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Abstract—The growing demand for fast and reliable wireless
services has led to the deployment of more base stations,
which has made manual optimization of base station parameters
more complex and time-consuming. This can lead to suboptimal
network performance and a poor user experience. To address
this challenge, we propose a Clustering-Driven Approach for Base
Station Parameter Optimization and Automation (CeDA-BatOp),
an automated for predicting optimized base station parameters.
Our framework first compares three clustering algorithms: K-
means, DBSCAN, and Agglomerative Clustering, selecting the
most suitable one for specific scenarios based on their unique
attributes. In parallel to clustering, our framework leverages
machine learning (ML) algorithms to predict the optimal pa-
rameters for each base station with an evaluation of multiple
ML models to identify the best fit for our data. The framework
also incorporates data drift monitoring to track gradual changes
in data distribution over time, ensuring ML model accuracy
through periodic retraining. Our framework achieved an average
of 76% reduction in memory overhead on the simulated scenario.
Employing a clustering-driven strategy enabled us to simplify the
training by utilizing fewer models applicable to multiple base
stations, leading to reduced time and computational resources.
Additionally, our drift detection system obtained an accuracy of
98.87%, which is the best among the cases we evaluated. The
promising results of our study show that our framework can
significantly benefit network operators by automating the tuning
of base station parameters through a clustering-driven approach.
This can lead to reduced human involvement and significant
performance gains and cost savings.

Index Terms—Base station parameter, Clustering, Framework,
Network automation, Optimization

I. INTRODUCTION

Artificial intelligence (AI) is being used more and more
in cellular networks to increase efficiency, optimize network
performance and enhance the user experience. The optimiza-
tion of network resources is one of the key applications of
AI that can be found in cellular networks [1], [2]. AI and
ML algorithms are able to examine vast volumes of data
from a variety of network components, such as base stations
and user devices, in order to recognize trends and anticipate
network congestion. Based on this, network operators can
make proactive adjustments to network resources, such as
providing additional bandwidth to regions that see heavy
use or increasing the number of base stations located in a
certain location [3], [4]. An instance of the use of AI can be
seen in self-organizing networks (SON), which are networks
capable of self-configuration and optimization without human
involvement. This is made possible by the use of AI algorithms

that analyze network data and make modifications to enhance
coverage, capacity and overall effectiveness. This has the
potential to result in remarkable performance improvements
and cost reductions for network operators [5].

The integration of AI technology is being applied in cellular
networks to improve the user experience. For instance, AI/ML
algorithms can be employed to analyze data collected from
user devices to tailor the experience for each user. This can
include offering personalized content suggestions or altering
the network settings to improve battery life [6]. Additionally,
AI is put to use in cellular networks to predict and prevent
disruptions to network service. Algorithms powered by AI
are able to examine data collected from individual network
nodes to spot potential problems, such as faulty hardware
or software, well in advance of their ability to bring down
the network [7], [8]. As a result, network operators can take
proactive measures to prevent outages before they occur. This
makes the network more reliable for users.

This paper sets the base for the clustering-driven automated
framework with the potential to have a substantial impact on
the optimization of base station parameters in contemporary
wireless networks. This automated framework’s inherent ca-
pabilities can be expanded to effectively address issues such
as outages, disruptions, personalizing user experiences and
more. Especially in the current global landscape, where base
station traffic patterns show dynamic swings across different
areas, resulting in uneven demand distribution at different
times, it is crucial to optimize base station characteristics by
anticipating and characterizing these complex traffic dynamics.
Manual collective optimization of base stations within re-
stricted regions is time-consuming and requires domain experts
to alter parameters. In the area of optimization problems where
machine learning is used, getting enough measurement data to
draw accurate conclusions is a big challenge.

In light of the aforementioned difficulties and the capa-
bility of modern AI/ML algorithms, this study proposes a
proactive approach. We propose CeDA-BatOp version 1.0, a
method to optimize critical base station parameters by utilizing
data originating from user equipment (UE) endpoints. By
minimizing human involvement in base station administration
and parameter optimization, we aim to increase operational
efficiency and reduce potential errors caused by manual in-
tervention. Additionally, striking a balance between prediction
accuracy and memory consumption allows for efficient utiliza-



tion of network resources while ensuring smooth transmission
of model parameters in the network. This is achieved by
formulating an end-to-end automated framework designed for
ORAN’s RAN Intelligent Controller (RIC) [9], utilizing a
clustering-driven methodology. By seamlessly integrating this
framework as xApps and rApps within RIC, we aim to elevate
the functional aspects of cellular networks.

Our main contributions are: We present a novel automated
system for predicting optimal base station parameter optimiza-
tions, assuming that a lookup database is available.

Within the framework of CeDA-BatOp version 1.0:
1) For the clustering part of the framework, we provide a

comparative study of three diverse clustering algorithms
on our dataset - K-means, DBSCAN and Agglomerative
clustering (AHC) and choose the one with the best
Silhouette score [10].

2) For the prediction phase, we leverage the cluster infor-
mation derived from the aforementioned best-performing
algorithm and we conduct an extensive performance
analysis. This analysis encompasses a diverse range of
machine learning algorithms incorporating:
• Support Vector Machine (SVM)
• Stochastic Gradient Descent Regressor (SGDRegres-

sor)
• Gaussian Process Regression (GPR)
• Fully Connected Neural Networks (FCNN)

3) For the prediction phase, we compare the following cases:
• One model for all base stations: This approach uses

a single model to learn the traffic patterns of all base
stations. This is the simplest approach, but it may not
be the most accurate, as the traffic patterns of different
base stations can vary significantly.

• N models for N clusters: This approach divides the
base stations into N clusters, and then trains a separate
model for each cluster. This approach can be more
accurate than the first approach, as it takes into account
the different traffic patterns of each cluster.

• A separate model for each base station: This approach
trains a separate model for each base station. This is the
most accurate approach, but it is also the most complex
and computationally expensive.

4) For the drift phase, we compare the accuracy of three
diverse drift algorithms on the new online data -
Kolmogorov-Smirnov (KS) test [11], Population Stability
Index (PSI) [12] and Jensen-Shannon divergence (JS)
[13]. These algorithms are commonly used in detect-
ing and quantifying changes in data distribution. The
Kolmogorov-Smirnov test measures the maximum differ-
ence between the cumulative distribution functions of two
samples, while the Population Stability Index evaluates
the similarity between two probability distributions. On
the other hand, Jensen-Shannon divergence calculates the
dissimilarity between two probability distributions using
information theory.

The rest of the paper is organized as follows: Section

II provides a comprehensive summary of related works. In
Section III, we describe the framework’s intricate components
and their interdependence. In Section IV, we provide a detailed
explanation of the framework’s components, including the
simulation setup and the specific parameters used in the
machine learning algorithm. Additionally, we present a thor-
ough analysis of the empirical results obtained from applying
the framework, highlighting its effectiveness and potential
limitations. In Section V, the paper concludes by summarizing
the main findings and implications of the study. Additionally,
it discusses potential avenues for future research in order to
further explore and expand upon the current findings.

II. RELATED WORK

In this section, we provide the background for the concepts
relevant to the framework:

A. Base station clustering
While existing solutions have made significant advance-

ments in base station clustering especially in the application
of beamforming, they often suffer from limitations that restrict
their applicability to specific problems. For instance, Hong et
al. [14] demonstrated the effectiveness of base station clus-
tering and beamforming for partially coordinated transmission
in a dense urban environment, where multiple base stations
can serve a high number of users simultaneously. Similarly,
other notable works such as [15] have utilized zero-forcing
techniques for intra-cluster transmission, further improving the
efficiency and capacity of base station clustering. By aligning
base station clusters with complementary usage profiles, Chen
et al. [16] were able to optimize limited processing resources
and improve overall network performance. While their so-
lution showed promising results in such an environment, its
effectiveness may be limited in rural or suburban settings
with different network characteristics. By showcasing these
limitations, we emphasize the need for a versatile framework
that can be applied to various parameter types and adapt to
different network scenarios.

B. Machine Learning assisted base station parameter opti-
mization

Machine learning’s impact on handover parameter optimiza-
tion in self-organizing networks has been substantial [17]–
[19]. Wang et al. [20] innovated base station design opti-
mization using machine learning techniques. Power allocation
optimization in heterogeneous environments, as demonstrated
in [21], is another principal use case. Dreifuerst et al. [22]
pioneered Bayesian optimization and reinforcement learning
for coverage and capacity optimization. Their work integrated
multiple inputs such as throughput, SINR, RSRP, and RSRQ.
When optimizing base station parameters, it is important to
consider a wide range of inputs. In our case, we encompass
RSRQ, RSRP, RSSI, SINR, CQI, DL/UL bitrate, download
process status, and neighboring base station parameters as
inputs. By leveraging these inputs, we can effectively optimize
base station parameters to ensure optimal network perfor-
mance and user experience.



FIG. 1: Base station Parameter Optimization and Automation Framework

C. Data drift in Cellular Networks

Data drift occurs when input data distribution shifts, af-
fecting machine learning model performance. On the other
hand, concept drift retains data distribution but alters the
interaction between input and target variables, necessitating
timely detection. This has significant implications for mission-
critical applications.

While finance leverages data and concept drift extensively,
their potential remains underutilized in cellular networks. In
this domain, most drift-incorporating papers focus on anomaly
detection [23], [24]. Recent applications include detecting user
behavior changes [25] and network traffic shifts in federated
learning [26], indicating a potential area to explore. Our frame-
work continuously monitors data drift and initiates retraining
when necessary to maintain model accuracy. This proactive
approach enables network operators to adapt their models to
changing network conditions, thus enhancing network perfor-
mance. By integrating data drift detection into cellular net-
works, operators can proactively identify and address potential
issues, ensuring efficient and reliable network operation.

III. FRAMEWORK

Fig. 1 depicts the proposed framework for base station
clustering and parameter optimization. Initially, an offline
dataset (D1) consisting of UEs and base station parameters
is generated using the in-house simulator and stored in a data
repository. UE and base station parameters serve as the input
and output of the ML models respectively. The rest of the
framework can be divided into three main stages:

A. Stage 1: Training on the overall dataset and clustering in
parallel

Initial cycle: Initially, we have a model M∗
1 (1 refers to

the iteration number) which can be a machine learning/deep
learning model that can perform prediction. In our case, it
is a 5-layer (4 hidden layers+output layer) FCNN which was
obtained through hyperparameter tuning. The purpose of using
the M∗

1 is to establish a baseline for comparison with its

fine-tuned version which is updated through the retraining
process. Using an established model as a starting point allows
for a more controlled and methodical investigation of our
framework. Model M∗

1 is trained on the initial offline dataset
D1 for E epochs. In parallel to this, base stations are clustered
(data clusters C1

1,... CN
1 are formed; here subscript 1 refers

to the iteration number, initial iteration in this case) using the
pairwise constrained clustering technique [27]. The pre-trained
FCNN model M∗

1 is then cloned to make M1
1,... MN

1 for N
clusters.

Retraining cycle: New models of M1
i ,... MN

i (i > 1 and i
∈ N) are obtained by training the pre-trained model M∗

i−1 on
the new overall dataset Di for E epochs and cloning as similar
to the above case. Here, Di = Di-1 ∪ Oi-1, where Oi refers
to the new data obtained at ith iteration and Di is the overall
dataset available for ith retraining cycle. Simultaneously, base
stations are clustered using Di data.

B. Stage 2: Fine-tuning and Prediction

After stage 1, we now have the data clusters C1
i ,... CN

i ,
where C1

1 ⊂ D1,... CN
1 ⊂ D1 for the initial cycle and C1

i ⊂ Di,...
CN
1 ⊂ Di in case of the retraining cycle. These clusters are then

used to fine-tune individually the respective pre-trained models
M1

i ,... MN
i by training for Y (< E) epochs. The resulting

fine-tuned models Fi
N ,... Fi

N are then pushed to the model
repository and deployed to xApp for inference of the base
station parameters.

C. Stage 3: Drift monitoring and retraining if necessary

The data from the base stations are collected periodically
and checked for data drift. In the case of drift, the retraining
process is triggered. The new data oi (input parameters) ⊂ Oi
(input & output parameters) obtained from UEs via the base
stations comprises only the UE parameters that serve as the
input for the FCNN model. However, it does not include the
base station parameters which are the target labels required
for the retraining process. At this stage, we assume that we
can obtain the labels for the new data from a large lookup



table. Once we obtain the labels, we can retrain and re-cluster
the new data thus making it an automated closed-loop system
with a requirement of very less human intervention.

In Fig. 1, the left and right dotted lines enclose the
components that can be deployed in Service Management &
Orchestrator (SMO) and Near-RT RIC respectively.

IV. SIMULATION SETUP, DISCUSSION AND RESULT

The local dataset (initial) was collected using an in-house
dynamic system level simulator tool with 42 base stations with
the scenario of a locality in Madrid. It consists of a mix of
macro cells with directional antennas (23) and small cells with
Omni-antennas (19), UEs moving at three different speeds:
200 UEs at 30 km/hr, 40 UEs at 3 km/hr, and 80 UEs at
3 km/hr. This variation in UE movement speeds introduces
realistic mobility patterns and enables the ML model to ac-
count for different user scenarios. The combination of diverse
scenarios, movement speeds and base station configurations
makes the dataset a valuable resource for developing and
validating the effectiveness of base station-specific ML models
in optimizing network performance and enhancing overall user
experience in urban environments like Madrid. A map of the
simulated scenario is shown in Fig. 2

The UE parameters obtained include Reference Signal Re-
ceived Quality (RSRQ), Reference Signal Received Power
(RSRP), Reference Signal Strength Indicator (RSSI), Signal-
to-interference-plus-noise ratio (SINR), Channel quality indi-
cation (CQI), Download/upload bitrate (DL/UL bitrate), State -
whether the UE is in idle or downloading state (I/D), Reference
Signal Received Quality of the Neighbouring cell (NRxRSRQ)
and Reference Signal Received Power of the neighboring cell
(NRxRSRP). The optimized base station parameters obtained
include Antenna tilt - Mechanical tilt and Electrical tilt,
Antenna azimuth and Maximum Transmission power. Each
parameter consists of several features, for instance, in the case
of RSRQ, we have RSRQ values of 42 base stations across
time steps. In total, there are 736 input features (UE end)
and 4 output features (base station end). A sample of the
preprocessed dataset is available here.

In our evaluation, we assessed a diverse array of mod-
els to ascertain their effectiveness in optimizing base
station parameters. The models encompassed a spectrum
of methodologies: SVM Regressor – RBF Kernel, SG-
DRegressor, Gaussian Process Regression (GPR) - Dot-
Product() + WhiteKernel(noise level=0.5), GPR - Expo-
nentiation(RationalQuadratic(), exponent=2), GPR - RBF()
+ ConstantKernel(constant value=2), FCNN – 4 layers
(12,25,10), FCNN – 5 layers (12,25,12,10), FCNN – 6 layers
(12,25,25,12,10).

For SVM, we tuned the regularization parameter ’C’, with
values ranging from 0.1 to 10, and the kernel coefficient
’gamma’, exploring a range from 0.01 to 1. GPR renowned for
its adaptability, was deployed with a variety of kernels. For the
DotProduct kernel, we adjusted the ’noise level’ parameter,
while in the case of Exponentiation of RationalQuadratic
kernel, the ’exponent’ parameter was set to 2. Additionally,

FIG. 2: Map of a simulated locality in Madrid

for the combination of RBF and ConstantKernel, the ’con-
stant value’ parameter is set to 2. Our Stochastic Gradient
Descent Regressor (SGDRegressor) was fine-tuned with the
’alpha’ parameter for L2 regularization and ’learning rate’
ranging from ’constant’ to ’adaptive’. Finally, leveraging the
potential of deep learning, our FCNN underwent extensive
hyperparameter tuning. We explored the optimal number of
hidden layers, units per hidden layer (12, 25, 12, 10), ReLU
activation functions, an initial learning rate of 0.001 with
adaptive optimization, and a regularization term with an L2
strength of 0.0001. By immersing ourselves in this meticulous
hyperparameter tuning, we aimed to tailor each model to
the unique complexities of our dataset and the intricacies
of BTS-specific optimization tasks. Unless otherwise stated,
unspecified parameters are assumed to be configured at their
default settings as provided by the scikit-learn library [28].
Experiment results were obtained using a Samsung 970 EVO
for data storing and loading, Intel Core i7-10750H for training.

The flow of the training and prediction in the case of FCNN
– 5 layers (12,25,12,10) are as follows (similarly performed
for other models): Initially, the FCNN is trained on the overall
dataset and then the model is stored in the repository. For the
prediction of base station parameters with FCNN before fine-
tuning, we obtain a Root Mean Square Error (RMSE) of 28.34
at epoch 67, which is obtained through early stopping. The
results of ML models when trained on the overall dataset are
listed in Table II.

From Table II, we can see that the GPR model with
Exponentiation(RationalQuadratic(), exponent=2) achieves the
best predictive performance with the lowest average RMSE
of 24.43 among all models. It outperforms all other models,

https://github.com/pjsudharshan/CeDA-BatOp


including the SVM Regressor, SGDRegressor, and FCNN
models. The FCNN models show improvement in predictive
accuracy as the number of layers increases. The 6-layer FCNN
performs better than the 4-layer FCNN and the 5-layer FCNN
in terms of RMSE. The FCNN can be considered a practical
option if faster training times and smaller model sizes are
required and the slightly higher RMSE is acceptable for the
application. It can still provide reasonably good predictive
performance, with a trade-off for faster experimentation and
deployment.

Parallel to this, we perform Agglomerative Clustering
(AHC) using Ward linkage and Euclidean affinity [29] on
the overall dataset to obtain cluster information such as the
number of clusters and the cluster IDs of the data points.
Using the method of dendrograms [30], we found the best
cluster size to be 9 and the average Silhouette Score obtained
is 0.779. For the above scenario, AHC was chosen among
the other cluster algorithms as it provided the best Silhouette
score and also allowed us to investigate at varying levels of
granularity without the need to rerun the clustering algorithm.
The complete results of the clustering algorithms’ performance
are tabulated in Table I.

Clustering Algorithm Avg. Silhouette Score Avg. Time Taken
K-means 0.527 ∼11 mins
DBSCAN 0.596 ∼13 mins

AHC 0.779 ∼23 mins

TABLE I: Comparison of clustering algorithms (K-means, DB-
SCAN, AHC)

With the help of cluster information, we fine-tuned the
FCNN – 5 layer models Mi

1,... Mi
N on their respective cluster

data Ci
1,... Ci

N . After fine-tuning, we obtain an RMSE of
16.98 at epoch 8, which is obtained through early stopping.
We observe a notable decrease in the value of RMSE and
we believe fine-tuning the pre-trained model particularizes the
prediction for the respective clusters and thus makes a better
prediction. The performance for other models is listed in Table
III. Note that the total storage occupancy here includes the
cluster information. Since clustering is done in parallel to the
overall training, it does not affect the training time as the time
taken to cluster is less than the time taken to train on the
overall dataset. The above-obtained fine-tuned models can then
be deployed as xApp for inference of optimized base station
parameters.

From Table III, we can decipher that, for fast training and
smaller model size, consider using SVM with the RBF kernel
or SGDRegressor. However, they may not provide the best pre-
diction. If prediction accuracy is a priority and computational
resources are sufficient, Gaussian Process Regression models
with appropriate kernels offer improved performance. For deep
learning models, the FCNN with 5 or 6 layers performs better
than the shallow 4-layer FCNN but requires more training time
and larger model sizes.

The FCNN with 5 layers was selected for its best RMSE,
low RMSE, and manageable training time, striking a favorable
balance between predictive performance and computational

efficiency, making it ideal for the application’s needs. Other
models with better RMSE values had impractical and cost-
ineffective longer training times. The decision was driven by
achieving satisfactory prediction accuracy while minimizing
computational burden.

With FCNN, the performance for the case when we have
42 different models (each base station having its own model)
is represented in Table IV.

From Table IV, we can observe that the FCNN model
achieved a significantly improved average RMSE of 14.34
compared to just having one global model and a fine-tuned
model. This indicates that the model when trained individually
for each base station, performs better in predicting the target
values. It is worth noting that the total model size has increased
substantially to 466 MB. This increase in size is expected
because we are now storing individual models for each base
station (42 in our case), which leads to a higher overall
memory requirement. Training a separate model for each base
station can be beneficial if there are substantial variations or
unique patterns in the data across different stations. How-
ever, it also comes with the trade-off of increased storage
requirements. Depending on the resources available and the
importance of individual station predictions, this approach can
be a suitable choice for specific scenarios. Also, each model
is more sensitive to drifts and variations in the operational
conditions of each base station. As we can see from Table
III and Table IV, there is no major difference in the RMSE
for FCNN - 5 layers network between the fine-tuned model
and individual model. Our preference therefore lies with the
fine-tuned model, predominantly due to its 76% reduction
in total storage occupancy. To study the effect of drift on
the framework, we randomly drifted the data with a 50%
probability across time steps up to an amount of ±5% of the
value for all input features. We then separate the drifted data
(DF) and non-drifted data (NDF). Similarly, it was done for the
drift of maximum ±10% of the value for all input features. In
addition to this, to reduce the dimension we performed Kernel
Principal component analysis (KPCA) [31] on DF and NDF
using poly kernel. DF and NDF were reduced to 100 feature
and 350 feature datasets. We name these KDF1, KNDF1,
KDF3 and KNDF3 respectively.

We then leveraged similarity tests to detect the drift for
this new data. For our case, we benchmarked on Kolmogorov-
Smirnov (KS) test [11], Population Stability Index (PSI) [12]
and Jensen-Shannon divergence (JS) [13]. For the KS test,
we chose a confidence level of 97%, implying we reject the
null hypothesis in favor of the alternative if the p-value is less
than 0.03. For PSI, the index ranges from 0 to ∞ (PSI < 0.1:
no significant population change; 0.1 ≤ PSI < 0.2: moderate
population change; PSI ≥ 0.2: significant population change),
in our case, we set the threshold to 0.05. For JS, we set the
threshold at 0.1 (JS distance returns a score between 0 and 1.
”0” corresponds to identical). These threshold values can be
changed as per need based on the application. New drifted
and non-drifted datasets DF, NDF, KDF1, KNDF1, KDF3
and KNDF3 were compared against the existing data using



Model RMSE Total Training Time (avg.) Total storage occupancy (MB)
SVM Regressor – RBF Kernel 46.57 ∼1hr 43 mins ∼11

SGDRegressor 37.33 ∼2hr 32 mins ∼7
GPR - DotProduct() + WhiteKernel(noise level=0.5) 31.32 ∼4hr 37 mins ∼17

GPR - Exponentiation(RationalQuadratic(), exponent=2) 24.43 ∼5hr 28 mins ∼19
GPR - RBF() + ConstantKernel(constant value=2) 37.38 ∼4hr 29 mins ∼18

FCNN – 4 layers (12,25,10) 44.43 ∼2hr 13 mins ∼11
FCNN – 5 layers (12,25,12,10) 28.34 ∼2hr 49 mins ∼14

FCNN – 6 layers (12,25,25,12,10) 27.23 ∼3hr 23 mins ∼24

TABLE II: Performance of models when trained on the overall dataset without fine-tuning

Model RMSE Total Training Time (avg.) Total storage occupancy (MB)
SVM Regressor – RBF Kernel 38.23 ∼1hr 48 mins ∼21

SGDRegressor 32.73 ∼2hr 39 mins ∼24
GPR - DotProduct() + WhiteKernel(noise level=0.5) 19.74 ∼4hr 42mins ∼32

GPR - Exponentiation(RationalQuadratic(), exponent=2) 17.32 ∼5hr 34mins ∼44
GPR - RBF() + ConstantKernel(constant value=2) 17.92 ∼4hr 41mins ∼51

FCNN – 4 layers (12,25,10) 37.03 ∼2hr 22 mins ∼81
FCNN – 5 layers (12,25,12,10) 16.98 ∼3hr 01 mins ∼111

FCNN – 6 layers (12,25,25,12,10) 15.08 ∼3hr 46 mins ∼147

TABLE III: Performance of models when trained on the overall dataset with fine-tuning

Model RMSE Total Training Time (avg.) Total storage occupancy (MB)
FCNN – 5 layers (12,25,12,10) 14.34 ∼3hr 46 mins ∼466

TABLE IV: Performance of FCNN - 5 layers (12,25,12,10) in the case of base stations having their own models (average of 42 models)

these similarity metrics. We observed that KS test was quite
sensitive to changes and deviations at the tail were hard to
detect. Whereas the sensitivity of PSI was lower compared to
KS test, i.e., it reacted only to major changes. JS was sensitive
when the drift exceeded 5%. For our dataset, we found it to
be more sensitive than PSI but less sensitive than KS. The
results of the drift detection for values moved by up to ±5%
and ±10% are tabulated in Table V and Table VI respectively.

Cases Algo Drift Avg
accuracy

Avg false
negative rate

Consensus
avg.

accuracy
KS 90.12% 1.57%
PSI 73.64% 39.35%

(a) Values
moved by upto

±5% JS 84.32% 27.11%
96.43%

KS 72.77% 13.54%
PSI 59.53% 46.21%

(b) Values moved
by upto ±5% -

KPCA (poly) [100] JS 76.34% 35.54%
82.30%

KS 85.43% 9.32%
PSI 78.32% 42.64%

(c) Values moved
by upto ±5% -

KPCA (poly) [350] JS 78.11% 30.34%
93.53%

TABLE V: For data moved by up to ±5

Cases Algo Drift Avg
accuracy

Avg false
negative rate

Consensus
avg.

accuracy
KS 94.34% 1.89%
PSI 83.43% 37.34%(d) Values moved

by upto ±10% JS 84.54% 28.68%
98.87%

KS 77.65% 16.34%
PSI 67.05% 37.67%

(e) Values moved
by upto ±10% -

KPCA (poly) [100] JS 77.43% 33.46%
83.23%

KS 87.83% 12.46%
PSI 85.90% 28.01%

(f) Values moved
by upto ±10% -

KPCA (poly) [350] JS 79.07% 27.48%
96.45%

TABLE VI: For data moved by up to ±10

From the tables V and VI, we can decipher that the KS

test provides the best accuracy for the drift detection system.
For the case when data is moved by upto ±5%, we obtain the
maximum average accuracy for case (a) using KS. Similarly,
in the case when the data is moved by upto ±10%, we obtain
the maximum average accuracy of 94.34% for case (d) using
KS. The system gets even better at detecting the drift once
we consider the consensus of the three algorithms. Here, we
use majority voting to obtain the Consensus Average Accuracy
(CAA). For instance, in the case when the KS test confirms
the presence of drift, PSI confirms no drift and JS confirms the
drift, we consider it as drift has occurred since two algorithms
have voted in favor of the drift and one algorithm voted against
the drift. In case (d), employing the majority voting method
results in an accuracy rate of 98.87% surpassing the levels of
accuracy obtained in all other cases. From Tables V and VI, we
can also observe that the algorithms are better at detecting the
drift when the values of the features moved by up to ±10%. It
is interesting to see that, CAA for cases (a) and (c) are quite
comparable even though (a) consists of more than double the
features of (c). We can also see a similar trend in (d) and
(f) of Table VI. In general, the average drift accuracy of JS
is considerably higher than that of PSI except for cases (c)
and (f). Once the drift is detected using majority voting of the
three algorithms, we then trigger the retraining process.

V. CONCLUSION

The Clustering Driven Approach for Base Station Parameter
Optimization and Automation presents a novel solution for op-
timizing base station parameters in cellular networks. Further,
we provided an illustrative example and conducted a compre-
hensive study of parameter prediction and clustering systems
in our framework. Utilizing clustering-driven models allowed
us to discern common patterns among base stations, leading



to enhanced network optimization. Specifically by utilizing
AHC, we obtain the best Silhouette Score. We then studied
how fine-tuning the pre-trained FCNN model with the help
of the clustered data enhances the performance of the system
and effectively eliminates the memory constraints associated
with individual models for each base station. The results of the
study demonstrate the effectiveness of the framework, achiev-
ing an average of 76% reduction in memory overhead when
compared to having individual models for each base station.
The drift monitoring system was then investigated using KS,
PSI and JS similarity tests, with Consensus approach among
these algorithms yielding the best average accuracy of 98.87%
followed by the standalone KS test. The ability to monitor
the drift and tackle the incoming data further highlights the
robustness of this approach. Overall, this clustering-driven
approach represents a promising direction for base station
parameter optimization and automation in cellular networks.

Our future work will focus on the direction toward pseudo-
labeling to generate labels for the retraining process thus
eliminating the need for the large lookup table. Further re-
search can explore additional applications of this framework,
including its potential for addressing network disruptions,
personalizing user experiences, and adapting to dynamic traffic
patterns, thereby advancing the field of network automation
and optimization.
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[29] Daniel Müllner. Modern hierarchical, agglomerative clustering algo-
rithms. arXiv preprint arXiv:1109.2378, 2011.

[30] M Forina, C Armanino, and V Raggio. Clustering with dendrograms on
interpretation variables. Analytica Chimica Acta, 454(1):13–19, 2002.

[31] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller.
Kernel principal component analysis. In Artificial Neural Net-
works—ICANN’97: 7th International Conference Lausanne, Switzer-
land, October 8–10, 1997 Proceeedings, pages 583–588. Springer, 2005.


	Introduction
	Related Work
	Base station clustering
	Machine Learning assisted base station parameter optimization
	Data drift in Cellular Networks

	Framework
	Stage 1: Training on the overall dataset and clustering in parallel
	Stage 2: Fine-tuning and Prediction
	Stage 3: Drift monitoring and retraining if necessary

	Simulation Setup, Discussion and Result
	Conclusion
	References

