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Abstract—UAV networks consisting of reduced size, weight,
and power (low SWaP) fixed-wing UAVs are used for civilian
and military applications such as search and rescue, surveillance,
and tracking. To carry out these operations efficiently, there is a
need to develop scalable, decentralized autonomous UAV network
architectures with high network connectivity. However, the area
coverage and the network connectivity requirements exhibit
a fundamental trade-off. In this paper, a connectivity-aware
pheromone mobility (CAP) model is designed for search and
rescue operations, which is capable of maintaining connectivity
among UAVs in the network. We use stigmergy-based digital
pheromone maps along with distance-based local connectivity
information to autonomously coordinate the UAV movements, in
order to improve its map coverage efficiency while maintaining
high network connectivity.

Index Terms—Airborne network, UAV network, search and
rescue, network connectivity, pheromone model.

I. INTRODUCTION

The unmanned aerial vehicles (UAVs), equipped with self-
localization and sensing capabilities, are used in applications
such as search-and-rescue, tracking and surveillance [1]–[4].
Distributed UAV networks are scalable, sense simultaneously
in an expanded area, and do not have a single point of failure.
In distributed or decentralized, autonomous UAV network
architectures, the nodes perform only local sensing and com-
municate with their neighbors without any global knowledge
[1]. However, such networks can face communication issues,
since low SWaP (size, weight and power) UAVs have a limited
communication range. Therefore, the connectivity among the
UAVs must be maintained to allow their coordination and
control. Whereas a high network connectivity facilitates better
communication among the UAVs, an increase in coverage
performance leads to a faster discovery and better tracking
of targets in a search area. Note that the area coverage
and network connectivity requirements exhibit a trade-off,
i.e., dispersing the UAVs to improve coverage will typically
negatively impact connectivity [2], [3].

Swarm intelligence methodologies inspired by nature, such
as the social behavior of insects, birds, and fish, can be used to
solve complex problems cooperatively by using simple rules
and local interactions. One such widely used method is the
use of stigmergic digital pheromones [4], [5], which act as
the spatio-temporal potential fields that are used to coordi-
nate and control the UAV movement. In this paper, we use

the digital pheromone-based stigmergic algorithms to achieve
quick exploration of completely unknown environments. Their
decentralized nature makes them fault-tolerant and highly
scalable. However, most repulsion pheromone-based mobility
models focus only on coverage performance of UAV networks,
and ignore the connectivity.

This paper addresses the problem of achieving an effi-
cient coverage of a given search area while preserving the
network connectivity in an autonomous, decentralized UAV
network. We design a UAV mobility model, which combine the
pheromone mobility model with local connectivity information
to optimize the coverage and connectivity performance. We
call the model as connectivity-aware pheromone mobility
(CAP) model. This mobility model selects a UAV path that
balances pheromone values with estimated connectivity values
at a number of potential waypoints.

Paper Organization: We first review the existing schemes
for UAV mobility in Section II, followed by a brief overview
of the pheromone based UAV mobility model in Section III.
Then we describe our proposed CAP model in Section IV.
The simulation results are discussed in Section V, followed
by the conclusions in Section VI.

II. RELATED WORK

Several algorithms such as particle swarm optimization,
artificial bee colony and ant colony optimization (ACO) have
been proposed for control and coordination of swarms for
various search, rescue, and tracking applications [1], [6]. The
digital pheromone based mobility model has been used for
target search and other other similar tasks in UAV networks.

In digital pheromone schemes, information about the
pheromone map is communicated between agents in the net-
work through direct or indirect communication. In the direct
communication methods, each agent maintains a full or partial
pheromone map of its immediate vicinity. Updates in the
pheromone map due to deposits or withdrawals are communi-
cated only locally. In [7], distributed stigmergic coordination
of UAVs for automatic target recognition is done through
direct communication. The UAVs mark potential targets and
communicate the pheromone information to their neighbors
using a decentralized gossip mechanism.

Sauter et al. [5] is an example of indirect communication
scheme for controlling and coordinating the UAV swarm for
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surveillance, target acquisition, and tracking. Here the coor-
dination of swarm members is based on digital pheromones
maintained in an artificial pheromone map, and a central-
ized base station (BS) is used to communicate the global
pheromone map to all the UAVs. Failure of the centralized
BS may lead to failure of the entire system.

Some schemes use a fusion of stigmergic pheromone algo-
rithm and flocking behaviors to coordinate a group of UAVs
for performing decentralized target search [4], [8]. Here, the
UAVs deposit digital attract pheromones when a potential tar-
get is detected to attract UAVs in the area; Repel pheromones
are deposited when no target is found. They also follow Boids
[9] flocking rules to organize the swarm for better perception
and communication for tracking the targets. An evolutionary
algorithm is used in [4] for tuning the pheromone and flocking
behaviors to get an optimal performance. Shao et al. [10]
designed a navigation algorithm by using the pheromone
algorithm on top of the Olfati-Saber’s flocking algorithm [11],
where leader-follower based flocking is performed. The cov-
erage and network connectivity performance for a UAV group
using a random vs. pheromone guided mobility model are
compared in [2]. While the random model follows a Markov
process, the UAVs move to a low repel pheromone area in the
pheromone model. The pheromone model provides a better
coverage than the random model, but neither model show a
good connectivity performance. Messous et al. [14] address
the connectivity issue in UAV fleets by weighting a UAV’s
tendency to follow its neighbor based on its connectivity, hop
count to the base station, and energy level. Similarly, dual-
pheromone clustering hybird approach (DPCHA) [13] uses
dual pheromones for target tracking and area coverage, and
the clustering to maintain stable network connectivity.

A. Review of CACOC2 Model

The CACOC2 model [12] uses the ACO with a chaotic
dynamical system (CACOC) [15], together with the Boids
flocking model to maximize the coverage while preserving
the network connectivity. The CACOC model [15] uses the
pheromone mobility model, along with chaotic dynamics
obtained using the Rossler system, to obtain a deterministic
but unpredictable system. In CACOC, each UAV in the swarm
moves left (L), ahead (A) or right (R) based on the pheromone
values in its respective neighboring cells and the next value
(ρn) in the first return map of the Rossler attractor (see Fig. 1
in [12]).

In CACOC2 model, the Boids flocking behavior [9], in-
cluding the collision avoidance, velocity matching and flock
centering, is combined with CACOC to improve the network
connectivity. Here, the flock centering forces the UAVs to
maintain connectivity. The model uses two forces [12] :

• F̂C is a vector that gives a direction (L, R or A).
• F̂flock is a vector for the flock centering force computed

with the average value of the last vector used for the
neighboring UAVs.

The normalized sum of the these two force vectors gives a
vector V̂ with a constant speed v [12] :

V̂ = v · F̂C + f · F̂flock
‖F̂C + f · F̂flock‖2

(1)

In (1), f represents the influence of flocking force, which
determines the connectivity among the UAVs.

III. OVERVIEW OF PHEROMONE MOBILITY MODEL

The pheromone mobility model uses repel digital
pheromones to promote exploration and fast coverage of
an area with no prior information [16]. Note that a dig-
ital pheromone has the same characteristics of a natural
pheromone, such as deposition, evaporation and diffusion.
Each UAV moves towards the cells with minimum repel
pheromone value and deposits a repel pheromone of magnitude
‘1’ in the cells scanned along its trajectory. After a UAV
deposits a pheromone in a cell (x, y), it is progressively
diffused to the surrounding cells, with a constant diffusion
rate ψ ∈ [0, 1]. This encourages UAVs to spread out and
move toward the unvisited cells. The pheromone value of each
cell also evaporates, decreasing its intensity over time by a
constant rate λ ∈ [0, 1]. If the map environment and target
locations change with time, the evaporation of the deposited
repel pheromones over time allows for UAVs to revisit already
scanned cells of the map after a certain time gap.

For simplicity, the UAVs are assumed to move in two-
dimensional space to search a given area, which is divided
in a grid of C2 cells, where each cell is identified by its (x, y)
coordinates. Pheromones deposited by each UAV in the grid
space are saved in a digital pheromone map. In a decentralized
UAV network, the UAVs exchange their digital pheromone
maps with their 1-hop neighbors by using the periodic ’hello
messages’.

Mathematically the pheromone value p(x,y) in a cell (x, y)
at time t is described as [4], [5], [8],

p(x,y)(t) = (1− λ) · [(1− ψ) · p(x,y)(t− 1)+

∂p(x,y)(t− 1, t) + ∂d(x,y)(t− 1, t)] (2)

where (1 − ψ) · p(x,y)(t − 1) is the pheromone value re-
maining in cell (x, y) after diffusion to the surrounding cells,
∂p(x,y)(t − 1, t) is the new pheromone value deposited in
the update interval (t − 1, t), and ∂d(x,y)(t − 1, t) is the
additional pheromone diffused to the current cell from its eight
surrounding cells in the update interval (t − 1, t), which is
described as,

∂d(x,y)(t− 1, t) =
ψ

8
·

1∑
a=−1

1∑
b=−1

p(x+a,y+b)(t− 1) (3)

IV. CONNECTIVITY-AWARE PHEROMONE MODEL

The pheromone mobility models achieve a fast coverage of
the area by pushing the UAVs away from each other. However,
this leads to poor connectivity among UAV nodes due to a
limited transmission range of UAVs. Maintaining a strong



connectivity among UAV nodes is essential in a decentralized
autonomous UAV network to distribute pheromone informa-
tion among its members and to achieve effective network coor-
dination and communication between the UAVs. For example,
if a UAV in Fig. 1 follows the repel pheromone gradient to a
region of low connectivity, it is more likely to visit a region
that has not been recently visited by another UAV. This would
improve the coverage but the UAV may lose connectivity with
other UAVs. Conversely, moving to a region with high repel
pheromone where more UAVs are present would increase its
connectivity, but the coverage performance will suffer.

Fig. 1: Illustration of next-waypoint selection based on repel
pheromone intensity and connectivity of the UAV.

In this section, we describe our proposed connectivity-
aware pheromone mobility (CAP) model for decentralized
autonomous UAV networks that maintains a strong connec-
tivity as well as fast coverage. This model uses a weighted
combination of the repel pheromone value and connectivity at
the cells to guide the movement of UAVs.

A. Next-Waypoint Cells

The UAVs move from one cell to another, and the cell to
which a UAV decides to move to is called the next-waypoint
cell. After reaching a previously selected next-waypoint cell,
a UAV selects its new next-waypoint cell. The distance (in
terms of the number of cells) between the current and next
waypoint cell is a function of the UAV speed and cell size.

The heading of the UAVs (0 to 360 degrees) is discretized
into 8 directions (see Fig. 2a), and the next-waypoint cell is
chosen with reference to the current heading of a UAV such
that it satisfies the flight trajectory constraints of a fixed-wing
UAV, giving smooth turn trajectories. As shown in Fig. 2b,
the UAV with a current heading of ‘0’ selects one of the five
possible next-waypoints cells (6, 7, 0, 1, and 2).

(a) (b)

Fig. 2: (a) UAV heading discretized into 8 directions, (b)
Selection of next-waypoint cells for a fixed-wing UAV.

B. “Look-Ahead” Pheromone Value

In pheromone mobility model, a UAV moves towards a cell
with the minimum repel pheromone value. Instead, our scheme
uses the ‘look-ahead pheromone’ value, P

′
, of the next-

waypoint cells. The P
′

value of a next-waypoint cell (x, y) is
calculated as,

P
′

(x,y) =
1

12
· (4 · P(x,y)+

(
∑

(a,b∈[−1,1] except a=b=0)

P(x+a,y+b))) (4)

where P(x,y) is the pheromone value in cell (x, y) and
P(x+a,y+b) represents a pheromone value in eight 1-hop
neighbors of cell (x, y).

By selecting the next-waypoint cell with minimum P
′

value,
the UAV is more likely to visit cells that have not been visited
before, thereby increasing its coverage performance.

C. Distance-Weighted Degree-of-Connectivity

The degree of connectivity of a UAV is a measure of the
number of its 1-hop neighbors. For a UAV, the closer to the
edge of the transmission boundary its 1-hop UAV is, the more
likely it is to lose connectivity in near future. Therefore, we
calculate the distance-weighted connectivity (γuv) between
two UAVs (u and v) as a function of their Euclidean distance
(duv) and transmission range (Tx). It is defined as,

γuv =


1 duv ≤ (0.6 · Tx)
2.5(1− duv

Tx ) (0.6 · Tx) < duv ≤ Tx
0 duv > Tx

(5)

γuv is set to 1 when the distance between two UAVs is
within 60% of the transmission range, because the probability
of the two UAV remaining connected is high. Value of γuv
decreases linearly when their distance (duv) exceeds 60% of
the transmission range.

Further, the distance-weighted degree-of-connectivity K
of a UAV u is defined as the sum of its γuv with all its 1-hop
neighboring UAVs N ,

K =
∑
v∈N

γuv (6)



D. Distributed Information Exchange using ‘Hello Messages’

Hello message containing each UAV’s updated local infor-
mation is propagated to its 1-hop neighbors. The pheromone
and connectivity information of a UAV’s neighbors is used
to select its next-waypoint cells and coordinate with its
neighbors. In our scheme, each UAV exchanges the ‘Hello’
messages with its 1-hop neighbors every 2 seconds, which
consist of the UAV Id, its current location, next waypoint cell,
and local pheromone map (pheromone value in the 5 x 5 cells
centered at the UAV’s current cell).

E. Selecting Next-Waypoint based on Look-Ahead Pheromone
Value and Distance-Weighted Degree-of-Connectivity

A UAV selects the next-waypoint cell i with the maximum
Wi value among its 5 possible next-waypoint cells. Here, Wi

is defined as,

Wi = αi(1− P
′

i ) (7)

where P
′

i is the current ‘look-ahead pheromone’ value at i and
αi is defined as,

αi =

{
Ki

β Ki < β

1 Ki ≥ β
(8)

Here, Ki is the estimated distance-weighted degree-of-
connectivity of a UAV at the next waypoint cell i (see (6))
and is calculated by using the heading information of its 1-hop
neighbors received in the most recent hello messages. Varying
the value of β in (8) allows for tuning the connectivity and
coverage performance of the proposed CAP model. We have
varied β from 0.5 to 4. Selecting β as 4 gives a model with
high connectivity performance that requires a longer coverage
time, whereas selecting β as 0.5 gives a model with high
coverage performance and low connectivity. Here UAVs with
K ≥ 4 are considered to be sufficiently well connected with
their neighbors. The next-waypoint selection process of a UAV
is described in Pseudocode 1.

V. SIMULATION RESULTS AND DISCUSSION

The performance of our proposed CAP model is compared
against the repel pheromone and CACOC2 models. As ex-
plained in Section II-A, the CACOC2 model uses pheromone
together with chaotic dynamics for improving coverage, and
a flocking algorithm to maintain network connectivity. In
contrast, our CAP model uses the pheromone to improve
coverage and the local connectivity at the next-waypoint cells
to maintain the overall network connectivity.

The UAV network simulation is implemented in Python3.
Table I shows the simulation parameters. For simplicity, the
UAVs are assumed to be point masses, and their mobility is
limited to the X-Y plane flying at a constant altitude. UAVs
perform collision avoidance through trajectory modifications.
A UAV scans the cell in which it currently resides and deposits
a repel pheromone of magnitude 1 in the scanned cell.

In the CAP model, a UAV selects its next waypoint every 10
s and 5 s for UAV speeds of 40 m/s and 20 m/s, respectively.

Pseudocode 1: UAV Next-Waypoint Cell Selection
1 if UAV reaches next-waypoint cell then
2 // Deposit repel pheromone
3 Add repel pheromone value = 1 for the current cell in its

digital pheromone map;
4 // Select new a next-waypoint cell (i)
5 Calculate the ‘look-ahead pheromone’(P

′
i ) value for

each of the five possible next-waypoint cells;
6 Calculate the estimated distance-weighted

degree-of-connectivity(Ki) of the UAV at the five
possible next-waypoint cells based on its neighbors
next-waypoints;

7 Calculate the Wi value for each of the five possible
next-waypoint cells using (7);

8 Select cell i with maximum (Wi) value among the five
possible next-waypoint cells as the UAVs
next-waypoint cell;

9 else
10 // Follow smooth-trajectory towards the selected

next-waypoint cell
11 end

TABLE I: Simulation Parameters

Parameters Values

Number of Runs 30
Simulation Time 8000 s
Map Area 6 km × 6 km
Cell Resolution 100 m × 100 m
Sensor Coverage Area 100 m × 100 m (1 cell)
Transmission Range 1 km
Number of UAVs 20, 30, 40
UAV speed 20 m/s, 40 m/s
UAVs Start Postions Mid bottom of map
Evaporation Rate 0.006
Diffusion Rate 0.006

For the CACOC2 model [12], we use the 10 s and 5 s update
interval for 40 m/s and 20 m/s, respectively, to ensure a fair
comparison with our proposed model.

A. Performance Metrics

The coverage performance of UAV network is measured by:
• Coverage Time (Tc): Average time taken to scan 90% of

cells in the map.
• Coverage Fairness (F): Represents how equally all the

cells of the map are visited over a given time period, as
measured by the Jain’s fairness index [17],

F =
(
∑
i xi)

2

n
∑
i x

2
i

(9)

where xi is the number of scans of cell i, and n is the
total number of cells in the map.

The connectivity performance is measured by:
• Number of Connected Components (NCC): Average num-

ber of disjoint components in the UAV network, sampled
every 10 s. NCC measures how disconnected the UAV
network is and its ideal value is 1.



• Average Network Connectivity (ANC): Average number
of links (or connected neighbors) each UAV maintains in
the network, sampled every 10 s.

B. Results and Discussion

We evaluate the coverage time (Tc), connectivity (NCC
and ANC) and coverage fairness (F) performance for CAP,
CACOC2 and the pheromone models for UAV densities of 20
and 40 UAVs, at speeds of 20 m/s and 40 m/s. The results are
averaged over 30 simulation runs. Figures 3 and 4 show the
performance curves (with error bars representing the standard
error of the mean) of CAP (with β = 0.5, 2, 3, 4) and
CACOC2 (with f = 0.3, 0.6, 0.9) models. In the plots, the
CAP-20, CACOC2-20 and Pheromone-20 represent results for
20 UAVs, whereas CAP-40, CACOC2-40 and Pheromone-40
represent results for 40 UAVs.

A low value of Tc and high value of F represents a better
coverage performance, while a low NCC and high ANC
indicate better connectivity. We consider that a model with
ANC ≥ 4 represents a strong connectivity, where the UAVs
are sufficiently connected to their neighbours. In fact, a very
high value of ANC may increase the co-channel interference
and the probability of packet collisions during communication.

The NCC vs. Tc performance curves for 20 and 40 UAVs
at the node speed of 20 m/s are shown in Figure 3a. To ensure
fast area coverage as well as good communication among the
UAVs in the network, low NCC and high ANC values are
desired at a low Tc value. For both UAV densities, the NCC
vs. Tc curves of the CAP are closer to the lower left of the
plot, demonstrating their superior performance compared to
the CACOC2 model. For example, for 20 UAVs at 20 m/s
(Fig. 3a), at a Tc of around 1750s, the CAP and CACOC2

models achieve NCC value of around 3.2 and 7, respectively.
For 40 UAVs (Fig. 3a), the CACOC2 model achieves lower
NCC values at much higher Tc values, but its coverage fairness
performance is considerably worse (Fig. 3c) due to the use of
high flocking force.

The ANC vs. Tc performance curves for 20 and 40 UAVs
at 20 m/s are shown in Figure 3b. The CAP model provides a
higher ANC as compared to the CACOC2 model for a lower
Tc value. For example, for 20 UAVs at 20 m/s (Fig. 3b), for
a Tc of around 1750s, ANC values of around 5 and 3.8 were
achieved by the CAP and and CACOC2 models, respectively.
When using a higher flocking force (f), the CACOC2 model
achieves higher ANC but its coverage performance degrades
(higher Tc values).

The coverage fairness (F) vs. Tc performance curves
for 20 and 40 UAVs at 20 m/s are shown in Figure 3c. For
both densities, the coverage fairness of our proposed CAP
model is higher or comparable to CACOC2 model for lower Tc
values. As connectivity increases (low NCC values) and the Tc
values increase, the CAP model provides much better coverage
fairness compared to the CACOC2 model. For a higher f
value, the coverage fairness of CACOC2 model decreases as
the UAVs stick together, thus causing them to visit some

cells more frequently than others. Our proposed CAP model
therefore achieves fast as well as fair area coverage.

The performance trade-off curves at 40 m/s for 20 and 40
UAV densities are shown in Figure 4. Our proposed CAP
model achieves even more pronounced improvements over
CACOC2 model. The coverage time of both models improves
at higher node speed, but the improvement is much higher for
the CAP model, which also maintains better connectivity as
well as a more fair coverage.

The coverage time (Tc) decreases and ANC increases with
an increase in UAV density for both the models at both
node speeds. However, the proposed CAP model provides
better coverage fairness and a reasonably high ANC values,
especially at higher UAV densities. Although the CACOC2

model achieves much higher ANC values at higher UAV
density, a very high node connectivity does not necessarily
improve the network connectivity performance.

In summary, the repel pheromone model provides the best
coverage but has a very poor connectivity performance. In
general, the CAP model provides a fast coverage, which is
closest to the pheromone model, while achieving a much
higher connectivity than the pheromone model. For both
UAV densities, our proposed CAP model provides better
connectivity (lower NCC and higher ANC) and fairness for a
given Tc compared to the CACOC2 model. At low Tc values
(fast coverage), the CAP model performs exceptionally well
compared to the CACOC2 model.

VI. CONCLUSION

We considered a decentralized, multi-hop, UAV network
consisting of low SWaP fixed-wing UAVs. The area cover-
age and network connectivity requirements of UAV networks
exhibit a fundamental trade-off. To facilitate a reliable com-
munication among UAVs in an autonomous UAV network,
we designed a low-complexity connectivity-aware pheromone
mobility (CAP) model. In CAP model, the UAVs make mo-
bility decisions using a combination of the pheromone values
and their local distance-weighted connectivity. It achieved
an efficient coverage of the area, while preserving network
connectivity and coverage fairness, and outperformed the
CACOC2 models at different UAV densities and speeds.

Thus, the CAP model facilitates efficient inter-UAV com-
munication and coordination of autonomous UAV networks
for search and rescue operations.
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(a) NCC (b) ANC (c) Coverage Fairness

Fig. 3: Performance Curves for 20 and 40 UAVs at 20 m/s.

(a) NCC (b) ANC (c) Coverage Fairness

Fig. 4: Performance Curves for 20 and 40 UAVs at 40 m/s.
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