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Abstract—Electric vehicles (EV) feature detailed monitoring
and control over the CAN bus. Some of this data is made available
to users on the On-Board Diagnostic version II (OBDII) bus
thus providing an opportunity for large scale high-frequency data
collection. This paper introduces a connected monitoring system
for OBDII equipped vehicles. The system comprises a low cost
hardware design and monitoring algorithms designed to optimize
the number of variables collected and their collection frequency.
The algorithm aims at collecting a high quantity of Battery
Management System (BMS) data in electric vehicles together
with power-usage data to enable short and long term estimation
for battery state of health (SOH) and state of charge (SOC). The
proposed system has been implemented and tested on a Nissan
Leaf and lead to the acquisition of 1.7 million records over 120
hours of driving.

Index Terms—OBDII, 4G, Electric Vehicles, SOH, SOC

I. INTRODUCTION

Modern cars and electric vehicles embed thousands of
sensors to provide several functionalities and features. More
and more cars manufacturers include new and useful utilities
in their new models to enhance the driver’s comfort and its
driving experience [1]. For example, the Advanced Driver
Assistance Systems (ADAS), the Anti-lock Braking System
(ABS), the lane-keeping assist, or the cruise control are easy
to find even in the cheapest market sector. On the other
hand, new functionalities require the car to orchestrate a
huge number of signals between different components called
Electronic Control Units (ECUs). An ECU is an embedded
system that exchanges data at low latency and high bitrate
which connecting all the car’s components all together or
controls a specific vehicle part, such as:

• Vehicle Control Module (VCM), that acts as a gateway to
control all the units on the controller area network (CAN
bus);

• Li-ion battery controller (LBC), that tracks the battery
pack in the EVs;

• Heating, Ventilation and Air Conditioning (HVAC), to
control airflow and temperatures inside the cabin;

• ABS actuator and electric unit;
• ADAS, and many more...
Automakers constantly invest globally more than 100 bil-

ions USD into the research and development departments
to enhance vehicle safety and transportation efficiency [2].
Moreover, autonomous cars constantly scan the environment
with their sensors, exchanging information with other vehicles
(V2V) and the infrastructure along the roads (V2I). Multiple

actors are also interested in monitoring every variation and
load change inside the vehicle (e.g. drivers, producers, or
leasing companies), together with the possibility of orchestrate
a wider smart and connected vehicles moving around creating
an Internet of Vehicles (IoV)[3].

In 1996, the OBD2 [4] specification is made mandatory for
all cars sold in the United States while the European Union did
the same for all the gasoline vehicles (2001) and diesel (2004)
sold in Europe. But it was not until 2011 that the Chinese
market adopted the ISO 15765-4 signaling standard proposed
by the United States.

Along with the ISO standard definition and adoption, many
commercial OBD-II scanners have been sold to diagnose
engine problems or general issues specified by the Diagnostic
Trouble Codes (DTC). The most famous is the ELM-327 [5], a
small microcontroller that communicates with the OBDII port
relying on USB, Wi-Fi, or a Bluetooth connection. It normally
requires a dedicated Android/iOS application to read the data.
Since the communication is bidirectional, some scanners can
also send CAN messages into the CAN-bus; generally, they
clear the DTC warnings or they can modify some hidden
settings up to forge the odometer.

However, nowadays the ECU data is encrypted for safety
reasons. For example, Nissan have added the ECU gateway to
filter out all the unauthorized messages. The Data monitoring
is possible only by knowing the proprietary CAN message
protocol. Due to this policy, most of the commercial OBDII
microcontrollers are stopping working. In this paper, we
propose a system that consists of a 4G LTE data logger which
helped us to retrieve several variables from a Nissan Leaf 2018
Acenta 40kWh despite its OBDII CAN-bus was controlled but
the aforementioned gateway.

The paper is organized as follows: section II is an overview
of the data logger, the communication to the server along
with its architecture; section III focuses on the implementation
of the microcontroller firmware, and the reverse-engineered
CAN protocol explanation; section IV describes the platform
validation running on a Nissan Leaf 2018; finally, some future
enhancements are provided in the final section.

II. SYSTEM ARCHITECTURE

The design of an appropriate monitoring system is crucial to
correlate and study all the signals and measures while the car is
moving. The architecture is the sum of three main components:
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1) The LilyGo TTGO T-SIM7600E-H 4G LTE [6], a stan-
dalone IoT device for ECU sensing and data validation
shown in the figure 1.

2) A headless Amazon EC2 instance for data aggregation
from multiple vehicles;

3) An Amazon Aurora MySQL Database for data storage
and data analysis.

The LilyGo TTGO T-SIM7600E-H produced by Shenzhen Xin
Yuan Electronic Technology Co., Ltd is a modern wireless
networking module that relies on the ESP32 WROVER-
B microcontroller unit (MCU); the clock speed is 240Mhz
along with a 4MB flash memory (extended with an external
microSD card), and an 8MB pseudo SRAM; by design, it
also embeds an Assisted-GPS unit inside that supports GPS
and GLONASS, a slot for the microSD card, and a slot for
the SIM card. Its slim size ( 110*30*29 mm ) is suitable
for a compact allocation under the steering wheel without
interfering with the driver usage; the LilyGO is also connected
to an MCP2515 SPI/CAN controller that reads and writes the
CAN message to the ISO 15765-4 OBD2 HIGH (6) and LOW
(14) pins; finally, a DS3231 real-time clock (RTC) is used for
the fine-time granularity CAN messages requests. The CAN-
bus transmission rate can reach up to 1Mbps exchanging a
huge number of 8 bytes messages. The board is powered with

Fig. 1. LilyGo TTGO T-SIM7600E-H 4G LTE CAT4 USB dongle [6]

the OBDII pin number 16 which has constant +12V DC power
from the battery pack; the pin is protected by a 10A fuse.
Since the LilyGo operates with 3.4V-5V, we added a 12V-5V
step-down converter between the OBDII port and the board.

Once the SIM7600E-H networking module has established
a 4G cellular connection with the cell tower, it gets an IP
address and it starts sending all the variables to a cloud server.
The server is hosted into an Amazon AWS EC2 t2.micro
instance based in Frankfurt. The instance runs on a Linux
Ubuntu 14.04.6 LTS with a 3.13.0-170-generic Linux kernel.
The t2.micro machine has one vCPU and 1GiB RAM, with
32GiB SSD. The database is distributed among two Amazon
Aurora instances which formed a regional cluster based in
Frankfurt. Two db.t2.small instances offer 1 vCPU core and
2GiB RAM, with low-medium throughput. One reader and one
writer instance work together to prevent DDOS attacks and, in

case of failures, they can be restored with fall-back recovery.
Here our MySQL database runs on 5.6.mysql aurora.1.22.2
engine.

Many OBDII dataloggers suffer from a power usage draw-
back: they constantly drain the electric energy from the internal
12V battery [7]. Therefore, we added a battery controller
between the OBDII power pin and the LilyGo, to program
its switching on and off as the figure 2 shows.

Fig. 2. CAN Data Acquisition Architecture

III. IMPLEMENTATION

The University of Bologna has at its disposal a fleet of 30
electric Nissan Leaf 2018 Acenta. The goal of this project was
to retrieve all the High-Voltage battery and engine information
from the different ECUs, monitoring all the fleet. Despite
the OBDII parameter IDs (PIDs) are well defined by SAE
standard J1979 [8], we could not fetch the data requested
out of the box, because of the CAN gateway behind the
OBD2 port. This is why we adopted a programmable board
instead of exploiting the commercial OBDII scanners on the
market. With a custom board and a CAN controller we could
(i) exploit the SIM7600E-H for the 4G Internet connection,
(ii) set custom CAN module settings to match with Nissan’s
CAN-bus, and (iii) we could send custom CAN requests
instead of the hardcoded ones into other scanners. Although a
custom OBD-II bluetooth device can be used to scan the car’s
CANbus, we preferred to avoid the driver’s active involvement
in data logging; this ensures that no user will alter the data
and it will no be distracted by the use of the smartphone.

We programmed the LilyGO’s ESP32 using Arduino IDE,
adding the ’ESP32 Dev Module’ capabilities with the ’Board
Manager’ and following the build instructions provided by the
LilyGO’s developers. Firstly, we use the LilyGO’s API and
TinyGSM library to interact with the SIM module; the library
tries to establish a connection to the Internet Service Provider
(ISP) using the AT commands. Once the module obtains a
valid IP address, we synchronize the external DS3231 RTC
to get the right time from the NTP local server; next, we
take advantage of the LilyGO’s two cores, exploiting ESP32
FreeRTOS to separate the workflow into multiple threads
(xTasks):

• One task (CheckConnection) cyclically checks the cellu-
lar signal quality (in dBm), the GPRS status along the
connection availability. While moving, the connection is



intermittent sometimes but it can be reestablished once
the module lost the IP address;

• a GPS task (checkGPS) interacts with the SIM7600’s
multiple satellites high accuracy positioning GNSS sys-
tem, to get the current latitude, longitude, and altitude;

• a CAN reader task (checkCAN) cyclically sends the CAN
requests to get access to all the ECU’s variables described
in section IV. In case the connection is missing, the task
stores the variables into the 32GB microSD for a delayed
re-transmission.

A UDP socket establishes the connecting endpoints between
the board and our Amazon EC2 thanks to some adjustments
we made on the TinyGSM library. We edited TinyGsm-
ClientSIM7600.h file in which particular modemConnect(),
modemSend(), and modemRead() to comply with the right AT
commands CIPOPEN, CIPSEND, and CIPRXGET according
to the ’SIM7600 Series TCPIP AT Command Manual V1.0’
by the reason of TinyGSM has not implemented the UDP
context yet but the SIM7600 actually supporting UDP while
we are writing this. Due to some cost constraints with the ISP
provider and the intermittent nature of the V2I connectivity, we
decided to send UDP packets to the cloud server, avoiding any
re-transmissions in case of failures. Then we tested the absence
of missing packets from the server perspective, even with high-
speed tests on the road. The message protocol comprises two
kinds of string requests and responses as follows:

• {SEND CODE, VEHICLE ID, DATETIME,
GPS COORDINATES, [VARIABLES]}

• {ACK, VEHICLE ID, DATETIME, [ERROR]}
’SEND CODE’ can take only two different values: (0) if we

want to add a new vehicle into the database, or (1) if we want
to send a new packet that contains all the variables parsed from
the CAN-bus. If the ’SEND CODE’ is zero, ’VARIABLES’
must be empty. The ’VEHICLE ID’ is the car’s identification
number composed of 17 characters (digits and capital letters),
also known as VIN; the VIN serves as the car’s fingerprint, as
no two vehicles in operation have the same id. ’DATETIME’
is the timestamp of the current cycle of the variables stored in
the payload; as timestamp, we use the epoch (i.e. how many
seconds have passed since January 1, 1970 00:00:00 UTC).
The ’GPS COORDINATES’ are the longitude, latitude, and
altitude mentioned above, while ’VARIABLES’ is a list of all
the ECU’s parameters we asked to the CAN gateway during a
cycle. The couple ’VEHICLE ID’ and ’DATETIME’ is used
as MySQL key in the data table. Before sending a value,
a conformity check is applied: all the variables out of their
operative range are discharged.

On the server-side, a UDP socket is listening to the port
55555 for new incoming packets. The new sample is then
parsed to check its correct format and integrity, and finally
stored into a dedicated MySQL table. Therefore, a thorough
modeling of the time series is possible in order to predict the
battery’s SOH in correlation with its temperature and voltage.
The server replies with an acknowledge response with ’K’ as
’ACK’ in case the packet has been correctly received or ’E’

that stands for error, with a detailed description in ’ERROR’
(e.g. a badly formatted packet from LilyGO, or a duplicate
sample).

IV. EVALUATION

To evaluate the system, we drove more than 120 hours
throughout the road of the city of Bologna, during the last
months. As stated in the previous sections, we used one of the
Nissan Leaf 2018 Acenta from the University of Bologna fleet.
In order to overcome the ’gateway problem’, our first step was
to study how CAN parsing was possible on previous Nissan
Leaf models. In fact, before 2018 all the ECUs broadcasted
all the CAN messages into the bus passively. Lots of variables
were found by enthusiasts and researchers, correlating the
values changes among different driving scenarios. Many tools
(e.g. PEAK PCAN-View [9]) highlight which bytes, with the
same CAN ID, have changed during the scans.

Following a similar approach, we identified all the ECU
ids (i.e. CAN message ids) that the gateway allowed to be
questioned, i.e. we flooded the bus with all the combinations
of 8 bytes with 0x7XX IDs until we got a CAN message
which does not match with CAN error (0x7XX 03 7F 21 11
FF FF FF FF). The Nissan Leaf uses the 11-bit CAN frame
exclusively, so the identifiers could range from 0 to 0x7FF;
not all the identifiers can be queried, i.e. they neither reply
with an error message nor any message at all.

TABLE I
NISSAN LEAF 2018 ECU IDS

ECU ID Query ID Response
Vehicle Control Module (VCM) 0x797 0x79A
Body Control Module (BCM) 0x743 0x763
AntiBlockierSystem (ABS) 0x740 0x760
Li-ion Battery Controller (LBC) 0x79B 0x7BB
Traction Motor Inverter (INV/MC) 0x784 0x78C
Meter 0x745 0x765
HVAC 0x744 0x764

Every ECU has a predefined id and it replies with a
different, but consistent id accordingly. Nissan Leaf’s ECU
IDs are reported in above table I. In the payload, the unused
bytes are usually 0xFF. To comply with the Nissan protocol,
the message query must also follow these rules:

• The first byte corresponds to the length of the payload
(usually 02 or 03), e.g. not FF bytes.

• The second byte is usually 0x21 for a multi message
response or 0x22 for a single message response;

• The third and fourth bytes are the PIDs that we reverse-
engineered.

For instance, this is how we ask for the car’s gear:
R: 0x797 03 22 11 56 FF FF FF FF
A: 0x79A 04 62 11 56 01 FF FF FF

Thus, 0x79A is the VCM’s answer message ID, 04 is the
payload byte length, 62 corresponds to 22+40 (it is always the
third question byte plus 40), 11 and 56 is the gear PID; 01 is
the gear value, i.e. 1=Park, 2=Reverse, 3=Neutral, 4=Drive.

In some cases, the ECUs reply with many messages to
a single request; if it happens, the first byte correspond to
the message ordering. It is possible to request the whole



response once we get the first 8 byte response; we usually
wait at least 0.5ms and then we send a new query as follows:

0x7XX 30 00 00 00 00 00 00 00
Multiple next readings of the CAN buffer are required to get
all the answers. All the PIDs we found, and related variables,
are reported in the tables II.

TABLE II
NISSAN LEAF 2018 PIDS

Variable PID ECU
Tires Pressure 0E 25-28 BCM

RPM 12 55 BCM
Torque 11 15 INV

Wipers-Lights 09 Meter
Speed 12 1A VCM

Motor Power 11 46 VCM
Range 0E 2E BCM

Brake pedal 12 09 ABS
Acc. pedal 11 15 ABS
12V Bat
Current 11 83 VCM

12V Bat
Voltage 11 03 VCM

Odometer 0E 01 BCM
Temperature 11 5D VCM
AC Power 12 61 VCM

Quick
Charges 12 03 VCM

L1 L2
Charges 12 05 VCM

SOH 61 LBC
HV Battery
Temperature 04 LBC

Battery Serial 84 LBC

Variable PID ECU
ePedal 13 1A VCM

Heater Power 12 62 VCM
AUX Power 11 52 VCM
Motor Temp 11 21 INV
OBC Power 12 36 VCM
ECO Mode 13 1B VCM

AC 11 06 VCM
Gear 11 56 VCM

Plug State 12 34 VCM
Charging Mode 11 4E VCM

12V Bat
Voltage 11 03 VCM

Rear Heater 11 0F VCM
Fan speed 10 HVAC

Power
(ON/OFF) 13 04 VCM

VIN 81 VCM
HV Battery

Current 01 LBC

HV Battery
Voltage 01 LBC

SOC 01 LBC
HV Cells
Voltage 02 LBC

HV Battery
Capacity 01 LBC

V. CONCLUSION

This paper presents a ESP32-based 4G OBDII platform for
vehicular data acquisition which requires a SIM card only
to work. The system can be placed under the steering wheel
and powered directly from the OBDII port. Nevertheless, to
the best of our knowledge, this is the first OBDII scanning
attempt via CAN bus reverse engineering, since Nissan does
not publish its CAN message protocol. As the OBDII standard
has become mandatory in USA, Europe, and Asia, along with
the global rise of the electric vehicles, self-diagnosis systems
and vehicular data acquisition systems are getting much at-
tention from automakers, researchers and enthusiasts. Despite
the SAE standard J1979 defines many OBDII PIDs, many
vehicles manufacturers are hiding them behind more robust
CAN-bus gateways and proprietary CAN message protocols.
Furthermore, almost all [10]–[12] the OBDII scanners on the
market relies on dedicated mobile apps and they communicate
real-time via bluetooth, USB, or via WiFi.

Ultimately, extensive evaluation carried out show how fine-
time BMS monitoring represents a promising enabling tech-
nology for the battery’s health estimation. Real-time data along
with a thorough analysis of collected samples will give us
valuable insights into the battery pack degradation and driver’s
behaviors.

ACKNOWLEDGEMENTS

This work was supported in part by the Macao Polytechnic
Institute – Edge Sensing and Computing: Enabling Human-
centric (Sustainable) Smart Cities (RP/ESCA-01/2020). This
work has received funding from the LiBER project under
PORFESR programme by Emilia Romagna Region, years
2019-2021.

REFERENCES

[1] A. K. Basu, S. Tatiya, and S. Bhattacharya, “Overview
of electric vehicles (evs) and ev sensors,” in Sensors
for Automotive and Aerospace Applications, S. Bhat-
tacharya, A. K. Agarwal, O. Prakash, and S. Singh, Eds.
2019.

[2] “Automotive r&d,” 2019 Global R&D Funding Fore-
cast, vol. Winter 2019, p. 17, Oct. 2019.

[3] A. Bujari, O. Gaggi, C. E. Palazzi, and D. Ronzani,
“Would current ad-hoc routing protocols be adequate
for the internet of vehicles? a comparative study,” IEEE
Internet of Things Journal, vol. 5, pp. 3683–3691, 2018.

[4] United states environment protection agency (epc). ve-
hicle emissions on-board diagnostics (obd). [Online].
Available: https : / / www . epa . gov / state - and - local -
transportation / vehicle - emissions - board - diagnostics -
obd.

[5] Elm327 - elm electronics, ”on board diagnostics (obd)
ics. [Online]. Available: https : / /www.elmelectronics .
com/wp-content/uploads/2016/07/ELM327DS.pdf.

[6] Lilygo ttgo t-sim7000g module. [Online]. Available:
https : / / github . com / Xinyuan - LilyGO / LilyGO - T -
SIM7600X.

[7] How to solve elm327 drain power problem? [Online].
Available: http://blog.obdii365.com/2014/12/08/how-
to-solve-elm327-drain-power-problem/.

[8] SAE. (2017). “SAE J1979/ISO 15031-5: E/E Diagnostic
Test Modes,” [Online]. Available: https://www.sae.org/
standards/content/j1979 201702/.

[9] PEAK. (2021). “PCAN-View: Windows Software for
Displaying CAN and CAN FD Messages,” [Online].
Available: https : / / www . peak - system . com / PCAN -
View.242.0.html?&L=1.

[10] J. Palomino, E. Cuty, and A. Huanachin, “Development
of a can bus datalogger for recording sensor data from
an internal combustion ecu,” in 2021 IEEE International
Workshop of Electronics, Control, Measurement, Sig-
nals and their application to Mechatronics, 2021.

[11] M. Amarasinghe, S. Kottegoda, A. L. Arachchi, S.
Muramudalige, H. M. N. Dilum Bandara, and A. Azeez,
“Cloud-based driver monitoring and vehicle diagnostic
with obd2 telematics,” in 2015 Fifteenth International
Conference on Advances in ICT for Emerging Regions
(ICTer), 2015, pp. 243–249.

[12] J. Moniaga, S. Manalu, D. Hadipurnawan, and F.
Sahidi, “Diagnostics vehicle’s condition using obd-ii
and raspberry pi technology: Study literature,” Journal
of Physics: Conference Series, vol. 978,


