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Abstract—Compression technology is essential for efficient
image transmission and storage. With the rapid advances in deep
learning, images are beginning to be used for image recognition
as well as for human vision. For this reason, research has been
conducted on image coding for image recognition, and this field
is called Image Coding for Machines (ICM). There are two
main approaches in ICM: the ROI-based approach and the task-
loss-based approach. The former approach has the problem of
requiring an ROI-map as input in addition to the input image.
The latter approach has the problems of difficulty in learning
the task-loss, and lack of robustness because the specific image
recognition model is used to compute the loss function. To solve
these problems, we propose an image compression model that
learns object regions. Our model does not require additional
information as input, such as an ROI-map, and does not use task-
loss. Therefore, it is possible to compress images for various image
recognition models. In the experiments, we demonstrate the
versatility of the proposed method by using three different image
recognition models and three different datasets. In addition,
we verify the effectiveness of our model by comparing it with
previous methods.

Index Terms—Image coding for Machines, ICM, image com-
pression, object detection, segmentation

I. INTRODUCTION

In recent years, images and videos have become ubiquitous
in our lives. People are using them for social network services
to enrich their lives. Image compression is an important
technology for handling a lot of images and videos. It is
essential, especially on occasions where many images need
to be transmitted and stored while having limited bandwidth
and storage. For this reason, image coding methods such as
JPEG [1], AVC/H.264 [2], HEVC/H.265 [3], and VVC/H.266
[4] have been created. These image compression methods are
composed of hand-crafted algorithms, created based on the
knowledge of data encoding experts. Neural network based
image compression (NIC) has also been the subject of much
research in recent years. Many NIC models beyond VVC, the
latest image compression standard, have been proposed and
are expected to be widely used in the future [5], [6]. These
technologies are image coding methods for human vision, and
coding performance is evaluated in terms of bitrate and image
quality.

Meanwhile, with the development of image recognition
technology, opportunities to use techniques such as object
detection [7], [8] and segmentation [9] are rapidly increasing.

Conventional coding methods compress images while pre-
serving image quality. In other words, they are not efficient
compression methods for image recognition. Hence, it is
necessary to devise an image compression method specifically
for object detection models and segmentation models. The
research field on image compression for such purposes is
called Image Coding for Machines (ICM) [10]. There are two
main approaches in the study of ICM. The first approach is
ROI-based method in which ROI-map is used to allocate more
bits to the object region in the images. As shown in Fig. 1(a),
this approach needs an ROI-map as input in addition to the
image to be encoded. The problem with this approach is that it
requires process to prepare the ROI-map before compressing
the image. The second approach is task-loss-based method.
As shown in Fig. 1(b), in this approach, the NIC model is
trained using task-loss to create an image compression model
for image recognition [13], [14]. The task-loss is calculated
by the image recognition accuracy of the coded image created
using the NIC model. For example, when training an NIC
model for object detection, the detection accuracy of the coded
image by NIC model is used as the loss function [15]. Thus,
the loss function is defined by the output values of the image
recognition model. However, these values are output from a
black box, which makes it difficult for the NIC model to learn
them. In addition, when training an NIC model with task-loss,
the NIC model corresponding to the image recognition model
is required. It is due to the variation in task-loss, dependent
on the type of image recognition model.

To solve this problem, we propose an NIC model which
learns the object region in the images. This compression model
is trained using a Object-MSE-loss. The Object-MSE-loss is
the difference between the object region in the input image
and that of the output decoded image. By applying this loss to
train the NIC model, only the object regions is decoded cleanly
leaving the other regions untouched. Thus, information in the
image that is unnecessary for image recognition is eliminated.
In the experiments, we create an NIC model trained with the
proposed loss function and compare it with the SOTA image
coding model for human vision [6]. It is also compared with
the image coding model for machines [14] to demonstrate the
effectiveness of the proposal. Furthermore, by using multiple
datasets and multiple image recognition models, we show that
our model is a robust to changes in image recognition models
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Fig. 1. Image compression process. (a) : NIC model for human vision. (b) :
ROI-based approach for ICM. (c) : task-loss-based approach for ICM.

and changes in datasets.

II. RELATED WORKS

A. Image Coding for human vision

Image compression is an essential technique for efficiently
transmitting and storing images. Research on these technolo-
gies has been ongoing for decades, and many image and video
coding methods have been created. Examples of image and
video coding standards include HEVC and VVC. VVC is the
latest standard and is based on a hand-crafted algorithm. The
first version of this compression method was standardized in
2020. Video coding for an intra frame corresponds to image
coding.

In recent years, there has been a lot of research on image
compression using neural networks [16]–[19]. G. Toderici et
al. proposed an image compression method using RNNs and
created the first NIC model that exceeds the performance
of JPEG [20]. Later, autoencoder-based methods emerged,
including CNN-based NIC models and Transformer-based
models [21], [22]. In addition, a mechanism called hyperprior
was proposed to efficiently compress the features in the output
of the encoder [23]. Hyperprior effectively captures spatial
dependencies in the latent representation and is incorporated
in many of NIC models. These NIC models targeting human
vision are trained using the following loss functions:

Lh = R(y) + λ ·MSE(x, x̂). (1)

In (1), y is the encoder output of the NIC model, R(y) is
the bitrate of y and is calculated using compressAI [24]. x
represents the input image, and x̂ represents the decoder output
image of the NIC model. MSE represents the mean squared
error function and λ is a constant to control the rate. As shown
in Fig. 1(c), the compression model is trained to restore the
raw image while reducing the bitrate.

The latest NIC model is proposed by J. Liu et al [6]. This
model has a structure that combines CNN and Transformer.
CNN is good at capturing features in a narrow region in the
image, while the Transformer is good at capturing features in a
wide region in the image [25]. By combining these advantages,
this model has a coding performance that exceeds not only
VVC but also other NIC models.

B. Image Coding for Machines (ICM)

As the performance of artificial intelligence using deep
learning improves, opportunities for using image recognition
techniques are increasing. The amount of image data used for
this purpose is increasing,and image compression methods for
machines need to be created. ICM mainly considers image
coding for image classification models [26], object detection
models [15], and segmentation models [27].

There are two main approaches in ICM. The first one is the
ROI-based approach, which encodes images to allocate more
bits to the object regions. As shown in Fig. 1(a), the ROI-map
is input to the encoder along with the image to be compressed.
When using image compression methods based on hand-
crafted algorithms, neural networks are utilized to create ROI-
map by predicting the location of objects in the image. H.
Choi et al. proposed an ICM method that combines an object
detection model, YOLO9000 [28], and an image compression
method, HEVC [11]. The backbone of YOLO9000 extracts
features from the image, and the likely location of the object
is predicted from the features. Then, using HEVC’s rate
control system, image coding is performed to allocate more
information to the object region. Z. Huang et al. proposed a
method that uses a Region Proposal Network to predict the
location of objects in an image and compresses the image
using VVC based on the prediction results [12]. In addition, B.
Li et al. proposed an ROI-based method using the NIC model
[29]. In this method, the input is an image for compression
and its corresponding ROI map. They showed that these image
compression methods outperform basic HEVC and VVC in
terms of image compression performance in image recognition
accuracy.

The second approach in ICM uses task-loss to train the
NIC model to code images for image recognition [30]–[32].
As shown in Fig. 1(b), the output encoded image of the NIC
model is input to the image recognition model, and the task-
loss is calculated from the result. When training the NIC
model for object detection, the loss is calculated from the
object detection accuracy of the coded image [15], and when
training the NIC model for image classification, the loss is
calculated from the image classification accuracy of that [26].
However, image recognition model is black box, and training
NIC models using task-loss is difficult. Therefore, in general,
the NIC model is trained using a loss function that adds task-
loss to (1). In this case, the loss function can be expressed as
follows:

Lm = R(y) + λ1 ·MSE(x, x̂) + λ2 · M(x̂). (2)

In (2), R, MSE, y, x, and x̂ have the same meaning as those
functions, variables, and constants in (1). M(x̂) is the task-loss
that can be computed by inputting the coded image into the
image recognition model. λ1 and λ2 are constants to control
the rate.

A different method from these is the Omni-ICM model
proposed by R. Feng et al [14]. This model employs Infor-
mation Filtering (IF) to remove information from an image,



Fig. 2. The proposed training method of the NIC model.

that is unnecessary for image recognition. IF module is trained
to eliminate image redundancy while maintaining the feature
obtained when the image is input to ResNet [33]. This method
produces images with less entropy and maintains image recog-
nition accuracy. Since the model is not trained using a specific
task-loss, it can compress images for many different image
recognition models.

III. PROPOSED METHOD

The problem with the ROI-based ICM approach is that the
object region in an image must be predicted before image
compression process. In this approach, an image compression
model uses the ROI map obtained from object detection
models or manual derivations. This compression method needs
the ROI map to allocate more bits to object region in the
image. Therefore, the ROI-based ICM approach requires both
the image and its ROI map as inputs. The problem with the
task-loss-based approach is that the NIC model is difficult
to train. This is because the task-loss is calculated from
the results obtained by inputting the coded image into the
image recognition model, which makes the loss calculation
complex. Another point to consider is that if the NIC model
is trained with only task-loss, image reconstruction is difficult.
Therefore, they are often trained by adding MSE-loss to task-
loss, which is inefficient as a compression model for image
recognition.

Considering these problems, we propose an NIC model that
learns the object region in the image. The Object-MSE-loss
is used to train proposed NIC model. This loss represents
the MSE-loss of the object region in the image. By training
the NIC model with the Object-MSE-loss, we can create a
compression method that only decodes the object region in
the image. The proposed training method of the NIC model
is shown in Fig. 2. The mask image is a binary mask with
object regions set to 1 and all other regions set to 0. This
binary mask is used to create an image in which all regions
except the object region are black. This image creation process
is represented by the Hadamard product of the image and the
corresponding binary mask as follows:

ϕ(a,ma) = a⊙ma (3)

In (3), ϕ is a mask function that blackens non-object pixels
of the image, and a represents the input image. ma is the
binary mask corresponding to a. Using this mask function, the
Object-MSE-loss is calculated, which is expressed as follows:

Object MSE(b, c) = MSE(ϕ(b,mb), ϕ(c,mc)). (4)

In (4), b and c represent certain images, and ϕ is as shown in
(3). mb and mc are the binary masks corresponding to b and
c respectively. In addition, using (4), the loss function used to
train the proposed NIC model is expressed as follows:

Lp = R(y) + λ ·Object MSE(x, x̂). (5)

In (5), R, y, x, x̂, and λ have the same meaning as those
functions, variables, and constants in (1). The proposed NIC
model only learns how to encode and decode the object region
in the image. For the other regions of the image, it learns to
reduce the R(y). Due to the reduction of R(y), we achieve
a rough texture surrounding the object in the image. The
proposed NIC model is effective as an image encoding method
for image recognition because it can cleanly restore only the
object region in the image.

IV. EXPERIMENTS

A. Training image compression model

We modify the loss function used to train the NIC model
proposed by J. Liu et al [6]. This NIC model is originally
an image compression model targeting human vision and is
trained using (1) as the loss function. To change this model to
an image compression model for machines, we train this model
using (5) as the loss function. The dataset used for training is
COCO2017 [34]. This dataset is for instance segmentation and
object detection, which consists of 118287 images for training
(COCO-Train) and 5000 images for validation (COCO-Val).
The ground-truth segmentation map of this dataset is used to
create a mask image for calculating the Object-MSE-loss. Only
the COCO-Train is used for training. In (5), four different λ
(0.05, 0.02, 0.01, 0.005) are used to create four NIC models.

As for a comparison, an NIC models trained with the loss
function from (1) are prepared. To ensure a fair comparison,
COCO-Train is used for training, and four types of λ (0.01,
0.005, 0.002, and 0.001) are used to create four NIC models.

B. Evaluation Method

We measure the image compression performance of the
created NIC models in terms of image recognition accuracy.
YOLOv5 [35], Mask-RCNN [36], and Panoptic-deeplab [37]
are used as image recognition models. YOLOv5 is an ob-
ject detection model, Mask-RCNN is an instance segmenta-
tion model, and Panoptic-deeplab is a panoptic segmentation
model. The instance segmentation model can perform object
detection simultaneously, while the panoptic segmentation
model can perform instance segmentation at the same time.

First, we investigate the image compression performance in
object detection accuracy of YOLOv5. We use COCO2017
and VisDrone [38] as the datasets for object detection. These
datasets for validation are encoded with two models: the



Fig. 3. Examples of coded images of the COCO2017 dataset with the proposed NIC model. The upper and lower rows are the input and output coded images,
respectively.

proposed model and the comparison model. Coded images
produced by the proposed method are shown in Fig. 3. The
output images of the NIC model trained using Object-MSE-
loss are clean in the object region and unclear in the non-object
region. To measure the detection accuracy, we use YOLOv5
trained on regular images for detecting objects within the
coded images. Additionally, we encode the training dataset
with the proposed model and the model for comparison. By
applying these encoded datasets to YOLOv5, we obtain a fine-
tuned YOLOv5. Furthermore, we measure the object detection
accuracy of the fine-tuned YOLOv5 by letting it detect objects
in coded images.

Next, we investigate the compression performance of Mask-
RCNN in terms of object detection accuracy and instance
segmentation accuracy. We use MMDetection [39] to imple-
ment Mask-RCNN. We encode the COCO-Val with the two
models we have just created. The encoded images are input to
Mask-RCNN trained with the original images to measure the
image recognition accuracy. Furthermore, the COCO-Train is
encoded to prepare Mask-RCNN fine-tuned with these images.
Encoded images for validation are also input to this fine-tuned
model to measure the image recognition accuracy.

In addition, we examine image compression performance
in terms of semantic segmentation and instance segmentation
accuracy using Panoptic-deeplab. Using the Cityscapes dataset
[40], the validation data and training data are coded with two
models, the proposed model and the model for comparison.
The coded images of the training dataset are used for fine-
tuning the Panoptic-deeplab. The coded images for validation
are input to the fine-tuned model, and the image recognition
accuracy is measured.

C. Results

The results of object detection accuracy using YOLOv5 on
coded images are shown in Fig. 4. The light blue dotted line
indicates the image recognition accuracy of the uncompressed
image. The red line shows the coding performance of the
proposed method, and the blue line shows that of the method

for comparison. For both methods, the detection accuracy in
YOLOv5 trained using the original images and the detection
accuracy in YOLOv5 fine-tuned using the coded image are
measured. In Fig. 4, the left graph shows the validation
results using COCO dataset, and the right graph shows the
validation results using VisDrone dataset. Fig. 4 shows that
the best coding performance is obtained when the proposed
compression method is used for the compression model and
the fine-tuned YOLOv5 is used for the object detection model.
Moreover, even when the original YOLOv5 is used, the
proposed method outperforms the comparison method at low
bitrates. These results are related to the λ values in the loss
function used when creating the compression model. Four
values of λ, 0.05, 0.02, 0.01, and 0.005, are used when creating
the proposed model, and 0.01, 0.005, 0.002, and 0.001 are
used when creating the comparison model. Since the proposed
method does not cleanly decode all regions of the image but
the object region, the bitrate is unlikely to increase even if λ
is set to a large value. In other words, at the same bitrate, the
proposed method may decode the object region in the image
more cleanly than the comparison method. Fig. 8 shows the
PSNR of the entire image and that of only the object region in
the image in the coded image. It can be seen that the proposed
method is inferior to the comparison method in the image
quality of the whole image but outperforms in that of only the
object region at low bitrates.

Furthermore, in Fig. 4, the proposed coding model shows
a larger performance improvement by fine-tuning the object
detection model compared to the conventional coding model.
One of the reasons for this is that the method for comparison
tries to recover the original image, while the proposed method
does not. Since the comparison method tries to decode an
image close to the original one, the difference in object
detection accuracy between YOLOv5 trained on the original
image and YOLOv5 trained on the coded image is small. On
the other hand, the proposed model does not attempt to decode
images close to the original images, so the YOLOv5 trained on
the original image cannot achieve sufficient detection accuracy.



Fig. 4. Compression performance in object detection accuracy of YOLOv5.
The left figure shows compression performance for COCO, and the right
figure shows the same for VisDrone.

Fig. 5. Compression performance in image recognition accuracy of Mask-
RCNN. The left and right figures show the compression performance in
detection accuracy and instance segmentation accuracy, respectively.

Fig. 6. Compression performance in instance segmentation accuracy of
Panoptic-deeplab.

Fig. 7. Compression performance in panoptic segmentation accuracy of
Panoptic-deeplab.

Fig. 8. Compression performance in image quality. The left figure shows the
image quality of the entire image, and the right figure shows that of the object
region in the image.

Therefore, fine-tuning the YOLOv5 with the coded image can
greatly improve the coding performance.

The results of object detection and instance segmentation
using Mask-RCNN on the coded image are shown in Fig. 5.
The red and blue lines represent the same meaning as in Fig.
4. The orange lines indicate the coding performance of the
image compression model proposed by R. Feng et al [14].
The pink lines indicate the coding performance of the image
compression model proposed by B. Li et al [29]. In Fig. 5, the
left graph shows the relationship between object detection ac-
curacy and bitrate, while the right graph shows the relationship
between instance segmentation accuracy and bitrate. In both
cases, the best coding performance is achieved by utilizing
the proposed image coding model for image compression and
Mask-RCNN fine-tuned with the coded images.

The results of instance segmentation and panoptic segmen-
tation with Panoptic-deeplab on the coded image are shown
in Fig. 6 and Fig. 7. All red, blue, and orange lines represent

the same meaning as in Fig. 5. Fig. 6 shows the results of
instance segmentation. It can be seen that the proposed method
is effective at low bitrates, outperforming both the existing and
comparative methods. On the other hand, Fig. 7 shows the
results of panoptic segmentation, where the proposed method
is ineffective. This is because panoptic segmentation does a
segmentation for the object region and the non-object region
in an image. In the output image of the proposed compression
model, regions other than object regions are blurred and
unclear. Therefore, although the proposed method is effective
for instance segmentation, it is unfit for panoptic segmentation.

V. CONCLUSION

We proposed an NIC model which learns the object region
in images. By training the NIC model with object-MSE-loss,
we created a model that decodes object regions of images
intensively. Experimental results show that the proposed NIC
model is effective as an image encoding method for im-
age recognition, especially for object detection and instance
segmentation. The experiments used three different image
recognition models and three different datasets to show that
the proposed encoding model can be used robustly. Future
work is required to further improve the encoding performance
by reducing the texture of object region while maintaining the
image recognition accuracy.
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