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Abstract—In 5G non-standalone mode, traffic steering is a
critical technique to take full advantage of 5G new radio while
optimizing dual connectivity of 5G and LTE networks in multiple
radio access technology (RAT). An intelligent traffic steering
mechanism can play an important role to maintain seamless
user experience by choosing appropriate RAT (5G or LTE)
dynamically for a specific user traffic flow with certain QoS
requirements. In this paper, we propose a novel traffic steering
mechanism based on Deep Q-learning that can automate traffic
steering decisions in a dynamic environment having multiple
RATs, and maintain diverse QoS requirements for different
traffic classes. The proposed method is compared with two
baseline algorithms: a heuristic-based algorithm and Q-learning-
based traffic steering. Compared to the Q-learning and heuristic
baselines, our results show that the proposed algorithm achieves
better performance in terms of 6% and 10% higher average
system throughput, and 23% and 33% lower network delay,
respectively.

Index Terms—Multi-RAT, traffic steering, reinforcement learn-
ing

I. INTRODUCTION

The dual connectivity between long term evolution (LTE)
and fifth generation new radio (5G NR) results in multiple
radio access technologies (multi-RAT) [1], [2]. On the other
hand, each type of RAT is supposed to have distinctive
capabilities to serve user equipment (UE) with diverse quality-
of-service (QoS) requirements. This raises the need of steering
a specific class of traffic to a certain RAT to fulfill the QoS
demands. For instance, high throughput video traffic can be
better served by 5G NR. On the contrary, steering voice
traffic to LTE base station (BS) with wider coverage can be a
better decision since such traffic is not throughput hungry but
requires more coverage to avoid frequent handovers. However,
steering a specific class of traffic continuously to a certain
RAT may cause several problems. The system may suffer from
higher delay due to excessive load and reduced throughput
because of the packet drops. These issues are quite challenging
to address, especially when 5G NR facilitates dense network
deployments and an increased number of users.

To address the above-mentioned challenges, an AI-enabled
traffic steering scheme emerges as a promising approach to
manage densely deployed networks with dynamic require-
ments. In recent years, AI and machine learning have been
applied to various other problems in 5G [3]. Even though
the emergence of the 5G non-stand-alone (NSA) mode has

drawn the attention of researchers recently, most existing
works linked with traffic steering lack a comprehensive tool
to overcome the complexity.

For instance, in [4], the authors propose a traffic steering
scheme based on some threshold calculated using parameters
like load at each type of RAT, channel condition, and service
type but the method lacks the intelligence to handle dynamic
wireless environments. Compared with conventional model-
based optimization methods, machine learning, especially re-
inforcement learning (RL) algorithms, can significantly reduce
the complexity of defining a dedicated optimization model
[5]. Advanced machine learning techniques like deep rein-
forcement learning (DRL) [6] can not only automate traffic
steering in a dynamic 5G wireless environment, but also it
can handle larger state-action space compared to traditional
reinforcement learning. Therefore, unlike previous works, we
propose a DRL-based traffic steering scheme that tends to per-
form RAT specific traffic steering in a multi-RAT environment
to maintain QoS requirements of different traffic classes in a
dynamic 5G NSA mode to maintain seamless network activity
and smooth user experience.

In this paper, we seek to balance the QoS demands of all the
traffic classes simultaneously by proposing a Deep-Q-network
(DQN)-based traffic steering scheme. The reward and state
functions of the proposed DQN-based traffic steering scheme
is carefully designed to have satisfactory performance based
on two crucial key performance indicators (KPIs); i.e. network
delay and average system throughput. Performance of the
proposed method is compared with two baseline algorithms:
Q-learning-based method [7] and a heuristic-based algorithm
adopted from [4]. It gains 6% and 10% increase in average
system throughput compared to the Q-learning and heuristic-
based baseline respectively. Furthermore, it achieves 23% and
33% decrease in network delay compared to the mentioned
baselines.

The rest of the paper is organized as follows: Section II
presents the related works. We discuss the system model and
the problem formulation in Section III. Section IV covers the
proposed DQN-based traffic steering scheme along with the
baselines. The performance evaluation of the proposed DQN-
based traffic steering method is presented in Section V. Finally,
the paper is concluded in Section VI.
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II. RELATED WORKS

In this section, we summarize the state-of-the-art literature
on traffic steering. Prasad et al. propose a dynamic traffic
steering scheme for energy efficient radio access network
moderation in ultra-dense 5G networks [8]. A unified traffic
steering scheme by Dryjanski et al. is proposed for LTE-
advanced pro, aiming at optimal radio resource allocation in
multi-RAT networks [9]. Most recently, Khaled et al. have
proposed a cell zooming technique to steer traffic in a software
defined radio-enabled LTE network that uses renewable energy
sources to lessen on-grid power consumption [10]. Gijon et
al. propose a data driven approach to perform traffic steering
in multi-carrier LTE networks in which traffic steering is
conducted based on reference signal received quality-based
handover margins [11].

Nevertheless, 5G deployments have made it more challeng-
ing to develop an elegant traffic steering scheme because of
the increased number of users and dual connectivity. Passas
et al. propose a pricing oriented network selection process
for distributed heterogeneous networks based on imposed load
pressure at a particular RAT [12]. A heuristic-based approach
proposed in [4] performs traffic steering based on a threshold
level calculated using parameters like channel condition, load
level at each RAT, and service type. Priscoli et al. address the
problem of traffic steering using a Q-learning-based solution
that aims at maintaining QoS, and performs load balancing in
a 5G heterogeneous network [13]. Different from the previous
works, this paper provides automation in the system via DRL-
based traffic steering scheme that can perform RAT specific
traffic steering in a multi-RAT environment. Furthermore, the
proposed method can maintain QoS requirements of different
traffic classes in a dynamic 5G NSA mode to maintain
seamless network activity and smooth user experience.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this work, a multi-RAT network is considered having
Q classes of RATs where each class of RAT, q represents a
particular access technology (LTE, 5G, etc.). Multiple users are
associated with different types of RATs via dual connectivity.
A UE can maintain K types of traffic classes. Fig. 1 presents
the network model considered in this study. We represent
three different classes of traffics: voice, gaming, and video
as TC1, TC2, and TC3 respectively in the figure. We have
designed our network environment in a way where small
cells are within the range of a macro-cell. UEs have dual
connectivity with LTE or 5G RAT and traffic can be steered
to either one of these RATs based on our proposed method.
The total downlink bandwidth, B in MHz is divided into
NRB resource blocks. A resource block contains a set of
12 contiguous subcarriers. Consecutive resource blocks are
grouped to constitute resource block group (RBG) as defined
in [3]. Each RBG, h is allocated a certain transmission power
ph,b, by a BS, b. Based on our system model, each BS holds a
number of transmission buffers corresponding to the number of

Fig. 1. Illustration of network environment with one LTE macro cell and
several 5G small cells.

users connected to it. Every transmission time interval (TTI),
the downlink scheduler assigns resources to the users having
pending data transmissions.

The link capacity between the UE, u and BS, b can be
formulated as follows:

Cu,b =

H∑
h=1

ωh log2

(
1 +

ph,bxh,u,bgh,u,b
ωhN0 +

∑
m∈B ph,mxh,u,mgh,u,m

)
,

(1)
where ωh is the bandwidth of the h, ph,b is the transmit power
of the BS, b on h, gh,u,b is the channel co-efficient and xh,u,b
is the RBG’s allocation indicator of the link (h, u, b). N0 is
the additive white Gaussian noise single-sided power spectral
density. ph,m is the transmit power of the interfering BS, m,
gh,u,m is the channel co-efficient, and xh,u,m is the allocation
indicator of link (h, u,m).

Each link has a capacity limit. Traffic flows passing through
a link should not exceed the capacity of the link in the system.∑

f∈F

dfxfu,b 6 Cu,b ∀(u, b) ∈ L, (2)

where F is the set of all the flows in the network, df is the
capacity demand of the flow f ∈ F from UE, u to BS b. xfu,b
represents a binary (0, 1) component that is ‘1’ if the link
(u, b) has been used from UE,u to BS b. It is ‘0’ otherwise.
L is the set of links and Cu,b is the capacity of link (u, b). as
presented in eq. (1)

In our system model, the delay is considered as the summa-
tion of transmission and queuing delay which is as follows:

Dk,b = DTrx
k,b +Dq

k,b, (3)

where DTrx
k,b is the transmission delay experienced for a

particular traffic type k and BS b, and Dq
k,b is the queuing

delay experienced for a particular traffic type k at BS b for a
user u. The transmission delay can be calculated as follows:

DTrx
k,b =

Lu,b
Cu,b

, (4)

where Lu,b is the packet length and Cu,b is the link capacity
as stated in eq. (1).



B. QoS Requirements and Problem Formulation

To be able to perform traffic steering for different traffic
classes with QoS requirements for delay and throughput, first
two parameters are defined based on delay and throughput. The
delay parameter associated with our traffic steering problem
is considered as the ratio of the defined QoS requirement for
delay and the actual delay experienced in the system for a
particular traffic class being carried by a certain BS. It can be
stated as follows:

rDk,b =
DQoS

Dk,b
, (5)

where DQoS is delay requirement defined in the simulation for
a particular traffic type and Dk,b is the actual delay achieved.
Similarly, the throughput parameter is defined as the ratio
of actual throughput achieved and the required throughput as
stated in eq. (6):

rTk,b =
Tk,b
TQoS

, (6)

where TQoS is the throughput requirement defined in the
simulation for a particular traffic class and Tk,b is the actual
throughput achieved.

Since our aim is to improve the system performance in
terms of the delay and throughput, a new variable is formed
to represent and meet such targets. It combines the delay and
throughput parameters in eq. (5) and (6) along with some
weight factors. The declared variable combined with delay,
throughput, and weight factors (w1 and w2) is as follows:

M = w1(r
D
k,b) + w2(r

T
k,b). (7)

The traffic steering problem proposed in this paper is formu-
lated as the maximization of the variable M (presented in eq.
(7)) which is as follows:

max
∑
u∈U

∑
k∈K

∑
b∈B

Mu,f,b,

s.t.
∑

(u,b)∈L

βfk > βf ∀f ∈ F,

∑
(u,b)∈L

D(u, b)xfu,b 6 Df ∀f ∈ F,

(8)

where βfk is the required bitrate for a particular type of traffic
k, and βf is the available bitrate. Also, Df represents the
latency demand of flow f ∈ F and D(u, b) is the latency of
link (u, b).

IV. PROPOSED DQN-BASED TRAFFIC STEERING SCHEME

A. DQN-based Traffic Steering Scheme

For a relatively simplistic RL environment, Q-learning is
a good solution for optimization. However, as the state-
space increases, the time needed to traverse all these states
and iteratively update all the Q-values will increase which
is computationally inefficient and resource consuming. To
address this issue, DQN can be used to estimate the Q-values
for each state-action pair in a given environment using a deep
neural network (DNN) [6].

During the training stage of DQN, agent’s experiences at
each time step is stored in a data set called the replay memory.
At time τ , the agent’s experience eτ is defined as the following
tuple:

eτ = (Sτ , Aτ , Rτ+1, Sτ+1). (9)

The tuple contains the state of the environment, the action
taken from the state, the reward given to the agent as a
result of previous state-action pair and the next state of the
environment. In short, the tuple gives us the summary of the
agent’s experience at time τ . All the agent’s experiences at
each time step over all the episodes played by the agent are
stored in the replay memory. In practice, the replay memory
is set to some finite size unit (N). Therefore, it will only
store the last N experiences. The replay memory data set is
the place from where random samples are chosen to train the
network.

The DNN in DQN takes states as inputs from the envi-
ronment and outputs the Q-values for each action that can
be taken from that state. Before the training starts, first, the
replay memory data set, D is initialized to capacity, N . Next,
DNN is initialized with random weights. For each episode,
the starting state is initialized. For each time step within the
episode, the agent either explores the environment and selects
a random action or the agent exploits the environment and
selects the greedy action for the given state that provides the
highest Q-value. This epsilon greedy policy is used to balance
the exploration and exploitation.

Aτ =

{
random action, if rand 6 ε

argmax(qτ (Sτ , Aτ )), otherwise
(10)

where ε is the exploration probability within 0 6 ε 6 1 and
rand represents a random number between 0 to 1.

After an action is taken, we observe the reward for the action
along with the next state of the environment. Therefore, the
state an agent initialized from, action taken, reward observed
are all put together in a tuple as described in eq. (9).

For a single sample, the first pass to the network occurs
for the state from the experience tuple that was sampled.
The network then outputs the Q-values associated with each
possible action that can be taken from that state and then the
loss is calculated between the Q-values for the action from
the experience tuple and the target Q-value for this action. To
calculate the target Q-value, it is required to have a second pass
to the target network with the next state. The target network
is the clone of the policy network (which is also the main
network). Its weights are frozen with the weights same as
the policy network and the weights are updated in the target
network after every certain amount of time steps. The loss for
DQN is calculated using the following equation:

L(w) = Er(Rτ + γmax
A

q(Sτ+1, A,w
′)− q(Sτ , Aτ , w)),

(11)
where w and w′ are the weights of the main and the target
network, and Er represents the error function. Having two
NNs (main and target) ensures stability.



Fig. 2 describes the schematic of the proposed DQN-based
traffic steering where we have a main network and a target
network and minibatch from the replay memory is getting
fetched.

Fig. 2. Overall system architecture with DQN.

The mathematical formulation of DQN depends on Markov
Decision Process (MDP) that is defined by agents, states,
actions, and a reward function. Tuples associated with DQN
is defined as follows:
• Agent: We implement a centralized agent to control the

macro base station (MBS) and the small cell base stations.
It is deployed in the MBS and controls all the incoming
traffic to each BS.

• State: The state consists of three elements,
{Tf , LQ(SINR), qL}. Here, Tf represents the traffic
type. It is assumed that each traffic type has fixed
QoS requirements and we can perform traffic
steering to a particular RAT based on that. Users
periodically report signal-to-interference and noise
ratio (SINR) measurements to the 5G base station
(gNB) and LTE base station (eNB). It indicates the
quality of the link associated with a UE and a BS.
Therefore, the second element of state space is:
LQ(SINR)={SINReNB , SINRgNB}. To represent load
level, queue length of both types of RATs is used. So,
the last element of the state space is queue length,
qL={qL(gNB), qL(eNB)}.

• Action: The action space contains the action of flow
admission to the RATs. It is defined as: {ALTE , A5G}.
Here, (ALTE) stands for flow admission to the LTE RAT
, and (A5G) stands for flow admission to the 5G RAT.

• Reward: The reward function is based on eq. (7). To
keep it normalized, sigmoid function is used. Therefore,
the reward function is as follows:

R = sigm(M), (12)

where sigm(M) represents the sigmoid function.

The proposed DQN-based traffic steering algorithm is sum-
marized as Algorithm 1.

Algorithm 1 DQN-based traffic steering
Initialize: Network and DQN parameters

1: for TTI = 1 to T do
2: for every u, b, k do
3: if (rand ≤ ε) then
4: choose action randomly
5: else
6: select Aτ using greedy policy
7: end if
8: BSs are selected for all the UEs for all k ∈ K
9: Traffic admission is performed

10: Reward calculation based on eq. (12)
11: Agent updates its own state Sτ
12: Save (Sτ , Aτ , Rτ+1, Sτ+1)
13: end for
14: Random sample a minibatch from the experience pool
15: Generate target Q-values, qτ (Sτ , Aτ )
16: Update w using gradient descent to minimize the loss,

L(w) = Er(qτ (Sτ , Aτ )− q(Sτ , Aτ , w))
17: Copy w to w′ after several training
18: end for
19: Output: Optimal traffic steering decisions from TTI =

1 to T

B. Baseline Algorithms

In this section, two baseline algorithms are introduced that
have been used for the performance comparison. The first
baseline algorithm for RAT selection is based on a predefined
threshold [4]. This is called the heuristic baseline. Here, the
threshold is calculated for each UE based on the metrics like
load at eNB (le) and gNB (lg), channel condition of a user
under LTE (che,u) and 5G BS (chg,u), service type of a user
(Su). The channel condition is determined to be good or bad
considering a threshold of received SINR values. Similarly, the
load at each RAT is determined based on a threshold value.
Based on the mentioned metrics, a value Tu is calculated that
is used for selecting the RAT for a UE after comparing it with
a predetermined threshold (Tth). Following equation is used
to calculate the value for Tu:

Tu(le, lg, che,u, Su) = αle + βlg + γchg,u + δSu, (13)

where α, β, γ, and δ are the weights associated with consid-
ered parameters that can be modulated based on the impact of
any certain metric on system performance. Tth is set to be the
mean of all the possible values of Tu. The decision of steering
traffic to a particular RAT is taken the following way:

Ru =

{
1, Tu > Tth (1 represents gNB)
0, Tu 6 Tth (0 represents eNB).

(14)

The Q-learning algorithm has been used as another baseline
in this work [7]. The goal is to investigate how DQN performs
against the Q-learning algorithm.



V. PERFORMANCE EVALUATION

A. Simulation setup

We have conducted MATLAB based simulations consider-
ing 1 eNB and 4 gNBs with 30 users in total. There are a total
of 1 macro-cell and 4 small cells facilitated by the gNBs and an
eNB. A macro-cell and a small-cell have carrier frequencies of
3.5 GHz and 0.8 GHz respectively. Specifications of the traffic
classes used in this study have been summarized in TABLE I.
For the experimental results, the load has been varied between
5-10 Mbps. Proportion of the voice, video, and gaming traffic
is 20%, 50%, and 30% respectively. Higher proportion of
the video traffic is deliberately considered to observe how
the system performs with the higher throughput requirements.
Also, gaming traffic has the most stringent delay requirement
and we wanted to see if the system performs well enough
to meet such precise requirement. Therefore it has a higher
percentage compared to the voice traffic. QoS requirements
associated with delay and throughput for the three types of
traffic classes are specified based on the existing literature [14]
and 3GPP specifications (see TABLE I.). We are using multi-
RAT dual connectivity architecture, an NSA mode where LTE
and 5G NR BSs serve together. An architecture specified in
[15] has been used where the dual connectivity is ensured
via evolved packet core [16]. Transmission power of the LTE
BS and 5G NR BSs are set to 40W and 20W. Furthermore,
bandwidth for the LTE and 5G RAT are fixed to 10MHz and
20MHz.

TABLE I
TRAFFIC CLASS DESCRIPTION AND SIMULATION SETTINGS

Traffic class specification Values

Traffic model
Poisson distribution, video

and gaming traffic [14]
Voice traffic

Packet size 30 bytes
TQoS , DQoS 0.1 Mbps , 100ms

Proportion of the traffic 20%
Video traffic

Packet size 250 bytes
TQoS , DQoS 10 Mbps, 80ms

Proportion of the traffic 50%
Gaming traffic

Packet size (gaming traffic) 120 bytes
TQoS , DQoS 5 Mbps, 40ms

Proportion of the traffic 30%

B. Simulation results

The performance of the proposed algorithm is evaluated in
terms of two KPIs: Average system throughput and network
delay. In Fig 3, we present a comparison in terms of system
throughput under different user loads. The proposed DQN
outperforms heuristic and Q-Learning baselines by gaining 6%
and 10% increased throughput, respectively.

Fig. 4 presents the performance comparison of the proposed
DQN-based traffic steering method with the other baselines in
terms of delay. The DQN-based method achieves 23% and

Fig. 3. System throughput against traffic load.

Fig. 4. System delay against traffic load.

33% decrease in network delay compared to the baselines.
Note that, the proposed method and the Q-learning, both have
a reward function formulated based on throughput and delay.
Whenever high delay is experienced for steering traffic to a
particular RAT, the system learns. That is why, both of them
have better performance compared to the heuristic baseline.
In Fig. 4, delay is calculated considering all the traffic classes
together at each load.

It should be mentioned that the main reason of the improved
performance of the proposed method is the use of DQN,
that outperforms Q-learning in terms of exploration efficiency
and achieves higher average reward. Q-learning suffers due to
longer exploration period and gets lower average reward since
it does not have a DNN as an approximator which compels
the agent to cover larger state and action space.

In this work, we also want to steer a particular type of
traffic to a specific RAT. For example, steering the voice
traffic constantly to a gNB is a waste of resources since the
throughput requirement is not that high for such traffic. Fig. 5
is presented which shows what percentage of a traffic class is
processed by a particular RAT and when the traffic gets steered
due to higher load. In Fig. 5(a), it is observed that most of
the voice traffic is processed by the eNB, however, a small
portion of the traffic is processed by the gNB too whenever
the system experiences higher load. For the video and gaming
traffic, it is observed that most of the traffic is processed by
the gNB.



Fig. 5. Data processing percentage for different traffic types.

Fig. 6. Traffic steered to other RAT as load changed.
Lastly, Fig. 6 demonstrates how traffic steering occurs

whenever a high load is experienced in a BS with a particular
RAT. We start with one UE at the 300th time slot and increase
the number of UEs in a small cell up to six for different traffic
classes. The variable L, in the respective figure represents load
in terms of queue length. At the 1800th time slot, it can be
seen that four among six UEs are steering different types of
traffic to the 5G NR BS. This results in higher load and we can
see that the third and fourth UEs are experiencing high load
(value of L changed from 0 to 1). So, in the next observed
time slot, these two UEs steer the traffic to the eNB. In the
2100th time slot, we can see four UEs steering voice, video,
and gaming traffic to the only eNB in our system. This incurs
high load at eNB and in the next observed slot we can see
that the sixth UE has switched its traffic to the gNB.

VI. CONCLUSIONS

In this study, we have proposed a novel method that can
perform RAT specific and QoS aware traffic steering using
DQN. It gains 6% and 10% increase in average system
throughput compared to the Q-learning and heuristic-based
baseline respectively. Moreover, it achieves 23% and 33%
times decrease in network delay compared to the baselines.
Apart from the better performance in terms of the KPIs, the

proposed method can perform RAT specific traffic steering
ensuring efficient use of network resources. Lastly, the pro-
posed DQN-based traffic steering can successfully perform
load balancing in an optimal way as whenever high load is
induced to a particular RAT, traffic is steered to another RAT
dynamically.
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