesses. To eliminate such effects, it is necessary for 
the microcontroller to accurately determine the operation timing 
of the transmitter and receiver circuits. There are several 
methods of achieving this; a previously developed method [9] 
uses an external shunt resistor. Some commercially available 
wireless microcontrollers can notify the user program of the 
active timing of the transmitter and receiver circuits [10]. This 
function allows the application layer to know the operation 
timing of the transmitter's PA and the receiver's LNA. This 
notification function is also used in our proposed method. In Fig. 
2, ����  and �����  respectively denote the time when the PA 
and LNA became active. 

 
Fig. 2.  Details of transmission delay and timer offset estimation sequence using wireless communication.  
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The next issue is to determine when the timestamp should be 
sent as a packet. Because the sender cannot obtain this 
timestamp until the physical layer is processed, the application-
layer program cannot add a timestamp to the same packet. To 
address this problem, the proposed method divides 
communication into two stages. As shown in Fig. 2, in response 
to a synchronization request from the BS, the node first sends its 
own timestamp. When a node activates the radio circuit to 
transmit the first packet, it sends a notification to the application 
layer to obtain a timestamp. This timestamp is sent to the BS in 
the second packet. The BS can use these two timestamps to 
determine the delay caused by the node's first packet from the 
application layer to the physical layer. The following flow 
summarizes the BS and Node operations. 

1. The timestamp when the Node adds a data packet to the queue is 

flagged as �����. 

2. Node acquires ���� when PA goes High when the flag is on. 

3. ����� is sent in the first packet from Node to BS. 

4. In BS, ����� is updated every time LNA goes High. 

5. Get ����� when data is received in BS. 

6. The Node sends ���� in the second packet. 

7. In BS, these three timestamps can be used to estimate the 
��	
����	 . 

B. Timer offset calculation 

Next, the BS uses the obtained timestamp to synchronize the 

timer values of the nodes.  

As mentioned earlier, the node sends two timestamps to the 
BS: ����� and ���� . �����  is a timestamp that serves as a 

reference for synchronization, and ����  is a correction 
timestamp that indicates when the transmitter’s power amplifier 
(PA) is activated. Assuming that there is an offset between the 
BS and node timer values, this process aims to estimate the 
timing of ����� at the BS timer value (��	
����	  in Fig. 2). 

In addition to the two timestamps received, the BS obtains 
the active time of the receiver’s low-noise amplifier (LNA) as 
����� when ����� is received. ��	
����	  can be estimated as 

follows: 

 ��	
����	 = ����� − ����� − ������ − ����� (1) 

Here, �����  is a transmission delay including propagation 

delay, and it can be considered a fixed value obtained 
experimentally. Then, the timer offset, �	, between the BS and 
node can be calculated from the difference between ��	
����	  
and �����. 

C. Time synchronization and clock drift cancelation with 

multiple nodes 

Time synchronization of multiple nodes is performed using 
a time-division approach and the timer offset �	 obtained in the 
previous section. Fig. 3 presents a timing chart of the 
synchronization process with multiple nodes. In this 
synchronization process, the operation of the protocol stack of 
each node is the same as in Fig. 2. A time slot is set for each 
node, and the BS synchronizes each node sequentially. In each 
time slot, the BS first tells the target node to start the 
synchronization process. Next, the timer offset �	 is calculated 
according to the manner described earlier. At the end of each 
time slot, the BS returns the offset information to the node to 
complete the synchronization. Once the synchronization with all 
nodes is completed, sensing can be done simultaneously with 
synchronous timing. 

Each node’s timer runs on its own RTC, but the RTC 
frequency varies depending on the manufacturing process and 
the surrounding environment. The clock drift caused by 
frequency variation and fracture is the cause of the timer 
deviation after the completion of synchronization. Although this 

 
Fig. 3.  Timing chart of synchronization process with multiple node. 
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clock drift cannot be solved by the first synchronization, it can 
be predicted from the variation in timer offset after the second 
synchronization. The offset value is basically constant, but due 
to the effect of clock drift, the derived offset value has a periodic 
deviation. The amount of device-specific drift can be determined 
by measuring the period of time until the displacement occurs. 
This can be compensated by adding the clock drift information 
to the packet that conveys the offset from the BS to the node. 

IV. PERFORMANCE EVALUATION 

To evaluate the accuracy of the proposed method, we 
conducted a practical experiment using a commercially 
available Bluetooth communication module (nRF52840 DK, 
Nordic Semiconductor). The proposed algorithm was 
implemented on one BS and eight nodes. A logic analyzer 
(Digiview, TechTools) was connected to all the nodes and the 
BS, and the timing of each operation was measured and used for 
evaluation. Fig. 4 presents the experimental setup. 

First, we evaluated the transmission delay, ����� , using a 

logic analyzer. The measurement results indicate that the 
average duration between ���� in the nodes and �����  in the 

BS was 15 µs. Since this value is smaller than the LSB of the 
RTC, we decided not to correct it in this experiment. Next, we 
examined the accuracy of the delay to obtain ��	
����	 . Fig. 5 
shows the error of the delay value estimated by the prototype 
devices with the proposed method. The actual value of the 
transmission delay measured by a logic analyzer as shown in 
Fig. 5. The GPIOs of the BS and the nodes were toggled when 
sending and receiving, and these timings were measured with a 
logic analyzer to evaluate the precise delay value. Fig. 6 
indicates that the error in delay estimation is generally within 
0.03ms. This result depends on the resolution of the timestamp, 
because the nodes have 32.768-kHz RTC and the minimum 
resolution of the time stamp is 0.03ms.  

Next, the effect of clock drift compensation was evaluated. 
Fig. 6 presents the measurement results with and without clock 
drift compensation. The GPIO is toggled every 300ms and 
resynchronized every 10 s. The actual error was measured by the 
logic analyzer according to the same manner as in Fig. 6. Error 
indicates the error in toggle timing. Without clock drift 

compensation, the synchronization error increases linearly until 
resynchronization. On the other hand, the increase of the 
synchronization error can be suppressed with clock drift 
compensation process. 

The histogram of the synchronization errors of eight nodes 
is shown in Fig. 7. In this case, all nodes are synchronize 
periodically using the proposed method. Because of differences 
in oscillator characteristics at each node, the shape of the 
histogram is different. The Root Mean Square Error (RMSE) of 
each node was calculated, and the RMSE averaged over eight 

achieved 20 µs. It is small enough because the LSB of the timer 
was 0.03 ms, which was determined by the 32.768-kHz RTC 
frequency. 

Table 1 compares the performances of the proposed method 
and those achieved in previous studies. Reference [7] 
communicates in the broadcast mode from the node to BS. 
Therefore, flexible sensor networks cannot be constructed and 
controlled due to one-way communication in this method. 
Reference [8] reported highly accurate synchronization using a 
high-frequency (16 MHz) timer clock, which requires large 
power consumption. It also requires not only BLE but also a 
dedicated communication protocol. This diminishes the 

 
Fig. 6.  Toggled timing error in each node with and without clock drift 
compensation. Resync every 10 seconds. 
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Fig. 5.  Error of the estimated delay values. The actual delay is measured 

by logic analyzer 
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advantage of BLE to reduce power consumption by deactivating 
the wireless circuit. Reference [9] used external hardware to 
improve the timestamp accuracy. This method has also been 
implemented with the advertised mode of BLE, and it has the 
same limitations as those reported in [7]. In contrast,  the 
proposed method has an advantage that it can be implemented 
in the application layer of the Bluetooth protocol without 
dedicated lower-layer protocol. Furthermore, the proposed 
method only requires the low-power 32.768 kHz RTC, and it 
can minimize power dissipation during idle time. 

V. CONCLUSION 

Herein, we propose a time-synchronization method for IoT 
sensor nodes using the Bluetooth connection mode. The 
proposed method synchronized the timers of multiple nodes and 
compensates for clock drift. It could be implemented using only 
the application layer in the commercially available Bluetooth 
module with 32.768-kHz RTC. The experimental results 

indicate that the synchronization error was 20µs in the RMSE 
with eight nodes. A significant reduction in power consumption 
can be achieved by using a 32 kHz RTC while taking advantage 
of the BLE standard protocol. While using a low-frequency 
RTC, we achieved an accuracy determined by the LSB of RTC. 
As a result, we have achieved a low-power and low-cost 
synchronization method with the comparable accuracy as 
conventional methods. 
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Fig. 7.  Histogram of synchronization error with eight nodes. 
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CheepSync [7] BlueSync [8] Proposed

BLE (Bloadcast)+Android BLE + Original Protocol BLE (Connection)

BS 1(Android) 1 1

Node 8(nRF24) 2 8

N/A, Android:Several GHz 16MHz 32kHz

10 [µs]  42.84 [µs] / 6.22 [µs]
*1 20 [µs]

N/A 595 [µA] 0.25 [µA]

N/A 72.1 [mJ/sync]
*2

53.4 [mJ/sync]
*2

No N/A 

*1 Depends on required timeslot:  less than 2 seconds is required for 6.22-µs accuracy.

*2 Estimated from of required packets: 8 packets (8 Rx) in [7] and 4 packets (2 Tx and 2 Rx) in Prop.
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