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Abstract—In this paper we present a robust and simple method 
for the detection of anomalies in surveillance scenarios. We 
use a "bottom-up" approach that avoids any object tracking, 
making the system suitable for anomaly detection in crowds. 
A robust optical flow method is used for the extraction of 
accurate spatio-temporal motion information, which allows to 
get simple but discriminative descriptors that are employed 
to train a Gaussian mixture model. We evaluate our system 
in a publicly available dataset, concluding that our method 
outperforms similar anomaly detection approaches but with a 
simpler model and low-sized descriptors. 

Index Terms—Anomaly detection, Gaussian mixture model, 
robust optical flow, video-surveillance. 

I. INTRODUCTION 

Detection and recognition of events in surveillance scenarios 
has become a popular task in the past years. Within this 
category, anomaly detection proposals are of special interest 
regarding the amount of works developed [l]-[4], [6], [7], 
[14]. In spite of this, it is still an open task due to the multiple 
problems that it generates. The most important issues are: the 
difficulty to define what is an anomaly; the variability of the 
anomalous events; and the scarcity of training samples to build 
models. Regarding the definition of anomaly, sometimes they 
are defined as irregular or unusual events [4], while in other 
cases these events are defined as events that differ from those 
considered normal [1] or the low frequency of appearance 
[2]. On the other hand, there are two major approaches to 
face the process of detection. The most used in the past is 
the "top-down" approach, that requires of a tracking phase 
in which the objects need to be detected. After this phase, 
trajectory patterns can be analyzed to find anomalous motion 
activity. The major problem with this approach is that the 
detection rate of anomalies decreases rapidly when applied 
in crowded scenarios, where occlusions and clutter appear. 
"Bottom-up" approaches mitigate these problems by analyzing 
the events firstly at pixel level and then inferring information 
at a higher level. This has become the most popular approach 
in more recent works [2]-[4], [6]. Typical low-level features 
are gradients [2], [3] or features based on optical flow [4], [7]. 

There are some state-of-the-art proposals to outline. For 
instance, Roshtkhari et al. [2] propose to learn a model of low-
level features extracted from spatio-temporal compositions. 
The model is updated in an online manner and without 
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Fig. 1. Proposed anomaly detection system. 

supervision. The main drawback is that the complexity of the 
system is elevated. 

Another important approach was proposed by Cong et al. 
[4], method in which a set of representative samples is used 
to construct a basis. Its problem is that an accurate method 
for the selection of the samples needs to be employed. 

One of the most significant approaches is detailed in [1]. 
They propose to use dynamic textures in a innovative manner, 
learning the appearance patterns of the input sequences so 
anomalies can be detected as outliers. The main disadvantage 
that it presents is related to the computational cost. Besides, 
it has been outperformed by other most recent works. 

Ryan et al. [7] used a different approach. They implement 
a Gaussian mixture to create a normality model, using for that 
descriptors that incorporate flow-based information. This work 
inspired the proposal made in [9], whose method incorporates 
orientation histograms into the descriptors and a Markov 
random field to increase the detection rate of the system. 

In this paper we present a simple but effective method to 
detect anomalies through the use of flow-based features, that 
feed a Gaussian mixture model that learns the normality of 
the scene so anomalies can be detected as samples that differ 
enough from the trained model. The simplicity of the system 
allows to apply the method to multi-camera systems, where 
the computational complexity is vital. 



Fig. 2. Representation of optical flow fields obtained with Horn-Schunck 
and the proposed method. Intensity shows the magnitude of the flow vectors. 
Color represents the orientation. 

II. PROPOSED METHOD 

The main stages of our proposal are shown in Figure 1. 
We start with the extraction of the flow fields divided in 
spatio-temporal volumes (cuboids) and we continue with the 
construction of the Gaussian mixture model. 

A. Extraction of optical flow 

The popular Horn and Schunck (HS) formulation has been 
widely used for obtaining motion information between frames 
at pixel level. This method has become obsolete, since many 
approaches for the extraction of the optical flow with different 
formulations proposed in the next years get more accuracy in 
the final field. 

In spite of this, authors of [10] claimed that the Horn-
Schunck formulation can be still competent if the appropriate 
stages are added to the algorithm. These stages are: decompo­
sition in structure and texture of the scene, the use of a specific 
derivative mask instead of image differences, multi-resolution 
pyramids, the use of weighted median filters after the warping 
steps to remove outliers and a graduated non-convexity (GNC) 
approach for the use of different penalty functions on the 
functional to optimize. Two modifications are here proposed to 
simplify the approach while keeping its accuracy. The first one 
is the removal of the decomposition in structure and texture 
stage because it does not add clear improvements in the final 
field but it needs remarkable processing time. The second one 
is the application of only one iteration to recompute the optical 
flow before calculating it at a different resolution. 

The GNC approach and the application of the median filter 
are the two stages that have the most remarkable effect on 
the final flow field. The first permits to gain accuracy by 
combining the effect of a simple function (convex) and a more 
robust penalty function (non-convex). The second is useful to 
remove outliers in the estimation of the flow. 

To validate our method for the extraction of the optical flow 
field, we have tested it in the Middlebury dataset [13], con­
firming that it renders more accurate than the original HS. In 
Figure 2 we can see the benefits of using the proposed method. 
For instance, along the surface of the objects, the optical flow 
vectors are homogeneous and free of outliers (intensity values 
are normalized using the maximum magnitude value). 

B. Construction of the Gaussian mixture model 

A GMM is a parametric model composed by K multivariate 
Gaussian distributions, each of them with a weight iik, a 

covariance matrix Sfc and a vector ¡j,k with the means of each 
descriptor variable D of size n. The likelihood of a sample 
given the parameters is calculated as described in Eq. 1, which 
is the weighted summation of the likelihood of the sample 
over all the distributions of the G M M (Eq. 2). For detecting 
anomalies, we use a global G M M as in [7] and [9] to create a 
normality model, as it allows to model the events with a unique 
probability distribution. The G M M is constructed using the 
E M algorithm. K-means++ [15] is used for initial clustering. 
Finally, in the test phase, the samples are labeled as anomalies 
if their likelihoods over the G M M are below a fixed threshold. 
Note that we use diagonal covariance matrices instead of full 
matrices, since they provide good results while avoiding extra 
processing time. 

There exist also the possibility of using local Gaussian mixture 
models. To do so, we need to build one G M M per spatial 
location of the scene. This approach permits to process the 
events that occur in the spatio-temporal cuboids independently 
and is easier to parallelize. Nevertheless, results demonstrate 
that the detection rate is much lower compared to the global 
approach, so it has been discarded, and the evaluation is 
performed only with the global approach. 
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I I I . FEATURE EXTRACTION 

We have selected a set of features from the literature to 
verify what is the combination that offers the best detection 
rates. These features are: magnitude of optical flow and 
uniformity (or textures of optical flow), proposed in [7] and 
histogram of optical flow, similarly to [4], [9], [14]. 
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The magnitude of optical flow (F1) is calculated by making 
the summation of optical flow vectors components w¿ and Vi 
over the total number of pixels N of the current cuboid. The 
second feature (F2) describes the uniformity (texture) of the 
optical flow vectors respect to pixels located at a distance (off­
set) of S pixels. The third (F3) corresponds to the unweighted 
histogram of optical flow orientations, represented with n bins 
(each bin i counts the orientations up to (2i + Vjir/n degrees). 

Note that to locate where the events are produced while 
increasing the model discriminative capabilities, the central 



Fig. 3. Detections on pedl dataset 

Fig. 4. Detections on ped2 dataset 

position of the cuboid (x, y) is introduced into the descriptor. 
We have evaluated the performance of each combination of 
features by verifying the detection rate that we get on UCSD 
and UMN datasets, trying different numbers of Gaussian 
components within a range between 10 and 80. The best 
combination of features is chosen by selecting the best areas 
under the curve (AUC) obtained from the receiver operating 
curves (ROC). 

Results demonstrate that the incorporation of the optical 
flow histogram (with any number of bins) not only do not 
improve the detection rate but in many cases significantly 
diminish the performance. Thus, the final descriptor D used 
to train the model is composed by features Fl and F2. The 
second feature is used applying the three values of offset 5. 

D : (x,y,ux,ujy, </>(1), </>(3), </>(5)) 

IV. RESULTS AND DISCUSSION 

For evaluation, we have selected the UCSD dataset. It 
contains two different sets of sequences with images of a 
public walkway. The first set of sequences (pedl) has some 
perspective distortion. For measuring the performance of the 
system, we make use of true positive and false positive rates 
(TPR and FPR). They are specified in Eq. 3. The number of 
true positives, false negatives, false positives an true negatives 
are involved in the calculation. 

TPR=TI^FÑ FPR-FFTTÑ (3) 

We have used frame-level and pixel-level criterion for the 
evaluation of the system. With the first, for classifying a 
test frame as anomalous, it is enough that the likelihood of 
one cuboid over the GMM is lower than a fixed threshold. 
Varying this threshold, TPR and FPR are calculated and the 
corresponding receiver operating curve (ROC) is computed. 
The area under the curve (AUC) and equal error rates (EER) 
are extracted and used for result comparison. On the other 
hand, pixel-level criterion is stricter, since the area detected as 

anomaly must also cover at least the 40% of the segmented 
anomalous area [1]. With the final descriptor fixed, an analysis 
of cuboid sizes has been carried out: 9x9, 12x12 and 15x15 
spatial sizes have been combined with 7, 10 and 13 frames as 
temporal size. For each combination, the values of AUC and 
EER at frame level are calculated with a number of GMM 
components within the range from 10 to 500 on pedl and up 
to 300 on ped2, whose event variability is lower. Additionally, 
to test the impact of perspective correction, results for pedl are 
also obtained after applying the technique described in [11]. 

On both datasets the best cuboid size is of 9x9x7 pixels. 
Including perspective correction, the average gain in terms 
of AUC is 3.7% on pedl, reaching a maximum of 0.8977 
with 370 GMM components. On ped2, the maximum AUC 
is 0.9629 with 90 components. As expected, the best number 
of GMM components is directly related to the variability of 
normality behaviors in the scene: pedl shows much more 
variability than ped2. Therefore, depending on the potential 
diversity of events in the scene under analysis, the range of 
GMM components to be used (or explored) can be estimated. 
Besides, it is important to remark that our proposal shows 
significant robustness to the number of components used: for 
92% of the tests modifying the number of components in 
pedl, the AUC deviates less than 1.5% from the maximum 
value; for ped2, 87% of the tests deviates less than 3.5% from 
the maximum AUC. Indeed, the maximum deviation from the 
maximum AUC value considering the whole range is 3.17% 
and 4.07% for pedl and ped2 respectively. 

Figures 3 and 4 show some detections on pedl and ped2 
datasets, and Figures 5 and 6 portray the ROC curves for 
different methods of the state-of-the-art at frame level. The 
equal error rates are given in Table I, including EER values on 
pedl at pixel level. At frame level, we obtain better results than 
all the methods except two: the method proposed by [2] only 
for pedl dataset and [9] in both. In any case, the differences 
respect to [9] are very small, particularly if we take into 
account that they use a GMM but with larger descriptors and 
a Markov random field to model the co-occurrence of events. 
Additionally, the effectiveness of the robust optical flow and 
perspective normalization methods that we apply is proven 
when comparing our results with those obtained in [7], since 
although they use the same type of model and descriptors, their 
optical flow method is worse and no perspective correction is 
applied. 

In terms of anomaly localization (EER at pixel-level in 
Table I), our results are above the obtained by the methods 
in the literature, except the proposed by [2], that has a lower 
equal error rate. 

In terms of processing time, we need 0.4 s/frame including 
the calculation of the optical flow and the frame classification 
(we use 80 components for the GMM). It outperforms [4] (3.8 
s/frame) and [1] (25 s/frame), and it is close to [2] and [14]. 
The method proposed in [7] operates at 0.1 s/frame (downsized 
images with a simpler optical flow), rendering significantly 
worse detection rates. In [9] no processing time is given. 
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Fig. 5. ROC for ped1 dataset at frame level. 

Fig. 6. ROC for ped2 dataset at frame level. 

V. C ONCLUSIONS AND FUTURE WORK 

We have presented an effective while simple method for 
detecting anomalies in surveillance scenarios. We can con­
clude that the best model is the global G M M approach, 
that is more effective than the local G M M approach, while 
needing the construction of only one probability distribution. 
Results confirm the goodness of our system, that obtains better 

results than many state-of-the-art methods on U C S D and U M N 
datasets. As future work, we plan to make the system to work 
in real time, as well as improve the descriptors and increase 
the range of the parameters used. We also intend to use more 
databases for the evaluation of the system. 
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