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Abstract—In this article we discuss some of the benefits of using
an MPC as a mid-level controller between the path generator
and the low-level joint controller of a robot system. The MPC
handles rudimentary runtime constraints that are not considered
during path generation. We compare two task space oriented
controllers: the model predictive path following controller and
the model predictive trajectory tracking controller. We describe
a 6 degrees of freedom reference path in terms of three points,
and use this to experimentally verify the results with a URS robot
and a UR3 robot.

I. INTRODUCTION

Articulated industrial robots are used for a large variety
of tasks which often entail moving the end-effector along a
precomputed Cartesian path. When in enclosed spaces we can
ensure that objects and obstructions are exactly known, but the
real world is not so orderly. Objects may be moved around,
obstructing the task at hand, motivating the use of controllers
that can explicitly handle these observable constraints the ob-
structions impose. For some tasks obstructions can be handled
during path generation, but when the path itself is pertinent,
the obstructions should be considered during path execution.

The nonlinear model predictive controller (NMPC) views
the control objective as an optimal control problem (OCP) with
constraints and dynamics. Based on the predicted behavior of
the system, it optimizes the input sequence so as to minimize
an objective function. The first input in this sequence is
applied to the actual system and the OCP is reformulated with
new initial conditions based on the results of applying the
input to the system. NMPCs allow us to handle rudimentary
obstructions during path execution as constraints on the OCP.

There are two common schools in control of industrial
manipulators. One considers the dynamics of the robot, where
the torque applied at each joint as controllable. The other
uses servo control on the robot joints, handling gravitational,
Coriolis, friction and other forces internally, and exposes the
end-user to kinematic references of the low-level controller.
Kinematic control uses either position, velocity, or acceleration
setpoints. The benefit of the kinematic approach is that it is
simple and intuitive for end-users during free moving tasks.
For fast-moving, high-inertia, or interaction tasks, dynamics
play a greater role. In this article we will use joint velocity
setpoints as the control interface, as this allows for application
to different manipulators by redefining the forward kinematics.

We consider two MPC approaches: the model predictive
path following controller (MPFC, following the convention of
[1]), and the model predictive trajectory tracking controller
(MPTTC). With MPTTC, the robot is to follow a path with
an explicit path-timing. In [2], the path-timing is formulated
as an OCP with constraints on the states. This is an open-
loop approach that predefines a path-timing law for the tra-
jectory tracking controller. In [3] this was extended to include
constraints on the acceleration and inertial forces at the end-
effector. For the MPFC, the path-timing dynamics are a part of
the MPC, and are handled closed-loop. This allows the robot to
move to minimize the deviation from the path, before moving
along the path as will be demonstrated.

We will consider the output-path following MPFC of
Faulwasser et al. [1]. This formulation focuses on paths defined
in the output space. In [4], the MPFC is shown to converge to
the path given appropriately chosen terminal constraints and
penalties. In [5] the MPFC is used to generate torque inputs
for a KUKA LWR IV robot. The OCP is solved using the
ACADO framework [6], which uses sequential programming
and the qpOASES active set solver. The robot is constrained
to act as a two-link planar arm, and the path has 2 degrees-
of-freedom (DOF).

The MPFC formulation is implemented for real-time con-
touring control of an x-y table in [7], where current commands
are used to specify torques on the two servo drives. The
dynamics are linearised and the OCP is formulated as a
quadratic program which is solved using an active set solver.
In [8] it is implemented for control of a toy tower crane. The
tower crane is controlled with acceleration setpoints, and the
OCP is solved using the gradient projection method which
uses Pontryagin’s maximum principle to solve the analytical
OCP.

This article is a continuation of [9] which looks at the
MPFC and MPTTC for a 2 DOF double pendulum system. It
notes that Runge-Kutta gives a faster solver than collocation
if the system is sufficiently simple, and shows how the MPFC
can stop at obstructions that are not profitable, from the OCP
perspective, to pass around. The MPTTC on the other hand
will move along the nullspace of the constraint to follow the
path.

In this article we extend the results of [5] and [9] to 6 DOF
paths using a novel method of following 3 points, and argue for



the flexibility of output path following systems with kinematic
control. We also provide experimental results of the 6 DOF
path formulation for a spiral path with MPTTC and MPFC,
and exemplify the flexibility by following a 3D Lissajous path
with the UR3 robot and the URS5 robot.

II. THEORY
A. Control

In Fig.1 we show a possible realization of the total control
system. At the highest level a geometric path is precomputed
based on the task to be performed, only considering static
obstructions or task related obstructions. When the robot is
to execute the task, the path is given to the mid-level MPC
which uses cameras or similar systems to identify obstructions.
The MPC gives kinematic setpoints to the fast low-level joint
controllers on the robot. The output-path oriented control
of the MPC means that we only need to generate the new
forward kinematics for using it with a new robot, given that
the interface to the low-level controller is similar. This flexible
design means that tasks can be shared between different robot
setups without the need for redesigning the path following and
obstruction handling portion of the controller. The tasks can
also be defined independent of the robots to be used, and a
system can be devised which distributes ones available robots
to the appropriate tasks.

B. Robot and Path

We consider a 6 DOF articulated robot, with ¢ € RS joint
coordinates, and angular velocity setpoints u € RS.

Assumption 1. The low-level controllers are assumed to be
sufficiently fast for

q(t) = u(t) (1
to represent the robot dynamics.

Joint constraints are enforced as q(t) € [qi, ., and joint
velocities are wu(t) € [ug, ).

The base frame is located at the base of the robot, and
the robot has known forward kinematics described using the
Denavit-Hartenberg convention. The rotation from a reference
frame situated at joint i to the base frame b is R? € R3*? for
i=1,...,6, and pzi is the coordinates of the reference frame
1 relative to frame b expressed in terms of frame b. The 6 DOF
path is defined as RY(s) and p?,(s) defining rotation of the
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Fig. 1: Control hierarchy described in this article. The portion
in the dashed box can be quickly changed if w and g are
available through the same interface.

Fig. 2: The red, green, and blue points, attached to the URS
follow the path of their lighter counterparts.

desired reference frame d w.r.t. the base frame, and s being
the path-timing variable. We want the end-effector frame 6 to
follow the desired reference frame d.

A variety of methods exist for representing rotations, e.g.
quaternions, Euler angles, etc. We propose to use the intu-
itive method of defining three desired paths corresponding to
orthogonal vectors from the desired reference frame:

pi(s) Ry (s(1))[1,0,0] + phy(s(t))
p(s) = |pa(s)| = |Rg(s(1)[0, 1,07 +ppy(s(t))| (2
p3(s) Ry(s(t))[0,0, 17 + phy(s(t)

which three points in the end-effector frame are to follow.
The points in the base frame are found using the forward
kinematics as

hi(q) Rls(q)[1,0,0] + pls(q(t))
h(q) = |h2(q)| = | R}s(9)[0,1,0] + pPs(q(t) |, (3)
hs(q) R}()[0,0,1)7 + pis(q(t))

where h;(q) is the forward kinematics to point 1.

This is visualized in Fig.2 as the red, green, and blue dots at
the end-effector moving to the desired positions at their lighter
counterparts.

We define the deviation from path as

ep(t) = h(q(t)) —p(s(t)) ©)

with e, (t) € RY.
For the MPFC, we must also define the path-timing dynam-
ics. We will use a simple double integrator

5(t) = (1) ©)

where v(t) € [—o0, 00] is the input, and $(¢) € [0, $,] is the
non-negative path speed to ensure forward motion along the
path. For more information on choice of path-timing dynamics
we refer the reader to [4] and [8]. In theory and simulations
we only required a single integrator, but in the experiments the
double integrator path-dynamics performed better. We believe
this was due to the delay caused by the solver making the
system overshoot its desired path timing.



We will consider paths with a specific start and finish, s €
[0,s] where s; denotes the final value. We also define the
deviation from the final value as

es(t) = s(t) — sy. (6)

For the MPFC we define the augmented state vector
¢ = [q,s,3]T, augmented input w = [u,0,v]T, augmented
deviation e¢ = [el, e,]”, and augmented system

£(t) = AE(t) + w(t) (7
with
Osx6 Osx1 Ogx1
A= |01, O 1. ®)

O1x6 0 0

C. Optimal Control Problem

Using the previously defined dynamics and deviations, we
describe the OCP for the MPFC as

t+T
min / Jpp(1,&(7), w(T))dr (9a)
€¢,€p, tr
s.t.:
£(1) = AE(T) + w(T) (9b)
&(ty) = &(tr) (%)
£(1) € [&,€.] (9d)
w(T) € [Wy, W,] (%)
he(§() <0 (9f)
and for the MPTTC as
th+T
min / Jiu(7,q(7), u(r))dr (10a)
epsepu Jy,
s.t.:
q(7) = u(r) (10b)
q(ti) = q(ty) (10c)
q(7) € (@1, qu] (10d)
a(7) € [y, Uy (10e)
he(q(t) <0 (10f)

where the bar is to signify that these are internal states of the
OCP, subscript u refers to the upper bounds, and subscript
[ refers to the lower bounds. The function h. defines other
constraints such as obstructions, the end-effector remaining in
the workspace, etc. The OCP uses samples from time ¢; and
has a prediction horizon of length 7.

The cost integrands are defined as

- 1

Tos (1,€(7), (7)) =5 e¢(7)" Qeee()

1. .
+ 360" Quép(7)

+ %’JJ(T)TRU,’(I)(T) (11)

fort the MPFC, and

Ju(7,q(7), (1)) =

(12)

for the MPTTC. We have Q¢ = diag(Qp,qs) and R,, =
diag(Ry, r,) with Qp, Q4 and R,, being positive definite,
and scalars ¢, and r, positive.

D. Nonlinear Program

In this section we only give the discretization of (9) as the
MPTTC is similar and simpler. We consider w(t) and v(t)
to be piecewise continuous with time intervals of ¢&;. The
prediction horizon has Ny = T'/§; intervals. This means that
the prediction horizon is discretized from step tx to tr4ny-
Runge-Kutta of the 4th order (RK4) [10] gives

- 5 -
&1 =& + é(’ﬁ + 2ky + 2k3 + ky) = F (&, wi) (13)

with

ki = A&, + wy, (14a)
)

ko= A <§k + 2’%) + Wy, (14b)
)

k= A <§k + 2*k:2> + Wy, (14¢)

ky = A (& + 6iks) + wy. (14d)

We employ the simultaneous approach, and define the

optimization vector as
FT =T ET ~T &T

T = [Ek Wy, EipnNp—1 Wy §k+NT] 15)

where subscript k£ means that it is the discretised value of the

state at time ¢;. The dynamics and initial value are accounted

for by

& —&(te)
Err1 — F'(&r, wy)

flx) = (16)

&Ny — F €kt Np—1, WhiNp—1)
and the constraints are accounted for by
Ek - Eu
Wi — Wy,
éktNT - éu
& — &

w; — Wk (17)
él - éIjJrNT
.fc (gk)

| fc(ék‘-i-NT) i




The resulting nonlinear program (NLP) is then

min  ¢(x) (18a)
x

S.t.:
flx)y=0 (18b)
fe(z) <0, (18¢)
where the cost function is approximated with Euler’s method

k+Np—1 B

o@) = Y Oudps(ty &), (19)

j=k

E. Interior point solver

Primal Interior point methods consider NLPs of the form

min  ¢(&) — p Z In(&;) (20a)
=i

S.t.:
f@)=0

where x; for ¢ < j are the previous optimization variables and
i < j are slack variables to make f. an equality constraint. y
defines the steepness of the barrier associated with the slack
variables. For large values of u the In term will dominate and
the solution will tend to the middle of the feasible region.
As p decreases, ¢ will dominate and the solution will move
towards the optimal solution. Solving (20) for decreasing u
will converge to the solution of the actual NLP (18).

The motivation for interior point solvers is that they have
consistent runtime with respect to problem size, allowing
us to potentially include more states and constraints without
adversely affecting the runtime. They are however difficult to
warm-start, as too low p may make certain slack variables pre-
maturely small and cause slow convergence. It was observed
that warm-starting with the previously solved x gave a small
decrease in runtime.

We will use the interior point solver [POPT [11], a primal-
dual interior point solver, solving (20) using the primal-dual
equations, see Section 3.1 in [11]. Convergence of the MPFC
can be ensured with terminal sets and penalties as in [4]. In
this article we focus on run time and do not create terminal
sets and penalties.

(20b)

III. EXPERIMENTAL RESULTS

In this section we describe the experiments performed. To
compare the MPFC and MPTTC we use a URS that is to
follow a spiral path. To illustrate the simplicity of using the
same approach for different robots, we use a 3D Lissajous
curve that is executed both by a UR3 and a URS.

A. Implementation

The system was implemented using Python and the CasADi
framework [12]. CasADi is a symbolic framework for defining
optimization problems. It allows for: algorithmic differentia-
tion, exploiting sparsity of the problem, and compiling the
symbolic functions to C++ for faster execution. The framework

supports a variety of solvers, both commercial and open-
source. As of writing the fastest and most common solver
is IPOPT [11].

We used the compilation flag “O2” to optimize the resulting
functions. The experiments were performed on a Macbook Pro
with a 2.5 Ghz i7 CPU. The timestep used in the simulations
is 0; = 0.05, corresponding to an update rate of 20 Hz. The
horizon has Ny = 5 timesteps corresponding to 0.25 s.

The forward kinematics were found using the Denavit-
Hartenberg parameters described in [13]. The tuning parame-
ters are given in Table I, and were the same for both the URS
and the UR3.

B. Spiral path

In this section the reference path of the MPTTC and MPFC
is a downward moving spiral path with a constant rotation of 7
rad around the y-axis from the base frame to the end-effector
frame. The coordinate of the desired frame is

0.155 cos(2s) + 0.477

phy(s) = [0.155sin(2s) — 0.239 (21)
0.219 — 0.05s
giving
pi(s) Ppa(s) — [1,0,0]"
p(s) = |p2(s) | = |Ppa(s) +[0,1,0]" (22)
p3(s) ppa(s) —10,0,1]"

and the paths terminate at s; = 2m. For the MPTTC we
scale s by 0.0125 so that a full rotation is completed after
approximately 80 s.

TABLE I:. MPC Parameters

Parameter Qyp Qg4 R, gs Ty
MPEC 107Ig9xo 1.5-10°Igwe 10 %Igxe 1071 104
MPTTC  107Igxg9 1.5-10%°Igxg 10 *Igxs

C. Spiral Results

In Fig.3 we see end-effector position of the MPFC following
the described downward spiral. In Fig.4 we see the same for
the MPTTC. Both controllers start a small distance from the
start of the path. In Fig.5 we see the norms of e, for the
MPFC.In Fig.6 we see the norms of e, for the MPTTC. Note
that the MPFC converges faster than the MPTTC stemming
from the MPFC first handling orientation and position before
moving along the path. This is a trait of the path-following
dynamics and can be adjusted by tuning ¢s and 7,. The
MPTTC on the other hand only has the positions of the desired
points at each timestep, and will struggle to catch up with the
desired orientation while also moving along the path.

It was observed that the run time of the solver depended
on the configuration of the robot and deviation from the path.
This is likely due to the solver entering local minima when
solving. In Fig.7 we see the run times of the MPFC solver over
time during the spiral path test. The run time is slightly longer
before it has reached the path. When the path is reached, the
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Fig. 3: The MPFC moves to the path before moving along it.
The rotation to fit to the paths initial reference frame moves
the origin a little off from the path until it converges.
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Fig. 4: The MPTTC moves along the path before matching
the orientation. The deviation from the path is greater than for
the MPFC.

run time stays relatively consistent. In Fig.8 the run times of
the MPTTC is given. We see that the MPTTC solver struggles
more than the MPFC when far from the path, but becomes
more consistent when on the path.

Remark 1. In simulations é; was not required in (11) or (12)
for convergence. The delay caused by the solver and the robot
interface made the proportional control result in the manipu-
lator oscillating greatly around the path. The introduction of
dampening along the path through é; was fundamental for the
implementation.

D. Robot Change
In Fig.10 we see the UR3 and URS5 moving to the 3D
Lissajous path

0.035 cos(10s) + 0.1
0.035cos(30s + 1) + 0.2
0.035cos(20s + 1) + 0.3

Phals) = (23)

which can be seen in Fig.9. The path was chosen to be as far
from the home position q(0) = [0, —7/2,0, —7/2,0,0]7, and

[lexl]
[lea]
[lesl|

Fig. 5: Norm of the errors e;, e; and e3 for the MPFC. The
black stippled line is the sum of the norms.
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Fig. 6: Norm of the errors e, e; and e3 for the MPTTC. The
black stippled line is the sum of the norms.
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Fig. 7: Run times of the MPFC solver during execution of the
path.
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Fig. 8: Run times of the MPTTC solver during execution of
the path.
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Fig. 9: The 3D Lissajous reference path is placed such that it
is inside both the UR3 and the URS workspace.

small enough to be within the UR3’s workspace. No change
in tuning parameters was needed between the two robots. As
the previous path, the desired rotation places the end-effector
with its z-axis pointing downwards.
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Fig. 10: The UR3 and URS start in their upright position, and
move to the Lissajous path.

IV. DISCUSSION AND FUTURE WORK

Both the MPFC and the MPTTC managed to follow the
6 DOF paths. The MPFC first moves to the initial path
orientation before moving along the path. The MPTTC on
the other hand has a moving setpoint that it must catch up
with. The alternative to this is to have one controller to move
the end-effector to the desired path and then switching to the
along path controller. Using the MPFC allows us to tune the
transition from approach to along path motion through the
parameter g;.

For a system where switching between active constraints
does not happen often and rapidly, the interior point solver may
not be the best option. Other solvers which benefit more from
warm-starting may prove to give better run times. We believe
the times when the solver takes longer than usual is a result
of the restoration from local minima. We suggest testing with
other solvers for evaluating the useability further. The longer
run time of MPTTC stems from how it is implemented, the
timing parameters s is included as a parameter, and we believe
this may increase the run time slightly.

Delay in the interface and from the solver caused issues
for the implementation of the system. The robot would only
change joint velocity when a new command was sent, and
as the solver could at times run longer than expected, there
would be an integration error. This would cause the system
to repeatedly overshoot, and oscillate around the desired
position. With a faster implementation this is expected to be
manageable, but dampening may still be desired.

V. CONCLUSION

Using MPC controllers as a mid-level controller between
the path generator and the low-level controller allows us
the flexibility of changing robots for the same task. Path
generation is not necessarily the same as obstacle avoidance,
and relinquishing that control to a system between the fast
joint controller and the path generator may make for more
flexible systems.

The definition of a 6 DOF path as three orthogonal points
moving in space was useful for making the MPFC and
MPTTC. We also experimentally demonstrated that the MPFC
and the MPTTC were capable of following the desired paths.
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