
Kobe University Repository : Kernel

PDF issue: 2024-04-27

20-µs Accuracy Time-Synchronization Method
using Bluetooth Low Energy for Internet-of-
Things Sensors

(Citation)
2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC):181-186

(Issue Date)
2022-02-10

(Resource Type)
conference proceedings

(Version)
Accepted Manuscript

(Rights)
© 2022, IEEE
Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for…
resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.(URL)
https://hdl.handle.net/20.500.14094/0100483403

Harada, Masayasu ; Izumi, Shintaro ; Kozeni, Ryosuke ; Yoshikawa,
Yukiko ; Ishii, Toru ; Kawaguchi, Hiroshi ; Uemura, Shohei ; Araki,…
Kaname

20-µs Accuracy Time-Synchronization Method using

Bluetooth Low Energy for Internet-of-Things Sensors

Masayasu Harada, Shintaro Izumi, Ryosuke Kozeni, Yukiko Yoshikawa, Toru Ishii, Hiroshi Kawaguchi

the Graduate School of Science, Technology and Innovation

Kobe University

1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 6578501, Japan

line 5: email address

Shohei Uemura, Kaname Araki

Technical Development Group

Kobe Steel, Ltd.
Kobe 6512271, Japan

Abstract— This paper presents a low-power and accurate time-

synchronization method for Internet-of-Things (IoT) sensors.

Time synchronization between the base station and sensor nodes

is important for realizing synchronized measurement and data

collection from multiple sensor nodes. The proposed method is

implemented within the application layer of the Bluetooth Low

Energy protocol, and it only requires a 32.768-kHz real-time clock

and an active flag of a power amplifier in the transmission circuit

and a low-noise amplifier in the receiver circuit. This limited

hardware requirement allows for the implementation of

commercially available communication modules. The

synchronization performance was evaluated with eight peripheral

nodes and one central node, and the measurement results indicate

that a 20-µs synchronization error was achieved on average for all

the eight peripherals.

Keywords— time synchronization, sensor network, Bluetooth

Low Energy

I. INTRODUCTION

Time synchronization is a key component of the recent
Internet-of-Things (IoT) sensor systems and sensor networks.
Many applications of these systems require time-series
measurements and accurate time stamps for performing data
analysis. The time stamps of the data measured at multiple
points should be synchronized with the base station or server.
Thus, the sensor nodes must have a real-time clock, and the
system requires a time-synchronization method.

If the sensor is installed outdoors, highly accurate
synchronization can be achieved with a global positioning
system (GPS) or long-wave standard time radio wave.
Unfortunately, these methods cannot be applied indoors or in
heavily shielded areas. Alternatively, packet exchange through
wireless communication and various other methods have been
proposed [1-4]. For example, the network time protocol (NTP)
is widely used on the Internet.

Packet-exchange schemes involve a trade-off between the
synchronization accuracy and cost. When numerous sensor
nodes are deployed, the manufacturing cost and power
consumption of sensor nodes should be considered for practical
use. Herein, we propose a time-synchronization method based
on the Bluetooth 5.0 standard protocol to satisfy both accuracy
and cost requirements.

Bluetooth is a communication standard defined for
applications with limited power consumption (e.g., wearable
devices and sensor networks). Bluetooth Low Energy (BLE),
which has been added since Bluetooth 4.0, is based on the
intermittent operation of the radio circuit to reduce its power
consumption. The objective of this paper is to realize a low-
power time synchronization method that can be implemented
over the BLE. The BLE defines two communication schemes:
Broadcast and Connection. Broadcast is a one-way
communication, which means that data can be transmitted from
one sender node to multiple receiver nodes simultaneously. In
contrast, the connection mode defines bi-directional
communication. Although the advantage of the broadcast mode
is that it can transmit data to multiple nodes with a minimum
control communication, the connection mode is employed in the
proposed method because it requires bidirectional control
communication.

For improving synchronization accuracy, conventional
methods are often implemented in lower protocol layers. The
lower the layer, the more accurate the timestamp can be since
various delay factors are eliminated. The proposed method can
be implemented in the application layer, whereas conventional
methods are implemented in the lower protocol layer to improve
the synchronization accuracy. It enables implementation using
commercially available modules via a 32.768-kHz real-time
clock and active flags of the transceiver circuit, which are
provided by the wireless communication controller in the
module.

This work is supported by Kobe Steel, Ltd.

II. TIME SYNCHRONIZATION USING WIRELESS COMMUNICATION

A. Issues of time synchronization using wireless

communication

Each sensor node in the network has a different timer value
driven by a built-in oscillator. In many cases, a timer is
configured using a low-power real-time clock (RTC) to hold the
time information. This timer must be synchronized to control the
sensing timing for each node. Although there are various
methods of synchronizing timer values between nodes, as
mentioned earlier, we focus on the time-synchronization method
using wireless communication and packet exchange.

By sending the timestamp value in the packet, the receiver
can determine the gap between the sender’s timer and its own
timer. Although this is an effective method, regardless of the
network topology, we assume a star network with one base
station and multiple nodes connected by one hop. The sensor
nodes send a timestamp to the base station, and the base station
replies with the difference between that and its own timer. This
operation synchronizes the time in the network and allows the
base station to control the timing of sensing and communication.

As shown in Fig. 1, there are various error factors in time
synchronization via wireless communication.

• Send : The time that elapses between the sending of a
packet to the application layer and its passing to a lower
layer

• Access : The time it takes at the MAC layer to convert a
packet into a sequence of bits and make it available to the
radio circuit

• Transmission : The time it takes to transmit a radio signal
at the physical layer

• Propagation : The time it takes for a radio wave to
propagate through the air

• Reception : The time it takes for a receiver to receive a
radio signal at the physical layer

• Receive : The time it takes to reassemble the received bit
string into a packet and pass it to the application layer

These error factors need to be addressed to improve the time-
synchronization accuracy. As mentioned in the previous section,
getting the timestamp at a lower layer closer to the physical layer
improves the accuracy. However, it is difficult to change the
lower layers of the protocol stack in commonly available

communication modules, and cost is an issue when using
dedicated communication devices. Developing a dedicated
communication device for time synchronization is costly and
impractical in many cases.

The RTC performance also affects the time-synchronization
accuracy. The upper limit of the synchronization accuracy is
determined by the frequency of the RTC. Although the accuracy
can be improved using a clock with a shorter period, 32.768-kHz
RTC is generally used in applications where low power
consumption is required.

The frequency variation and frequency drift of the RTC also
affect the synchronization accuracy. Even if an RTC with the
same specifications is used, the actual frequency will vary
depending on the manufacturing variations and environmental
conditions such as temperature differences. Even if the
timestamp is exchanged and the offset corrected, the passage of
time will cause another time shift. This problem is called clock
drift. When the clock drift can be suppressed, the
synchronization interval can be increased and the power
dissipation can be suppressed.

B. Related works

Various time-synchronization methods have been proposed
for applications that require low-power performance in IoT and
sensor networks.

Global Positioning System (GPS) can be used for accurate
time synchronization. GPS is a satellite-based positioning
technology that is used in car navigation systems and
smartphones. GPS satellites transmit positioning signals around
the earth, and receivers can calculate its position using received
signal from multiple satellites. The received signal and position
calculation process are also used for time synchronization,
because the satellites are equipped with atomic clocks, which
can be synchronized with 10-ns order accuracy. However,
positioning and time acquisition require data reception from at
least four satellites, and it is difficult to be used indoors or in
other environments with poor signal conditions. Another issue
is the power consumption of the GPS receiver.

Reference broadcast synchronization (RBS) [1] uses
bidirectional communication to synchronize the times of
neighboring nodes. The base station broadcasts the packet to the
entire network, and each node records the reception time.
Subsequently, the nodes exchange the received times with each
other to achieve time synchronization. As the number of nodes
increases, the accuracy improves, but the power consumption
increases.

The timing sync protocol for a sensor network (TSPN) [2]
also realizes time synchronization using bidirectional
communication, similar to the NTP, which is a time-
synchronization protocol used in the Internet. WPTP [4] is a
synchronization protocol for multi-hop wireless networks. This
algorithm is an extension of the PTP and it can reduce the
convergence time and number of packets required for
synchronization.

WPTP [3] is a time synchronization protocol designed for
wireless networks, based on the principles of PTP, a time
synchronization protocol for computers. By taking advantage of

Fig. 1. Error factors in wireless communication.

Transmitter

Receiver

Send Access

Transmission

Reception Receive

Propagation

the characteristics of broadcast communication, WPTP reduces
the number of packets required without compromising
synchronization accuracy.

The flooding time-synchronization protocol (FTSP) [4] is a
method that achieves highly accurate synchronization with only
simple one-way communication. By obtaining timestamps at
the sending and receiving MAC layers when packets are first
sent and immediately after they are received, errors in the MAC
layer are eliminated as much as possible, thereby improving
accuracy. However, since FTSP requires access to low-level
layers, it is often not feasible for commercial devices.

These protocols need to be implemented in layers lower than
the media access control layer because the timestamp accuracy
affects the accuracy. Therefore, these methods assume a
dedicated protocol. It is necessary to process the data in the layer
close to the physical layer to attach an accurate timestamp
without the influence of fluctuation in processing time from the
application layer to the physical layer.

Reference [5] shows that IoT devices have a serious clock
drift problem, and it proposes a clock compensation method
with 15-ms accuracy. Reference [6] reports that the accuracy of

time synchronization using BLE connections is ±750 µs.
CheepSync [7] is a time-synchronization method that uses an
advertisement mode of Bluetooth 4.2 (BLE) protocol. It aims to
synchronize the time between BLE beacons and smartphones
and achieves an average time-synchronization accuracy of 10

µs. Another method [8] also uses the BLE advertising mode. The
experimental results with two sensor nodes and one base station

indicate that an average error of 3.2 µs was achieved without
resynchronization for 10 min. However, it has a disadvantage in

terms of power consumption because it requires a high-
frequency (16 MHz) timer clock and additional control
communications using proprietary protocols.

Reference [9] presents a method that uses the module’s
transceiver active flag and hardware timestamp to obtain an
accurate timestamp. The shunt resistor is used to obtain the exact
active time of the radio transmitter and receiver; it is used for
time stamping to minimize the error factors mentioned earlier.

III. PROPOSED METHOD

We aimed to develop a time-synchronization method that
can be implemented in commercially available modules. To
solve the problems encountered in previous research, we
propose a method that can be implemented in the application
layer of the Bluetooth protocol and can work with a 32.768-kHz
RTC.

A. Timestamp acquisition and wireless communication

The protocol stack processing time of the microcontroller
depends on factors such as the timing of interrupt signals and
memory accesses. To eliminate such effects, it is necessary for
the microcontroller to accurately determine the operation timing
of the transmitter and receiver circuits. There are several
methods of achieving this; a previously developed method [9]
uses an external shunt resistor. Some commercially available
wireless microcontrollers can notify the user program of the
active timing of the transmitter and receiver circuits [10]. This
function allows the application layer to know the operation
timing of the transmitter's PA and the receiver's LNA. This
notification function is also used in our proposed method. In Fig.
2, ���� and ����� respectively denote the time when the PA
and LNA became active.

Fig. 2. Details of transmission delay and timer offset estimation sequence using wireless communication.

App layer

SoftDevice

TX queue

Phy layer

Timer

Phy layer

TX queue

SoftDevice

App layer

Timer

PA

LNA

BS

Node

Connection interval

TSapp TSPA

TSLNATSestimate

TSPA

TSapp

TSLNA

PA

LNAPA PA

LNA LNA

The next issue is to determine when the timestamp should be
sent as a packet. Because the sender cannot obtain this
timestamp until the physical layer is processed, the application-
layer program cannot add a timestamp to the same packet. To
address this problem, the proposed method divides
communication into two stages. As shown in Fig. 2, in response
to a synchronization request from the BS, the node first sends its
own timestamp. When a node activates the radio circuit to
transmit the first packet, it sends a notification to the application
layer to obtain a timestamp. This timestamp is sent to the BS in
the second packet. The BS can use these two timestamps to
determine the delay caused by the node's first packet from the
application layer to the physical layer. The following flow
summarizes the BS and Node operations.

1. The timestamp when the Node adds a data packet to the queue is

flagged as �����.

2. Node acquires ���� when PA goes High when the flag is on.

3. ����� is sent in the first packet from Node to BS.

4. In BS, ����� is updated every time LNA goes High.

5. Get ����� when data is received in BS.

6. The Node sends ���� in the second packet.

7. In BS, these three timestamps can be used to estimate the
��	
����	 .

B. Timer offset calculation

Next, the BS uses the obtained timestamp to synchronize the

timer values of the nodes.

As mentioned earlier, the node sends two timestamps to the
BS: ����� and ���� . ����� is a timestamp that serves as a

reference for synchronization, and ���� is a correction
timestamp that indicates when the transmitter’s power amplifier
(PA) is activated. Assuming that there is an offset between the
BS and node timer values, this process aims to estimate the
timing of ����� at the BS timer value (��	
����	 in Fig. 2).

In addition to the two timestamps received, the BS obtains
the active time of the receiver’s low-noise amplifier (LNA) as
����� when ����� is received. ��	
����	 can be estimated as

follows:

 ��	
����	 = ����� − ����� − ������ − ����� (1)

Here, ����� is a transmission delay including propagation

delay, and it can be considered a fixed value obtained
experimentally. Then, the timer offset, �	, between the BS and
node can be calculated from the difference between ��	
����	
and �����.

C. Time synchronization and clock drift cancelation with

multiple nodes

Time synchronization of multiple nodes is performed using
a time-division approach and the timer offset �	 obtained in the
previous section. Fig. 3 presents a timing chart of the
synchronization process with multiple nodes. In this
synchronization process, the operation of the protocol stack of
each node is the same as in Fig. 2. A time slot is set for each
node, and the BS synchronizes each node sequentially. In each
time slot, the BS first tells the target node to start the
synchronization process. Next, the timer offset �	 is calculated
according to the manner described earlier. At the end of each
time slot, the BS returns the offset information to the node to
complete the synchronization. Once the synchronization with all
nodes is completed, sensing can be done simultaneously with
synchronous timing.

Each node’s timer runs on its own RTC, but the RTC
frequency varies depending on the manufacturing process and
the surrounding environment. The clock drift caused by
frequency variation and fracture is the cause of the timer
deviation after the completion of synchronization. Although this

Fig. 3. Timing chart of synchronization process with multiple node.

BS

Node1

Node2

Node3

1-A

1-C

1-B

1-A 1-B

1-A 1-B

1-C 1-C

・
・
・

・
・
・

A.send time

B.PA active

C.LNA active

Start synchronization instructions

Synchronous timing indication

Synchronous

timing

Timeslot of Node1 Timeslot of Node2 Timeslot of Node3

・ ・ ・

clock drift cannot be solved by the first synchronization, it can
be predicted from the variation in timer offset after the second
synchronization. The offset value is basically constant, but due
to the effect of clock drift, the derived offset value has a periodic
deviation. The amount of device-specific drift can be determined
by measuring the period of time until the displacement occurs.
This can be compensated by adding the clock drift information
to the packet that conveys the offset from the BS to the node.

IV. PERFORMANCE EVALUATION

To evaluate the accuracy of the proposed method, we
conducted a practical experiment using a commercially
available Bluetooth communication module (nRF52840 DK,
Nordic Semiconductor). The proposed algorithm was
implemented on one BS and eight nodes. A logic analyzer
(Digiview, TechTools) was connected to all the nodes and the
BS, and the timing of each operation was measured and used for
evaluation. Fig. 4 presents the experimental setup.

First, we evaluated the transmission delay, ����� , using a

logic analyzer. The measurement results indicate that the
average duration between ���� in the nodes and ����� in the

BS was 15 µs. Since this value is smaller than the LSB of the
RTC, we decided not to correct it in this experiment. Next, we
examined the accuracy of the delay to obtain ��	
����	 . Fig. 5
shows the error of the delay value estimated by the prototype
devices with the proposed method. The actual value of the
transmission delay measured by a logic analyzer as shown in
Fig. 5. The GPIOs of the BS and the nodes were toggled when
sending and receiving, and these timings were measured with a
logic analyzer to evaluate the precise delay value. Fig. 6
indicates that the error in delay estimation is generally within
0.03ms. This result depends on the resolution of the timestamp,
because the nodes have 32.768-kHz RTC and the minimum
resolution of the time stamp is 0.03ms.

Next, the effect of clock drift compensation was evaluated.
Fig. 6 presents the measurement results with and without clock
drift compensation. The GPIO is toggled every 300ms and
resynchronized every 10 s. The actual error was measured by the
logic analyzer according to the same manner as in Fig. 6. Error
indicates the error in toggle timing. Without clock drift

compensation, the synchronization error increases linearly until
resynchronization. On the other hand, the increase of the
synchronization error can be suppressed with clock drift
compensation process.

The histogram of the synchronization errors of eight nodes
is shown in Fig. 7. In this case, all nodes are synchronize
periodically using the proposed method. Because of differences
in oscillator characteristics at each node, the shape of the
histogram is different. The Root Mean Square Error (RMSE) of
each node was calculated, and the RMSE averaged over eight

achieved 20 µs. It is small enough because the LSB of the timer
was 0.03 ms, which was determined by the 32.768-kHz RTC
frequency.

Table 1 compares the performances of the proposed method
and those achieved in previous studies. Reference [7]
communicates in the broadcast mode from the node to BS.
Therefore, flexible sensor networks cannot be constructed and
controlled due to one-way communication in this method.
Reference [8] reported highly accurate synchronization using a
high-frequency (16 MHz) timer clock, which requires large
power consumption. It also requires not only BLE but also a
dedicated communication protocol. This diminishes the

Fig. 6. Toggled timing error in each node with and without clock drift
compensation. Resync every 10 seconds.

-250

-200

-150

-100

-50

0

50

0 6 12 18 24 30 36 42 48 54 61 67 73

E
rr

o
r

[µ
s]

Time [s]

with clock drift compensation

without clock drift compensation

Fig. 5. Error of the estimated delay values. The actual delay is measured

by logic analyzer

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 50 100 150 200

E
rr

o
r

[m
s]

Number of time synchronizations

Node1 Node2

Node3 Node4

Fig. 4. Experimental setup.

advantage of BLE to reduce power consumption by deactivating
the wireless circuit. Reference [9] used external hardware to
improve the timestamp accuracy. This method has also been
implemented with the advertised mode of BLE, and it has the
same limitations as those reported in [7]. In contrast, the
proposed method has an advantage that it can be implemented
in the application layer of the Bluetooth protocol without
dedicated lower-layer protocol. Furthermore, the proposed
method only requires the low-power 32.768 kHz RTC, and it
can minimize power dissipation during idle time.

V. CONCLUSION

Herein, we propose a time-synchronization method for IoT
sensor nodes using the Bluetooth connection mode. The
proposed method synchronized the timers of multiple nodes and
compensates for clock drift. It could be implemented using only
the application layer in the commercially available Bluetooth
module with 32.768-kHz RTC. The experimental results

indicate that the synchronization error was 20µs in the RMSE
with eight nodes. A significant reduction in power consumption
can be achieved by using a 32 kHz RTC while taking advantage
of the BLE standard protocol. While using a low-frequency
RTC, we achieved an accuracy determined by the LSB of RTC.
As a result, we have achieved a low-power and low-cost
synchronization method with the comparable accuracy as
conventional methods.

REFERENCES

[1] J. Elson, L. Girod, and D. Estrin, “Fine grained network time
synchronization using reference broadcasts,” ACM SIGOPS Operating
Systems Review, vol. 36, pp 147–163, 2002.

[2] S. Ganeriwal, R. Kumar, and M.B. Srivastava, “Timing-sync protocol for
sensor networks,” in Proc. of the 1st international conference on
Embedded networked sensor systems, pp. 138–149, 2003.

[3] A. Garg, A. Yadav, A. Sikora and A. S. Sairam, "Wireless Precision Time
Protocol," in IEEE Communications Letters, vol. 22, no. 4, pp. 812-815,
April 2018.

[4] M. Matori, B. Kusy, G. Simon, and A. Ledeczi, “The flooding time
synchronization protocol,” in Proc. of the 2nd international conference on
embedded networked sensor systems, pp. 39–49, 2004.

[5] SK. Mani, R. Durairajan, P. Barford, J.Sommers, “A System for Clock
Synchronization in an Internet of Things,” in arXiv.org, 2018

[6] F. J. Dian, A. Yousefi and K. Somaratne, "A study in accuracy of time
synchronization of BLE devices using connection-based event," 2017 8th
IEEE Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), pp. 595-601, 2017.

[7] S. Sridhar, P. Misra, and J. Warrior, “CheepSync: a time synchronization
service for resource constrained Bluetooth low energy advertisers,” in
Proc. of the 14th International Conference on Information Processing in
Sensor Networks, ACM, pp. 364–365, 2015.

[8] F. Asgarian and K. Najafi, “Time Synchronization in a Network of
Bluetooth Low Energy Beacons,” in Proc. of the SIGCOMM Posters and
Demos, pp. 119–120, 2017.

[9] C.C. Rheinlander and N. When, “Precise Synchronization Time Stamp
Generation for Bluetooth Low Energy,” in Proc. of IEEE SENSORS, pp.
1-3, 2016.

[10] N. Semiconductor, “S140 SoftDevice Specification ver2.1,” pp. 57-58,
https://infocenter.nordicsemi.com/pdf/S140_SDS_v2.1.pdf

Fig. 7. Histogram of synchronization error with eight nodes.

0

5

10

15

20

25

30

-0.1 -0.05 0 0.05 0.1

F
re

q
u

en
cy

Error [ms]

Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8

TABLE I. COMPARISON WITH PRIOR WORKS

CheepSync [7] BlueSync [8] Proposed

BLE (Bloadcast)+Android BLE + Original Protocol BLE (Connection)

BS 1(Android) 1 1

Node 8(nRF24) 2 8

N/A, Android:Several GHz 16MHz 32kHz

10 [µs] 42.84 [µs] / 6.22 [µs]
*1 20 [µs]

N/A 595 [µA] 0.25 [µA]

N/A 72.1 [mJ/sync]
*2

53.4 [mJ/sync]
*2

No N/A

*1 Depends on required timeslot: less than 2 seconds is required for 6.22-µs accuracy.

*2 Estimated from of required packets: 8 packets (8 Rx) in [7] and 4 packets (2 Tx and 2 Rx) in Prop.

Communication Energy consumption

Sensor timing control

Protocol

Communication System

Number of devices

Timer clock

Synchronization Accuracy

Timer current consumption

