Encrypted Computing

Speed, Security and Provable Obfuscation against Insiders

Jonathan P. Bowen
London South Bank University
London, UK

Peter T. Breuer
Hecusys LLC
Atlanta, GA

Abstract—Over the past few years we have articulated theory
that describes ‘encrypted computing’, in which data remains in
encrypted form while being worked on inside a processor, by
virtue of a modified arithmetic. The last two years have seen
research and development on a standards-compliant processor
that shows that near-conventional speeds are attainable via this
approach. Benchmark performance with the US AES-128 flagship
encryption and a 1GHz clock is now equivalent to a 433MHz
classic Pentium, and most block encryptions fit in AES’s place.

This summary article details how user data is protected by
a system based on the processor from being read or interfered
with by the computer operator, for those computing paradigms
that entail trust in data-oriented computation in remote locations
where it may be accessible to powerful and dishonest insiders.
We combine: (i) the processor that runs encrypted; (ii) a slightly
modified conventional machine code instruction set architecture
with which security is achievable; (iii) an ‘obfuscating’ compiler
that takes advantage of its possibilities, forming a three-point
system that provably provides cryptographic ‘semantic security’
for user data against the operator and system insiders.

I. INTRODUCTION

HIS paper examines encrypted computing. That refers to a
T processor or other computing platform (a virtual machine,
for example) that accepts encrypted inputs and produces
encrypted outputs. The encrypted computing platform runs
machine code programs in which the constants and possibly
more are in encrypted form. A processor that supports en-
crypted computing in principle is suited as a platform for
remote computations in the cloud [1] on behalf of a user
who wants an assurance that an insider in the computer room
is unable to access the data being processed. The user will
encrypt the program and the input data on their own machine
and send them across the network to the server, which executes
it and produces the encrypted results. Those are sent back to
the user who decrypts them on their own machine.

An analysis by van Dijk and Juels [2] shows that the goal
of privacy and security of the user’s data in this situation
is equivalent to the condition that data is cryptographically
obfuscated [3] from the operator and operating system as
adversary on the encrypted computing platform.

Cryptographic obfuscation means that there is no determin-
istic or statistical method that gives the operator or any other
adversary on the platform an advantage in deciphering the data
input to or produced by the user’s program at runtime. That

*Zhiming Liu wishes to thank the Chinese NSF for support from research
grant 61672435, and Southwest University for research grant SWU116007.

TCorrespondence: Zhiming Liu, RISE, 2 Tiansheng Rd, Beibei, 400715 China.

Zhiming Liu*
Southwest University
Chongqing, China

Esther Palomar
Birmingham City University
Birmingham, UK

is as compared with the success that the attack would have
if it were applied to a black box that produced the program’s
(encrypted) outputs from its (encrypted) inputs by fiat, via
absolutely no intermediate and/or internal computational states
at all. Cryptographic obfuscation means that whatever the op-
erator’s privileges are on the encrypted computing platform —
they conventionally include unrestricted access to all processor
registers and all memory locations at all times — they are of
no advantage in cracking the encryption. If obfuscation works,
being able to see the code and how it runs on the machine from
step to step and being able to experiment with changing code
and/or data affords no leverage to the operator.'

So the question is if data can be cryptographically ob-
fuscated from the operator and if the system for that is
practical. The answer given here is ‘yes’. This paper describes
a largely conventional processor that ‘works encrypted’ at near
normal speeds and in which the operator has all the ordinary
privileges, plus a machine code, and a compiler, such that the
three together provably cryptographically obfuscate user data
from the operator. The complete system constitutes a platform
for remote encrypted computing that maintains the privacy and
security of user data against other users and the operator to the
maximum extent possible.? Its conventional aspect means that
known techniques may be applied to make it work even faster
in the future than the prototype already does. A toolchain and
minimal operating system is already in place.?

Although we do not seek to secure user data from physical
probes, protection against the operator implies that some
physical attacks, such as ‘cold boot’ (freezing the RAM sticks
for later examination) [7], [8], [9] are prevented. The operator
has access to RAM, so defending against the operator must

ICryptographic obfuscation cannot always stop an adversary. Barak et al.
[4] exhibited functions that cannot be disguised one as another even with
obfuscation, and therefore claimed that obfuscation is impossible in general.
But those functions f(z) cannot be told from f(x+A)+B in the context
described here, for any constants A, B — so even if what z is intended to
mean can be guessed, it is not known what number represents it under the
encryption. That leaves ‘wriggle room’ for cryptographic obfuscation to work
in the present context, despite Barak et al.’s famous result. It may be attributed
to (i) inputs and outputs are in encrypted form here, and (ii) the hardware
makes available only nonstandard primitive arithmetic and logical operations.

2Keys may be embedded at manufacture, as with Smart Card technologies
[5] or introduced as needed via a Diffie-Hellman circuit [6] or equivalent that
loads the key safely in public view. without revealing it to even the operator.

3There is no compromise from running with the wrong key in the machine.
A program compiled with the right key does not work and a program that
works’ inputs and outputs are unwritable and unreadable.

978-1-5386-1585-0/17/$31.00 ©2017 IEEE

logically defend against cold-boot too and indeed, as that logic
dictates, user data in RAM will always be encrypted.

This system is in the first instance aimed at remote offfine
(‘batch’) computation, because the same program must be
recompiled by the ‘obfuscating’ compiler and reencrypted (but
not with a different key) by the assembler whenever a new set
of data is ready. However, if the future inputs are all known
beforehand, a loop in the code and the one compilation suffice.
However, we believe that continuous operation will soon be
possible. Our prognostication is that the obfuscating scheme
embedded by the compiler may be varied by the user while
the program is running, with no change of encryption key.

The layout of this paper is as follows. Section II describes
the ‘homomorphic systems’ that form the basis of our ap-
proach, and gives details and measures of our particular pro-
cessor design for encrypted computing. Security problems that
intrinsically arise from encrypted computing are considered in
Section III. Section IV offers a partial solution via a restricted
but computationally complete set of machine code instructions,
and Section V offers a complete and practical solution via a
‘fused arithmetic’ style of instruction set. Section VI intro-
duces an obfuscating compiler. Formal statements of security
(mostly without formal proof here, but sketched or referenced)
against deterministic attacks are given in sections IV and V,
and against stochastic attacks in Section VI.

II. HOMOMORPHIC SYSTEMS

A homomorphic system for encrypted computation is one for
which the inputs, outputs and all observable internal states are
encrypted versions of what would be seen in a conventional
processor running the same program.

There is a simple canonical example: Ascend [10] is a pro-
totype processor to which nobody, including the operator, has
access except via its external input/output (I/O) pins. It expects
encrypted data and machine code (Ascend’s encryption is 128-
bit AES [11]), and it returns encrypted data. Communication
with memory is encrypted, via ‘oblivious RAM’ [12], [13],
[14]. The statistics with respect to external cache hits, memory
address patterns, power use patterns, etc, must be ‘prophesied’
prior to a run and the processor works to make it come true.
There are no intermediate states that can be observed. Ascend
is a coprocessor (i.e., a unit called upon by the main processor
for special tasks) so it runs no interrupt handlers or other
operating system code. It unstoppably runs to completion an
encrypted program on the encrypted data delivered to it.

The platform is effectively a black box, satisfying the Hada
cryptographic obfuscation definition’s requirement, but it is
awkward to set up for each use, it runs 12 to 13.5 times
slower in encrypted mode* and the suitable programs for it are
limited. We would like something faster and less handicapping.

An improvement is obtained in our own homomorphic
system, the KPU (‘Krypto Processor Unit’) processor [15]. It

4The Ascend processor prototype’s hardware base is not a sophisticated
design so its absolute speed cannot meaningfully be compared with a contem-
porary off-the-shelf processor, but comparing its encrypted with unencrypted
running speed is a proxy for the ‘efficiency’ of that mode of operation.

‘ Fetch ‘ Decode ‘

L 1T T T T 1 L T T 1
ﬁ_“ User \—{Codec/Homumurphic Arith }» P
Instruction | }od L
Cache Cache
|G "'4
;]

Instruction
Memory

M
Data Cache o

T
I IN]

Registers Data
Memory

Fig. 1. Pipeline integration showing shadow units (shaded) for user mode.

ﬁ Encryption/Decryption (codec)

A ‘ Fetch ‘Decode‘ Read ‘Execute‘ <

G Read ‘Execule‘ Write ‘

B Fetch | Decode
Encryption/Decryption (codec) }J

Fig. 2. The pipeline is configured in two different ways, ‘A’ and ‘B’, for
different user mode instructions, in working with a symmetric encrypyion.

E}

replaces the arithmetic unit in a conventional processor design
with a non-standard homomorphic arithmetic.> It is shown in
[16] that a processor working encrypted via that mechanism
is a homomorphic system. Running encrypted, the processor’s
code and internal states are observable to all, but data is seen
to be encrypted wherever it may be observed.

The architecture is detailed in [17]. It is a classic su-
perscalar® design with a single pipeline [18]. It is modified
to incorporate a non-standard arithmetic and has separate
user mode and supervisor mode caches and other potential
common information sources, as shown in Fig. 1. Embedding
a symmetric encryption, the non-standard arithmetic arises
through a conventional ALU working on unencrypted data in
‘shadow’ registers, where the first of a series of arithmetic
operations triggers decryption to the shadow registers and the
last engages encryption back again. The hardware protocol is
proved secure in [19]. The pipeline is configured in two ways
for two classes of instruction, as illustrated in Fig. 2. The
‘A’ configuration is for instructions that may use encryption
only after arithmetic (the majority), the ‘B’ configuration is
for those containing immediate data that need decryption first.

The block encryption fitted can be any that matches the mach-
ine word, RC2 (64 bit) and AES (128 bit) having been trialled.

SLet £ be the encryption, then a homomorphic arithmetic (flooo o flh) is
one that for each arithmetic operation f; implements a corresponding opera-
tion f! that takes encrypted operands [x]g and produces an encrypted output
[yle where y = f(z). If there is some algebraic identity e1 [f](Z) = e2[f](F)
in variables & for expressions e; in operations f that holds of the original
arithmetic, such as = +y = y + z, then e1[f']([Z]e) = ea[f']([E]e) holds
identically too, i.e., [z]g +’ [yle = [yle +’ [z]g is true. The homomorphic
arithmetic’s algebra ‘looks the same’.

6Superscalar’ means many instructions are worked on at once.

The data encryption is one-to-many, extra padding under the
encryption varying pseudo-randomly. Encrypted addresses in
particular can vary dynamically at runtime, producing ‘hard-
ware aliasing’ from a software perspective, in which different
memory locations are sporadically accessed by the same addr-
ess. Programs must be compiled to cope with that [20].

The KPU runs the OpenRISC machine code described
at opencores.org/or1k/Architecture_Specification, modified for
encryption. The modifications principally extend some instruc-
tions to accommodate 64- or 128-bit encrypted constants. The
KPU slows down by 10—40% in encrypted running under AES-
128 as compared to running unencrypted (measures are from
[17]), and with its base clock set at 1 GHz (3 ns cache), it runs
like a 433 MHz classic Pentium,” so a KPU is quite fast.?

The KPU’s nearest competitor among homomorphic sys-
tems is HEROIC [21], which has a stack machine architec-
ture [22]. HEROIC embeds 2048-bit additively homomorphic
Paillier encryption [23] in its encrypted working. Beneath the
encryption, it is a 16-bit machine. An encrypted addition takes
4000 cycles on its 200 MHz base hardware, making HEROIC’s
speed roughly equivalent to a 25 KHz Pentium. A KPU is
about 20,000 times faster. The point, however, is that the
security of encrypted computations in these systems can be
mathematically backed, as explained below.

III. VULNERABILITIES OF ENCRYPTED COMPUTATION

Being able to run arbitrary computable functions encrypted
is potentially dangerous to the security of an encryption. It
is prima facie possible that an adversary may make some
unforeseen use of the platform’s computations to subvert the
encryption. That is the danger that encrypted computing must
guarantee to avoid, because the data is already in encrypted
form and the security offered is as strong as the encryption is,
barring the extra vulnerabilities that derive from computations.

There is real danger here, because in order not to confound
the programmer, a platform for encrypted computing ought
to implement the familiar computer arithmetic. That means
2s complement arithmetic, for example 32-bit, in which 32
additive doublings of anything obtains an encrypted zero.
Using []¢ to represent encryption:

[+ +ale = 22 mod 2%e = [0]¢

There will be on any conventionally programmable platform
an instruction that takes an encrypted value [z]¢ in one register
and causes it to be replaced in the register by the encryption
[+x]¢ of the same value added to itself. Then the encryption
is open to a ‘known plaintext attack’ (KPA) against 0.
Similarly with a multiplication instruction: an adversary
choosing a random encrypted value [x]¢ has a 50% chance of
picking an odd number z, and then repeated self-application of

7Simulations show a Dhrystones v2.1 MIPS rating of 104-140 for the KPU
with AES-128 and RC2-64 respectively, and 48.1 for a 200 MHz Pentium; see
Dhrystones table at http://www.roylongbottom.org.uk/dhrystone results.htm.

8The authors are not Intel or AMD, and it may be supposed that experts
such as those would do far better at implementation. In that respect, the
KPU prototype’s slowdown of 10-40% running encrypted indicates what may
eventually be achieved relative to a PC too.

the multiplication instruction produces an encrypted 1, by Fer-
mat’s Little Theorem: [z % - - - * z]¢ = [% mod 232]¢ =[1]¢.

A 1 may also be gotten if there is a division instruction, via
[z/z]e = [1]¢ if nonzero x is chosen, which is nearly certain.

Obtain an encrypted 1 by whatever means and then, by
repeated addition, an adversary may first build all the [2¥]¢
and then efficiently build the encryption [K]¢ of any desired
number K from its binary representation via

25 - 28] = [K]e

Conversely, given an encrypted 1 and an instruction for
arithmetic comparison, any encrypted number [z]c can be
decrypted by comparing it with each constructed integer [K ¢
in turn [24]. Or, more efficiently, by deducing its digits,
comparing and subtracting 2¥ from K when 2F < z < 2F+1,
That requires only an instruction for encrypted subtraction, in
addition to those for encrypted addition and comparison.

In case there are no instructions for encrypted multiplication
or division, a subroutine may do the job using only encrypted
addition and comparison. The subroutines wil require an
encrypted 1 as a constant in the code, and that may be
repurposed as-is by an adversary who locates the subroutine.

So there is a case to answer with respect to security.
Fortunately, the answer is positive.

IV. SECURE ENCRYPTED COMPUTATION

Despite the alarms above, there are ways of running arbitrary
encrypted computations securely. Consider a minimal
computationally complete subset of instructions® consisting
of addition of a constant y<x+k (in human-readable
form) and branches based on comparison with a constant
x<K. Consider a program C' written using only those two
instructions. By a ‘method of observation’ understand a
deterministic non-interfering process, based on observing
what a running user program does from step to step — the
trace T. Given the operator cannot read the encryption, then:

Fact 1. No method of observation exists by which the
operator who does not possess the key may decrypt the
output [yle of the program C.

The proof is given in [27]. The argument!”

assumes encryption

A practitioner’s ‘proof’ of the computational completeness of those two
instructions is the mathematician J.H. Conway’s well-known Fractran pro-
gramming language [25], in which those are the only instructions. Attention
in the computer hardware community may have been first drawn to the fact
by Patterson and Hennessy in [26].

10 The argument for Fact 1 supposes the hypothetical method has trace T
and code C as inputs. Construct a modified code C such that (i) it has a trace
T’ that ‘looks the same’ as T to the operator, because the differences are only
in encrypted data, not control flow; (ii) the code C’ ‘looks the same’ as C' too
(detail follows). Then the operator’s method must give the same result applied
to C’, T" as it does applied to C, T, which is y, say. However, (iii) the new
code C’ gives the output [y+7]¢ when run, not [y]¢. So the method is wrong
and does not work. The program C’ differs from C only in the encrypted
constants [K|¢ in the [x<K]¢ test in branch instructions. Those are changed
to compensate for underlying data now universally taking value 7 more than
before. Changing K in C to K'=K+7 in C’ achieves that. Nothing else
changes from C. Then C’ does exactly the same at runtime as C does, but
on data that is everywhere [x+7]¢ instead of the [x]g when C' runs.

is secure and the result is relative to the encryption strength.

Unfortunately programs limited like C' are not typical in a
KPU, running OpenRISC machine code. A counter-example
to the result is provided by the one-instruction program
consisting of ‘sub[tract] r,r,r” (replace [x]¢ in register r with
[— z]g). That produces [0]g, and any onlooker can deduce
that by the singularly deterministic method of reading the
instruction while knowing the laws of arithmetic. The problem
is the instruction set, and it will be mended in Section V.

Now consider program C' again. Set the constants [K]g,
[k]e in the program to come from disjoint subspaces of the
cipherspace, themselves disjoint from data circulating in the
processor. The easy way to arrange that in a KPU processor
is to incorporate distinct markers into the padding under a
symmetric encryption. Then:

Fact 2. There is no method by which the privileged
operator can alter program C using just add and compare
with constant instructions to give intended outputs [y]s.

The reason is that the program hypothetically built by the
operator is the kind of program forbidden to exist by Fact 1,
for which the output [y]¢ is known to be an encryption of y. It
does not matter who has written the program (this reasoning
obviates a repeat here of the argument'® for Fact 1).

That answers the natural suspicion that an attacker could
turn some mechanism of the processor to the task of decrypting
program data. The answer is ‘no’, if the instructions are just
add-a-constant and branch on compare-to-a-constant. The an-
swer is also ‘no’ if the attacker is prevented from running their
own programs on user data, as in Ascend. The conclusion does
not apply to KPUs, which support an extensive conventional
instruction set, and the fix is addressed in the rest of this paper.

V. FXA INSTRUCTION ARCHITECTURE

The KPU, which runs the whole of the standard 32-bit
integer and floating point OpenRISC instruction set (there
are approximately 200 different instructions) in encrypted
mode, is vulnerable to attacks on the encryption via the
example in Section IV on the program consisting of one
subtraction instruction with two arguments that can be used
to generate an encrypted zero. However, there are also many
of its instructions that a KPU may safely execute. Analysis
shows that binary addition, binary subtraction, subtraction of
a constant, multiplications, left shifts (not division, right shift)
are all safe to execute, provided each instruction is atomically
followed by addition of some constant. That could be enforced
in the processor, but there is opportunity here to co-opt instead
a single new fused multiply and add (FMA) instruction!! to
cover the instruction combinations mentioned.

Fused multiply and add comes about because, while addition takes one
cycle to complete on most processors, multiplication takes much longer (typ-
ically ten cycles). The logic subunit that is repeated to form a multiplication
multiplies two short integers plus two short carries from subunits ‘right’ and
‘below’ in a 2-dimensional array. The column and row of subunits at extreme
‘right’ and ‘bottom’ usually has the carry inputs tied to zero, but they may
be used to feed two extra full integer addends into the calculation at no cost,
producing z * y + z + w instead of just x * y. That is the FMA intruction.

That is convenient because FMA is nowadays seen as the
ideal unit of parallel computation, having been introduced
for that purpose by AMD and Intel in 2011/12/13, for the
‘FMA3/4’ instruction sets. Denote by a fused anything and
add (FxA) architecture one in which no arithmetic instruction
appears except as the fused compound with addition of a
constant on inputs and outputs. So FxA multiplication does
the following under the encryption:

xr3 (1'1 7k1)*(1'27k2)+]€3

where the k;, i=1, 2,3 are constants embedded encrypted in
the instruction. Some instructions, such as binary addition,
need only one constant incorporated in the instruction, as

(1 — k1) + (w2 — ko) + ks =1 + 22+ (ks — k1 — k2)

Section IV requires the processor to enforce no collisions
between (i) encrypted constants embedded in instructions and
(ii) runtime encrypted data values circulating in registers or
memory. With that, the arguments for Facts 1 and 2 can be
applied with an FxA-conformant instruction set too'?. Again,
by ‘method’ understand a deterministic procedure. Then:

Fact 3. There is no method by which the privileged
operator can read a program C constructed using FxA in-
structions, nor deliberately alter it using those instructions
to give an intended encrypted output.

An extra decode stage on the front lets the KPU translate a
FxA-compliant instruction set to OpenRISC, letting Fact 3
apply. But deterministic methods of attack are not the only
danger. An attack may fail almost always and still succeed
enough times to make it worthwhile trying, so stochastic
considerations need to be taken into account, as below.

VI. OBFUSCATING COMPILATION

To make compilation to an encrypted FxA-compliant instruc-
tion set vary stochastically in a way that is cryptographically
significant at runtime, the compiler sets a different offser dz;
from nominal for the value [x; + da;]¢ in each register and
memory location [, at different points in the program. At each
recompilation of the same source, the compiler will choose
different offsets, randomly, with uniform distribution. In con-
sequence, runtime values will vary, with uniform distribution,
from compilation to compilation. The machine code produced
by the compiler will look the same, up to differences in the
embedded encrypted constants, which the adversary cannot
decrypt. The traces will also look the same.

Consider a boolean expression A && B in the source code.
The compiler will

(a) already know if A is compiled telling the truth or lying;
(b) already know if B is compiled telling the truth or lying;

2In a given program C, every FxA instruction can be changed via
adjustments in its embedded (encrypted) constants to accommodate every data
value passing through registers and memory to be 7 more than it used to be
under the encryption, for example, as argued in footnote!® in support of
Fact 1, which implies Fact 2.

(c) decide randomly if it will lie or tell truth for C=A&& B.
The (a) corresponds to whether da=0 (truth) or da=1 (liar)
is deliberately offset by the compiler for the nominal runtime
value of the one-bit integer representing A. Similarly (b)
corresponds to whether db=0 (truth) or db=1 (liar) is offset
by the compiler for B. Let a be a symbolic expression that is
true when (a) is set to tell truth (da=0), and false when (a)
is set to lie (da=1). Similarly for b with respect to (b), and ¢
with respect to (c). Then what is computed at runtime is

¢ ((a < A)&&(b < B))

where the two-sided arrow stands for the boolean biconditional
operator (the complement of exclusive or). That is

if abc then A&&B if abc then A&&B

if abc then A&&B if abc then A&&B

if abc then A&&B if abe then A&&B

if abc then A&&B if abe then A&&DB
where the overline means boolean negation. The compiler
knows a and b and generates ¢ with 50/50 probability, so
deciding which of A&&B, A&&B, etc., it will generate
machine code for. All the generated codes look the same,
modulo encrypted constants, which are unreadable by the
operator-as-adversary. The sequence has the classical form that
a compiler should emit for A&& B. In particular, the branch
takes the ‘short circuit’ route to an early out if A fails.

With other source code constructs, the compiler'? randomly
generates differences from nominal that run the full 32-bit
range, not the 1 bit of the boolean case. That claim has been
tested by compiling the code for the Ackermann function'*
[28] and running it with (3,1) as input. The program gives
result [13]¢ in 8922 instructions executed. Table I shows the
object code with its randomly generated embedded constants.
For clarity in the trace (shown in Table II), the offsets dy for
the return value from functions and dx for function parameters
have been set at O in the code, instead of being random (entry
and exit offsets for a complete executable program would be
made known to the remote user), allowing the trace to finish
with the perfect result in register v0, which is OpenRISC’s
specified application binary interface return value register.

In [27] it is proved of this compile strategy that:

Fact 4. The probability across different compilations that
any particular 32-bit value x has its encryption [z]g in a
given register or memory location at any given point in the
program at runtime is uniformly 1/232,

3 Haskell code for the compiler and a virtual machine to run the object code
may be downloaded from http://nbd.it.uc3m.es/~ptb/obfusc_comp-0_7.hs.
4The C source code for the Ackermann function is as follows:
int A(int m, int n) {
if (m <= 0) return n+1;
if (n <= 0) return A(m-1, 1);
return A(m-1, A(m, n-1));
An increment in the first argument produces an exgonential increment with
respect to the second argument, A(m,n) = 22" _ 3 The ellipsis covers
m — 2 exponentiations. The first exponential case is A(3,n) = 2"+3 — 3,

TABLE I
FXA ENCRYPTED MACHINE CODE FOR THE ACKERMANN FUNCTION

0 A: # create frame
if (m == 0)
4 add t0 a0 =zer [-1704185953]¢ # m
5 add tl1 zer zer [2104023132]¢ # 0
6 sfeq t0 t1 [486758211]¢ # ==
15 bnf 9 # then

return n + 1
16 add t0 al zer [1526256091]¢

#n
1
+

[

17 add tl1 =zer zer [1280102991]¢

18 add tO0 t0 tl1 [-620124265]¢
[

19 add v0 t0 zer [2108732479]¢

frame destroy

return sequence
24 b 0 # else skip

if (n == 0)
25 add t0 al =zer [-989123886]¢ # n
26 add tl zer zer [-580299623]¢ # 0
27 sfeq t0 t1 [-408824263] ¢ # ==
36 bnf 26 then
return A(m-1,1)

37 add t0 a0 zer [-457757118]¢ # m
38 add tl =zer zer [-587705998]¢ # 1
39 sub tO0 tO0O tl [-2141902894]¢ # -
40 add tl1 zer zer [1111468055]¢ # 1

save regs
e # £ill args
50 Jjal 0 # call A(m-1,1)

51 add t0 wv0 zer [-1607308215]¢
restore regs
57 add v0 tO0 =zer [1607308215]¢

destroy frame
return sequence
62 b 0 # else skip

return A(m-1,A(m,n-1))

63 add tO0 a0 =zer [1195221673]¢ m

64 add tl -868884270] ¢
65 sub tO0 t0 tl -1733760489] ¢

[#

[# 1

[#
zer [-1996082249]¢ #

[#

[#

[#

zer zer

67 add t2 al
68 add t3 zer zer
69 sub t2 t2 t3

-1268351424]1¢
11486186041¢
752318999] ¢
save regs
fill args

[=1

79 dal 0

call A(m,n-1)

80 add tl1 v0 zer [-191727838]¢

restore regs

save regs
. # fill args
95 jal 0 # call A(m-1,..)
96 add tO0 vO0 =zer [1566613208]¢
e # restore regs
102 add v0 t0 zer [-1566613208]¢

destroy frame
return sequence

Machine instructions:
opcode fields semantics
add rory ro [kle add ro < [[r1]D + [r2]lp + kle
sub rori ro [k]e subtract ro < [[r1]p — [r2]D + Kle
sfeq 71 72 [kle set flag if [r1]p = [r2]p + k else clear it

bf g skip j instructions if flag set else continue

bnf j skip j instructions if flag unset else continue

b j unconditional skip j instructions

jal 1 jump to address [, save return address in ra register

The r are register indices or memory locations, the k are 32-bit integers, the j
are instruction address increments, ‘<—’ is assignment. The function [-]g¢ represents
encryption, [- |p represents decryption of a value or register/memory content.

It is argued in [27] that that means the runtime data is
cryptographically semantically secure [3] against the operator,
provided the embedded (encrypted) constants in instructions
cannot be deciphered, under the assumption of Sections IV, V

TABLE II
RUNTIME TRACE FOR THE ACKERMANN FUNCTION ON (3,1), RESULT 13.

PC instruction update

4 add tO0 a0 =zer [-1704185953]¢ tO0 = [-1704185951]¢
5 add tl =zer zer [2104023132]¢ tl = [2104023132]¢
6 sfeq t0 tl [486758211]¢

7 bf 2

8 sflt zer zer [-520344919]¢

9 b1

11 bf 2

12 sflt zer zer [-686785144] ¢

13 b1

15 bnf 9

25 add tO0 al =zer [-989123886]¢ t0 = [-989123885]¢
26 add tl =zer zer [-580299623]¢ tl = [-580299623]¢
27 sfeq t0 tl [-408824263] ¢

28 bf 2

102 add vO t0 =zer [-1566613200]g vO = [13]¢

106 jr ra

STOP

that collisions between encrypted program constants and
(encrypted) runtime data are impossible.

VII. FUTURE WORK

It is planned to install an extra decode stage at the front of the
KPU pipeline to support FxA instructions, now the theory of
how instruction set design may provide security is understood.

The obfuscating C compiler presently only works with inte-
ger types, arrays being treated as long integers. ‘Upgrading’ to
allow general pointers is planned, to complete the type cover.
But a given pointer must always point into its designated area,
which requires strengthening the C compiler’s type discipline.

VIII. CONCLUSION

This paper has considered the security of encrypted computa-
tion on behalf of a remote user against the system operator or
operating system as adversary. It has presented a fast proto-
type processor that, in user mode, works ‘homomorphically’
with respect to a conventional processor producing encrypted
outputs from encrypted inputs via encrypted internal states. A
‘FxA’ machine code instruction set for the processor has been
described that allows code and runtime (encrypted) data on
the platform to be conventionally read and write accessible
for the operator while privacy for the user’s data is obtained.
In conjunction with obfuscating compilation as described here,
the decrypted data read and written by user programs provably
cannot be deduced or even statistically estimated to any degree
above chance. Our prototype processor runs encrypted at about
the speed of a 500 MHz classic Pentium.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50-58, Apr. 2010.

[2] M. van Dijk and A. Juels, “On the impossibility of cryptography alone
for privacy-preserving cloud computing.” HotSec, vol. 10, pp. 1-8, 2010.

[3] S. Hada, “Zero-knowledge and code obfuscation,” in Proc. 6th Int. Conf.
Theory and Applicat. Cryptol. and Inform. Sec. (ASIACRYPT’00), ser.
LNCS, T. Okamoto, Ed. Springer, 2000, no. 1976, pp. 443-457.

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im) possibility of obfuscating programs,” in
Proc. 21st Ann. Int. Crypto. Conf., ser. LNCS, J. Kilian, Ed., no. 2139.
Springer, Aug. 2001, pp. 1-18.

0. Kommerling and M. G. Kuhn, “Design principles for tamper-resistant
smartcard processors,” in Proc. USENIX Workshop Smartcard Tech.
Berkeley, CA: USENIX, May 1999, pp. 9-20.

M. Buer, “CMOS-based stateless hardware security module,” Apr. 6
2006, US Pat. App. 11/159,669.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest
we remember: cold-boot attacks on encryption keys,” Commun. ACM,
vol. 52, no. 5, pp. 91-98, 2009.

P. Simmons, “Security through amnesia: A software-based solution to
the cold boot attack on disk encryption,” in Proc. 27th Ann. Comp. Sec.
Applicat. Conf. (ACSAC’11). New York: ACM, 2011, pp. 73-82.

M. Gruhn and T. Miiller, “On the practicability of cold boot attacks,” in
Proc. 8th Int. Conf. Avl. Rel. Sec. (ARES’13). 1EEE, 2013, pp. 390-397.
C. W. Fletcher, M. van Dijk, and S. Devadas, “A secure processor
architecture for encrypted computation on untrusted programs,” in Proc.
7th Worksh. Scal. Trust. Comp. (STC’12). ACM, 2012, pp. 3-8.

J. Daemen and V. Rijmen, The Design of Rijndael: AES — The Advanced
Encryption Standard. Springer, 2002.

R. Ostrovsky, “Efficient computation on oblivious RAMSs,” in Proc. 22nd
Ann. Symp. Theor. Comput., ACM. ACM, 1990, pp. 514-523.

R. Ostrovsky and O. Goldreich, “Comprehensive software protection
system,” Jun. 16 1992, US Patent 5,123,045.

S. Lu and R. Ostrovsky, “Distributed oblivious RAM for secure two-
party computation,” in Proc. 10th Theor. Crypto. Conf. (TCC’13), ser.
LNCS, A. Sahai, Ed. Springer, Mar. 2013, no. 7785, pp. 377-396.

P. T. Breuer and J. P. Bowen, “Towards a working fully homomorphic
crypto-processor: Practice and the secret computer,” in Proc. Int. Symp.
Eng. Sec. Softw. Syst. (ESS0S’14), ser. LNCS, J. Jorjens, F. Pressens,
and N. Bielova, Eds. Springer, Feb. 2014, no. 8364, pp. 131-140.
——, “A Fully Homomorphic Crypto-Processor Design: Correctness
of a Secret Computer,” in Proc. Int. Symp. Eng. Sec. Softw. Syst.
(ESS0S’13), ser. LNCS, no. 7781. Springer, Feb. 2013, pp. 123-138.
, “A Fully Encrypted Microprocessor: The Secret Computer is
Nearly Here,” Procedia Comp. Sci., vol. 83, pp. 1282-1287, Apr. 2016.
D. A. Patterson, “Reduced instruction set computers,” Commun. ACM,
vol. 28, no. 1, pp. 8-21, Jan. 1985.

P. T. Breuer, J. P. Bowen, E. Palomar, and Z. Liu, “A Practical Encrypted
Microprocessor,” in Proc. 13th Int. Conf. Sec. Crypto. (SECRYPT’16),
C. Callegari, M. van Sinderen, P. Sarigiannidis, P. Samarati, E. Cabello,
P. Lorenz, and M. S. Obaidat, Eds. SCITEPRESS, 2016, pp. 239-250.
P. T. Breuer and J. P. Bowen, “Avoiding hardware aliasing: Verifying
RISC machine and assembly code for encrypted computing,” in Proc.
25th IEEE Int. Symp. Softw. Rel. Eng. Worksh. (ISSREW’14). 1EEE,
Nov. 2014, pp. 365-370.

N. G. Tsoutsos and M. Maniatakos, “The HEROIC framework: En-
crypted computation without shared keys,” IEEE Trans. CAD Integ. Circ.
Syst., vol. 34, no. 6, pp. 875-888, 2015.

D. Hardin, “Real-time objects on the bare metal: An efficient hardware
realization of the JavaTM virtual machine,” in Proc. 4th IEEE Int. Symp.
00. Real-Time Dist. Comp. (ISORC’01). IEEE, 2001, pp. 53-59.

P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. Int. Conf. Theor. Applic. Crypto. Tech. (EURO-
CRYPT’99), ser. LNCS, no. 1592. Springer, Apr. 1999, pp. 223-238.
S. Rass and P. Schartner, “On the security of a universal cryptocomputer:
The chosen instruction attack,” IEEE Access, vol.4, pp. 7874-7882, 2016.
J. H. Conway, “Fractran: A simple universal programming language for
arithmetic,” in Open Problems in Communications and Computation,
T. M. Cover and B. Gopinath, Eds. Springer, 1987, pp. 4-26.

D. A. Patterson and J. Hennessy, Computer Organization and Design:
the Hardware/Software Interface. Morgan Kaufmann, 1994.

P. T. Breuer, J. P. Bowen, E. Palomar, and Z. Liu, “On obfuscating
compilation for encrypted computing,” in Proc. 14th Int. Conf. Sec.
Crypto. (SECRYPT’17), P. Samarati, M. S. Obaidat, and E. Cabello,
Eds. Portugal: SCITEPRESS, Jul. 2017, pp. 247-254.

Y. Sundblad, “The Ackermann function, a theoretical, computational, and
formula manipulative study,” BIT Num. Math, vol.11, no.1, pp. 107-119,
Mar. 1971.

