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Abstract— Using atomic force microscopy (AFM) for studying
soft, biological material has become increasingly popular in
recent years. New approaches allow the use of recursive least
squares estimation to identify the viscoelastic properties of a
sample in AFM. As long as the regressor vector is persistently
exciting (PE), exponential convergence of the parameters to
be identified can be guaranteed. However, even exponential
convergence can be slow. In this article, upper bounds on
the parameter convergence is found, completely determined by
the PE properties and least squares update law parameters.
Furthermore, for a parameter vector which is piecewise con-
stant at regular intervals, the time interval necessary for the
error to converge to any specified upper limit is determined.
For a soft sample in AFM, the viscoelastic properties can
be spatially inhomogeneous. These properties can be spatially
resolved by periodically tapping at discrete points along the
sample. The results of this article then allows us to determine
the time interval necessary at each tap in order to guarantee
convergence to any specified fraction of the step-change in the
parameters. Simulation results are presented, demonstrating
the applicability of the approach.

I. INTRODUCTION

Since its invention, atomic force microscopy (AFM) [1]
has become one of the leading technologies for studying rigid
materials at nano- to micrometer resolutions [2]. Over the last
few decades it has increasingly been applied to studies of soft
and biological matter at cellular and molecular scales [3],
[4], [5]. The main advantages of AFM in this domain, can
be attributed to its ability to image samples in their natural
conditions, whether in air, buffers or other ambient media,
such as allowing for direct imaging of living cells.

In AFM, a sharp tip attached to the end of a cantilever is
lowered onto the sample. As the tip approaches the surface,
the cantilever will start to deflect. This deflection can be
measured in a photodector setup at high precision. The
working principles of AFM essentially allow it to act as a
force sensor in the pico-Newton ranges while mechanically
interacting with samples [2]. This property of AFM has been
utilized extensively to reveal static, mechanical properties of
samples, in particular, elasticity [6], [7], [8].

Using AFM for identification of dynamic properties of
samples, such as viscoelasticity, can be performed by modu-
lating the loading force [9]. In such approaches, demodulated
amplitude and phase of the deflection [10], [11], [12] are
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correlated to viscoelastic properties. More recently, multifre-
quency approaches have been employed for increased image
acquisition rates [13], [14], [15], [16].

Another approach for imaging viscoelastic properties of
soft matter using AFM was proposed in [17], based on
modeling and parameter identification by a recursive least-
squares algorithm (RLS) with forgetting factor [18]. The
sample is then modeled as a spatially distributed grid of
spring-damper elements to be identified. This approach can
be operated in two distinct dynamic modes, both of which
employ an oscillating cantilever. In dynamic indentation vis-
coelastic (DIVE) mode, the sample is periodically indented
at discrete points across the sample [19]; while in scanning
viscoelastic (SVE) mode, the cantilever is kept at a constant
mean depth into the sample while scanning in a raster pattern
[20].

In RLS, exponential convergence of the parameters can
be guaranteed as long as the regressor signal is persistently
exciting (PE) [18]. However, even exponential convergence
can be slow. Thus, for practical implementations, knowledge
of a guaranteed upper bound on the convergence rate is
highly beneficial to the user. Furthermore, such an upper
bound is a helpful tool in aiding the choice of update law
parameters. In this article, an upper bound is presented which
depends only on the PE properties and chosen update law
parameters.

Another common practical consideration — often the rea-
son for using recursive estimation approaches — is the time-
varying nature of parameters and its effect on the parameter
estimates. In general, exponential convergence in the constant
parameter case, guarantees some degree of tracking for a
sufficiently slowly-varying signal [21], [22]. The topic of
time-varying parameters has been the focus of several studies
[23], [24], [25], [26]. In DIVE mode identification using
AFM [19], the viscoelastic properties of the sample are
considered spatially inhomogeneous but constant in time.
Accordingly, during each tap the parameters are constant, but
for subsequent taps they can attain different constant values.
Furthermore, the time interval between taps can be specified
by the operator. Thus, a situation arises where the parameters
are time-varying, piecewise constant, at a user-defined con-
stant interval. In this article, by exploiting the exponential
bounds that are derived for a constant parameter vector, the
time interval necessary to converge to any specified upper
limit of the error is determined. The results are applicable to
any similar problem with a time-varying, piecewise constant
parameter vector.

The article is organized as follows. First, the general



framework for RLS is presented in Sec. II. The parameter
convergence results with a constant and piecewise-constant
parameter vector, respectively, is given in Sec. III. The
theoretical results are applied to the viscoelastic identification
problem in Sec. IV, before conclusions are given in Sec. V.

II. RECURSIVE LEAST SQUARES ESTIMATION

In this section, the general framework for RLS estimation
is presented, applicable to a wide range of estimation prob-
lems. By adhering to the following setup of the plant model,
RLS can easily be applied for estimation of the parameters.
For further details, please see [18]. The described framework
will be used as the foundation for the results of this article.

A. Plant Model
The plant model is described by the linearly parametrized
system

z=079, (1)

where z € R is the input signal, 8% € R” is the vector of
n unknown parameters, and ¢ € R" is the known regressor
vector. Furthermore, the estimation model is given by

:=07¢, 2)

where Z € R is the estimated input signal, and 8 € R”
is the vector of estimated parameters. Furthermore, let the
parameter estimation error be given by 6 = 6 — 0%,

B. Persistency of Excitation

The regressor vector ¢ is said to be persistently exciting
(PE) if there exists constants, 0, 0,7y > 0 such that

1 t+Ty
aol < = / o¢Tdt <oyl, Vr>0. (3)
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where [ is the identity matrix and o is known as the level
of excitation.

C. Least Squares Algorithm

Several methods exist for parameter estimation in models
such as (1). The results of this article focus on the least-
squares algorithm as described in the following. First con-
sider the estimation error € given by
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m*=1+ap’¢ (5)
where m? is a normalization signal which guarantees bound-

edness of the error, and ¢ > 0 is a design constant, typically
unity.

The update law of the least-squares algorithm with forget-
ting factor is given by

0 = Peo (6)
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for some chosen value § >0 and P(0) = Py = P! > 0. In the
remainder of the article, |x| denotes the Euclidean norm of
vector x.

III. PARAMETER CONVERGENCE

In this section, upper bounds on the parameter convergence
are found for the parameter estimation problem specified in
Sec. II. In particular, upper and lower bounds on P(t) are
derived which depend only on the PE properties and the cho-
sen update law parameters. Then, these bounds are used to
prove exponential convergence of a Lyapunov-like function
and subsequently, to prove an exponential convergence rate
of the parameter estimates in the case of constant parameters.
Finally, the convergence rate in the piecewise-constant case
follows.

A. Bounds on P(t)

Lemma 1. If m,¢ € %, ¢ is PE, and 0" is constant, then
the least squares algorithm given by (4)-(7) guarantees the
following bounds on P(t):
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where m? = sup, m*(t) and Amin(+), Amax (-) denotes the min-
imum and maximum eigenvalue, respectively.

Proof. The proof closely follows the proof of [18,
Cor. 4.3.2]. However, the bounds are here described in
terms of P(¢) instead of I', and completely described by
the constants of the framework in Sec. II. Specifically, (18)
through (23) is new.

Denote I' = P~!(¢). Then, it can be shown that
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Using the PE conditions (3) and m € %, we have for t > T,
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For r < Tp, we have
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Then, combining (14)-(15), the lower bound is given by

L@t)>mi, Y>>0 (16)
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Next, an upper bound on I'(¢) is sought. First, consider
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where Amax (997) = ¢7 ¢ because ¢ is a rank one matrix
with an eigenvector given by ¢, and the single eigenvalue

follows. Combining (12) and (18) gives
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Combining (16) and (19), gives
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which concludes the proof. O

B. Exponential Convergence

In this section, the bounds on P(z) derived in Lemma 1 are
used to prove exponential convergence of the Lyapunov-like
function L

6’1o
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Please recall that § £ 0 —0* and I' = P~!(z).

Lemma 2. If m,¢ € %, ¢ is PE, and 0" is constant, then
the least squares algorithm given by (6)-(7) guarantees that
V from (24) decreases according to

. 4)

V(t+To) <yV(t), Vi>0 (25)
with 0 <7y < 1, where
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Proof. In [18, Sec. 4.8.3], the case of constant I" was solved
to find (25) with a different expression for y. Here, the
results are generalized to a time-varying I" following a similar
approach.

From the system description (1)-(5), the following rela-

tionships can be found
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Using V from (24) it can be shown that for a time-varying
I [18, p. 199],

(29)
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Now, inserting for (24) and (29) into (30) gives
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Following the same procedure as for the constant I" case
[18, Sec. 4.8.3], but replacing the constant I" by the bounds
of Lemma 1 as appropriate, we have that the first term of
the integral with T = Ty is bounded by

t+Ty
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Since V(¢) is a non-increasing function, as seen from (30)
with I positive definite, the second term of the integral (32)
is bounded by

t+T
/ BV(t)dt > BTV (1+T). (34)
t
Inserting (33) and (34) with T = Ty into (32), we find
V(t+To) <V(t)—puV(t)—BToV(t+Tp) (35)
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=) (37)
which concludes the proof. Since u, 3,7y >0 and V() > 0,
it follows that 0 < y < 1. O

Since I" > 0 and V decreases exponentially by Lemma 1-2,
it follows that the parameter estimation error 6 also decreases
exponentially, as will be properly established in the following
result.

Theorem 1. Let m, ¢ € Z.., ¢ be PE, and 6* constant. Then,
the least squares algorithm guarantees

18(1)| < ae *=0) |B(1o)|, Vi >10 (38)

for any ty > 0, where the constants a > 1,1 > 0 are given
by
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Furthermore, if to =0, a less conservative bound is given by
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Proof. By recursively applying (25) it is clear that

(40)

V(l‘ +19) < V(nTo +l0) < VlV(to), Vt >nTy, n=0,1,...
(41)
for any 7o > 0. Now, it can be shown that the discrete y" can

be upper bounded by the continuous expression,
,J/’I S ,yflet/T(leg’)/, (42)

where the discrete and continuous expression intersect at the
points 7 = (n+1)Tp,Vn € N. Thus,

V(t+19) <y~ let/Tloery (g). (43)
Furthermore, using Lemma 1, consider
0'Té < <12
V=—0—>mb"0=3ml6[. (44)
Then, isolating |@| and using (43) gives
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where a, A is given by (39). A change of coordinates by t =
t' +1g gives (38). If tg = 0, then 1, in (47) can be replaced by
Amax(To) and the less conservative a of (40) follows. Since
0 < y< 1, we have logy <0 and in turn A > 0. Furthermore,
since Y1 <,y <1 thena> 1. O

C. Time-Varying Parameters

The exponential convergence of a constant parameter vec-
tor at an arbitrary initial time was established in Theorem 1.
In the viscoelastic identification in AFM [19], the parameter
vector is instead piecewise constant at regular intervals 7.
Convergence properties of the parameter estimates in this
case, as well as insights for determining the interval, is
desired and established in the following.

The parameter vector can now be described by

0*(t) =067, Y{t,i} :t€titiy1),ie Nyt =iT  (50)

for some time interval 7 > 0 between successive values of
the parameter vectors 6. The change between successive
values of 6 is assumed to be bounded by some constant
Ag*,

6 — 6] || <Ag+, Vi (51)
Furthermore, the estimation error for 6; is defined by
0, 20(t+T)—6; (52)
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Fig. 1: Notation for piecewise constant parameters.

which is motivated by 6(#; +T') being the last value estimated
for 6*(t) = 6. An example illustrating the notation used in
this section is presented for a scalar case in Fig. 1.

Theorem 2. Let m,¢ € %, ¢ be PE, and the parameter
vector 0*(t) be described by (50) and satisfy (51). Then, the
least squares algorithm guarantees

- i+1 ae T i—l
16;] < <ae_)“T) |6(0)] + %ae_lTAg*, vieN.
ae M —1
(53)
Furthermore, if ae M < 1, then, for large i,
|6:| < RAe- (54)

where R = ae_lT/ (1 — ae_lT). Conversely, for some spec-
ified R >0, T is given by

a(R+1)
T
Proof. Using (38) in the intervals for which 6*(r) is constant,

T =21"log (55)

6(;+T)| <ae ™" |6(t;)|, Vi (56)

which can be applied recursively as in the following. For
ease of notation let 6; = 6(t;),
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Recursively applying this n times until the initial condition
|60 — 65| =|6(0)| appears and using the sum formula for
the geometric series, gives
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which confirms (53). Furthermore, if ae T < 1, and by
letting n — oo such that the initial condition vanishes,
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where R = ae *T /(1—ae *T). Thus, if T can be controlled,
the best estimate for each 6/ can be guaranteed to lie within
any given fraction R of the maximum parameter step size,
by solving R for T which trivially gives (55). Furthermore,
it can be shown that T given by (55) automatically satisfies

T=R/(R+1)< 1. O

Notably, for a sufficiently large interval 7', the initial
condition vanishes to zero after a sufficiently long time.
Additionally, the estimation error reduces toward zero as T
is increased.

IV. CASE STUDY:
VISCOELASTIC IDENTIFICATION IN AFM

A. Problem Description

The primary motivation for developing the theory in the
previous sections was for use in identification of viscoelastic
sample properties in AFM operating in DIVE mode, as
detailed in [17], [19]. The sample properties are modeled
as laterally spaced spring-damper elements to be identified,
as seen in Fig. 2. The sample is tapped into by the AFM
tip at incrementing spatial coordinates, see Fig. 3, covering
the entire sample grid by the end of the scan. Each tap
is being performed at a constant lateral position for some
chosen interval T. The problem reduces to estimating a time-
varying, piecewise constant single pair of spring constant and
damping coefficient.

In the following, the system dynamics are presented. The
PE conditions for the system are developed, and following
the theory developed in Section III, the choice of update law
parameters of the least squares estimator are discussed. Fur-
thermore, the interval 7' necessary to guarantee convergence
of the parameters are presented as a function of the update
law parameters.

B. System
The system can be described by [17], [19]

Ms*’Z —CsD—KD = (c*s+k*) &, (62)

where M,C, K are the effective mass, damping coefficient and
spring constant of the cantilever, respectively, and ¢*,k* are
the unknown, piecewise constant parameters to be estimated.
Furthermore,

Z=U-D, §=h—2Z (63)

where Z is the vertical position of the cantilever tip, U
is the vertical control input, D is the deflection of the
cantilever, 0 is the indentation of the tip into the sample,

[

Fig. 2: The sample is modeled as spring-damper elements
evenly spaced along the lateral axes.
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Fig. 3: Indentation of the cantilever tip into the sample.

and & is the topography height at the current lateral position
of the cantilever tip (X,Y). The symbols are illustrated in
Fig. 3. Additionally, there is a linear time-invariant (LTI)
transformation from U to §,

Cs+K
Ms2+(C+c*)s+ (K +k*)

(64)

6(s) = — Uls)

The parametric system (1) can now be set up as follows,

= [ c* ] (65)
o=[s5 8] /A5 (66)

z= (Ms*Z—CsD—KD) /A(s) (67)
1/A(s) =1/ (o ;1s+1) (68)

where 1/A(s) is a second-order low-pass filter with cut-off
frequency . introduced to make z,¢ proper. Furthermore,
U is a feedforward signal providing excitation to the system
according to
U(t) = Asin(ot) + uo, (69)
for some constants ug and A’, @ > 0.
Using (64), (66), (68) it is seen that %(s) is LTI and strictly

proper. Thus, by using the excitation signal (69), there exist



some constants A, @ such that

0/A =Asin (ot + @) (70)
s8/A =Awcos (0t + @) (71)
where A = %(ja))‘A' and @ = A%Uw). Thus,
¢ = Aocos(ot+¢) Asin(or+ @) ]T (72)
C. Persistency of Excitation
First, consider the PE expression from (3),
1 t+Ty
sS4 —/ oo dr. (73)
T Ji
By choosing
To=rw" (74)

and using (72), it can be shown that the solution to (73) is
given by

G { A0 0 ]

0 (75)

Thus, ¢ is PE with level of excitation o and ¢ given by

o = 1A*min {@?, 1} (76)
oy = 1A’ max { 0?1} (77)

which satisfies the PE condition
ol <S <ol (78)

D. Tuning and Convergence Rate

The RLS estimator (4)-(7) is implemented for the de-
scribed system. Since ¢ is PE, exponential convergence of
the parameters is guaranteed. By employing the theoretical
results of Sec. III, the rate of convergence will be investigated
in the following. We choose

a=1, B =pol, (79)

and will further investigate the choice of B and pg in the
following. First, the following properties can be determined
already, considering ¢ from (72)

§=AV@?+1, i =1+, Anin(Po) = Amax (Po) = po.
(80)
Inserting these values and the constants from the PE condi-
tions into (26),(27),(39), the upper bound on the exponential
convergence A and a can be found in terms of f3, po,A, .

Remark 1. Note that A is implicitly a function of the
system coefficients and transfer functions. However, since A
is measurable through demodulation of the deflection signal
D, and A < A’ with A’ being operator-defined, it can be
controlled to any desired value.

In the following, the upper limit of the convergence rate
determined by a,A will be investigated by the parameter
estimator constants 3, po. It will be used that A = 50nm, and
o =2n fy where fy =20kHz, corresponding to the setup in
[17].
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Fig. 4: The exponential convergence rate A, and multiplier
a, as a function of B, pg of the least squares estimator.

In Fig. 4, the exponential convergence rate A and mul-
tiplier a are plotted in terms of B, pg. This gives valuable
information into how the RLS estimator behaves. In the
long run, the exponential rate A will dominate the multiplier
a and determine how fast the system converges. However,
for a shorter run, a can in several cases become very large
and thus lead to slow convergence. In both plots, a is
plotted both for the conservative case (any initial time) and
less conservative case (initial time zero), corresponding to
(39),(40) respectively. In the former case, a does not go lower
than approximately 108, a very high number which can be
attributed to the necessity of considering the largest range in
the bounds of P(¢). In the initial time zero case, the lower
bound can be controlled by pg, allowing for a decreasing
range in the bounds of P(z) and thus a smaller value of
a with increasing pg, as evident from Fig. 4(b). In fact, a
becomes very close to unity for large values of py and small
values of 3.

The plots in Fig. 4 can quickly be used to determine
appropriate values of f8,pg. In general, A increases with
increasing B, but at some point, around = 10, a starts to
rapidly increase. On the other hand, A does not change with
Po, but a reaches its minimum at py =2/ (apTp) ~ 3 x 101,
Thus, B = 10*, pg = 3 x 10'° are appropriate choices for this
problem.

In Fig. 5, the upper limit of the parameter error relative
to the initial condition, or ae~M from (38), is plotted as a
function of 8. Due to the rapid increase in « for large values
of B, but A increasing for large f, there exists an optimal
point for B providing the fastest convergence after a given
time. E.g. at t = 107y, the error has reached about 1% of the
initial error with B =3 x 10°.

For the piecewise constant parameter case, the time inter-
val needed for reaching a given fraction R of the maximum
parameter step size Ag+ can be plotted as in Fig. 6. E.g., for
B = 102, the time interval needed to reach 0.1% of Ag+ 18
T =~ 0.55s.

E. Simulation

A simulation is performed in order to evaluate the cor-
rectness of the results of Sec. III. Additionally, since the
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Fig. 6: Time-varying parameters: Minimum estimation inter-
val T necessary to guarantee parameter estimate to within
RAg+ of real parameters, as a function of 3.

presented convergence bounds are based on an inherently
conservative approach, a simulation can establish how the
actual performance compares to the upper bounds.

The simulation has been setup according to Fig. 7. The
cantilever-sample dynamics are modeled by (62), with phys-
ical parameters from [17]. That is, M = 1.18 x 10~''kg, C =
1.5x 10*8Ns/m, and K = 0.19N/m, corresponding to a
resonance frequency of 20kHz. The cantilever oscillations
were performed at a depth of 100 nm into the sample. The
unknown spring constant and damping coefficient of the
sample to be estimated, are piecewise constant corresponding
to the lateral placement of the cantilever, with Agx = 0.01.
Only the vertical positioning U and deflection D are assumed
available for measurement, corresponding to an actual AFM
experiment.

A practical experiment would need to take into account
noise when determining . A very high value of 8 makes
the estimator very sensitive to noise, since this leads to a
larger value of P(f) in general. To be representative of an
experiment, a relatively low value was chosen with 8 = 100.
On the other hand, we chose py = 10'8. From Fig. 6, and by
choosing R = 0.001, the time interval between taps needs
to be at least 0.55s, we chose T = 0.6s for the nearest

z
Signal Least k,c
. Y filtering | ¢ squares
U Cantilever estimator
= dynamics

Fig. 7: Block diagram of the simulation setup, with
cantilever-sample dynamics and parameter estimator.

round number. This should guarantee |§;| < 0.001Aq+ by
Theorem 2. The resulting convergence parameters for an
arbitrary initial time is then given by

a=56x10% A =4909. (81)

The results of the simulation are plotted in Fig. 8 and
Fig. 9. The results are plotted from after an initial time
Tinit = 0.65s to let the initial conditions vanish. The parameter
estimation of ¢ and k compared to their real values are shown
in Fig. 8, demonstrating the exponential convergence after
each step-change in the parameters.

In Fig. 9 the parameter error norm is plotted, and com-
pared to the upper limit between intervals as given by
Theorem 1. It is seen that at the end of each interval, the
upper bound reaches below RAg+, in correspondence with
Theorem 2. It is also seen that the real error stays below the
upper bound, by a large offset. This can predominantly be
attributed to the large value of a, which gives a very large
offset at the beginning of each interval.

One approach to guarantee a lower bound at an arbitrary
initial time, would be to perform a covariance reset at the
beginning of each interval. That is, by setting P(nT) = P,
which would essentially act as starting from #p = 0. This
would lead to a value a = 5.6, or eight orders of magnitude
smaller than for an arbitrary initial condition.

V. CONCLUSION

In this article, a recursive least squares (RLS) estimator
with forgetting factor was investigated. An upper bound
on the exponential convergence of the parameter estimation
error — completely determined by the RLS parameters and the
level of excitation of the regressor vector — is given by Theo-
rem 1 for a constant parameter vector. Furthermore, the case
of piecewise constant parameter vector at regular intervals
was considered. An upper bound in this case — as given in
Theorem 2 — relates the initial parameter error and maximum
parameter step-size to the parameter error. Additionally, the
necessary time interval for the parameters to converge to a
given fraction of the maximum parameter step-change was
presented. Finally, the theoretical results were applied to
the problem of identification of viscoelastic properties using
AFM. Choices of RLS parameters were discussed, and the
minimum time interval necessary for guaranteed convergence
to some specified value was found. Simulations corroborate
the results and demonstrate the applicability of the approach.
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