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Abstract— This paper proposes a novel approach for con-
structing a docking path for underwater vehicles, using a
new spiral resulting of combining the Fermat and logarithmic
spirals. The proposed spiral path has two properties that
will help solve some of the challenges of docking autonomous
underactuated vehicles (AUVs). The first property is that the
spiral path reaches the entrance of the docking station without
curvature, allowing a smooth transition when entering the
docking station. The second is that the AUV never exceeds
a certain bearing angle with respect to docking station. This
last feature allows AUVs equipped with navigation sensors
which have a reduced field of view (FOV), such as cameras
or acoustic positioning systems, to always preserve the docking
station inside the FOV. Furthermore, the paper presents an
interpolation of the spiral using waypoints that are connected
with segments of logarithmic spirals. This makes it possible to
apply existing guidance laws to follow the docking spiral. The
proposed spiral docking path has been experimentally tested
using an autonomous underwater vehicle.

I. INTRODUCTION

Navigating in an environment where the global positioning

system (GPS) is not available, represents one of the main

challenges that autonomous underwater vehicles (AUVs)

face, while operating under the surface. The lack of a GPS

is often substituted by acoustic positioning and/or computer

vision systems. Although these systems have proven to be

able to produce accurate information, they rely in some cases

on a single source of information, either because the camera

tracks only a single visual landmark, or because there is

only a single node of an acoustic network available. In such

cases, the ability to navigate depends on the constant obser-

vation of the source (see Fig. 1) AUVs are commonly used

for autonomously perform tasks like bathymetric mapping,

pipeline inspection, scientific data collection, geological sur-

veys, under ice intervention or homeland security. A common

requirement which reduces the autonomy, effectiveness and

feasibility of AUV operations is the need of a surface support

vessel and a infrastructure that contributes to increasing the

cost and to make the operational outcome more dependent

on sea conditions.

Permanent underwater docking station can enable au-

tonomous launch and recovery of AUVs, and will therefore

make the AUV technology more cost effective, safer and
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more robust. However, underwater navigation still represents

a big challenge for performing precise docking maneuvers.

A common docking scenario presented in the literature

[1]–[3] describes that position data is obtained either by a

single acoustic transponder attached to the docking station or

by a computer vision system that identifies certain features

of the docking station. In both scenarios, the ability to update

the position of the vehicle relies solely on the constant

observation of a single landmark. Furthermore, cameras and

acoustic positioning systems are often restricted by a field

of view (FOV). Preserving the landmark inside the FOV

can become a determining factor in the overall success of

the docking maneuver. Commonly a docking maneuver is

planned trough waypoints in three stages (see the black

line in Fig. 1): At the returning position R© the AUV has

completed its mission and starts returning to the docking

station. At this stage, the AUV is too far away for the

sensors to detect the docking station, but based on previous

knowledge of its position, the AUV moves in the direction

where the docking station most likely is. At the starting

point 0©, the docking station comes into the AUV’s range

of vision and the vehicle starts receiving information and

can accurately locate the docking station. At this point,

stage two begins, and the vehicle moves to point 1©, which

is located at a certain distance d in front of the docking

station’s entrance. This distance d is prescribed according

to the vehicle dynamics to give sufficient time to stabilize

and reach the entrance of the docking station by following

a straight trajectory 1© → ds© in stage three.

Unfortunately, depending on the navigation sensors, fol-

lowing a straight line from 0© → 1© can leave the docking

station outside of the FOV [4]. While this occurs, the AUV

does not receive information of the docking station position,

reducing the quality of the navigation and the subsequent

localization of point 1©. This will affect the convergence to
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the final path 1© → ds©, and thus the vehicle may not recover

from the combined error in position and navigation, and will

thus fail to aim correctly into the docking entrance [5].

Path planning for an underactuated vehicle with restricted

FOV has been studied by different authors. For instance [6]

proposed a control law that guides the vehicle towards a

docking station by using model predictive control preserving

simultanously the FOV of the docking station. The studies

in [7], [8] show that under a FOV constraint the optimal

path, length-wise, to reach a given point can be described

by a combination of straight lines and logarithmic spirals.

However to the best knowledge of the authors, there is no

description of a path that solves the challenge of reaching

a final target with a given heading while simultaneously

preserving the target inside the limits of the FOV. Solving the

docking problem using path planning and guidance might be

preferred in some cases to ensure optimality, avoid restricted

regions or objects.

This paper proposes a new approach for constructing a

docking path for underactuated vehicles, using a spiral result

of a combination of the Fermat and logarithmic spiral’s

properties (represented by a red line in Fig. 1). The inherited

properties of both will help solve some of the challenges

of docking autonomous underactuated vehicles (AUVs). The

first property, is that the bearing angle of the AUV with

respect to the docking station will never exceed a certain

angle, and when far from the docking station (origin) it will

follow the trajectory of a logarithmic spiral. This property

ensures that the docking station is always kept inside the

FOV. A second property, inherited from the Fermat spiral [9],

is that the proposed docking spiral reaches the entrance of

the docking station without curvature and heading directly to-

wards it, instead of at an angle, allowing a smooth transition

into the docking station. Furthermore, the proposed approach

has been experimentally validated by using an articulated

AUV (an underwater snake robot) as testbed [10]. To control

and guide the robot to the path, the paper introduces a method

for interpolating the docking spiral into smaller segments of

logarithmic spirals, thereby being able to use the controller

described in [11] for path following. This paper is organized

in the following way: Section II presents the equations of

the docking spirals and analyzes its properties. Section III

proposes a method to implement a guidance system for the

spiral path, which includes an interpolation of logarithmic

spirals in order to make it possible to use an existing

guidance law to guide an underactuated AUV to converge to

and follow the interpolated spiral path. Section IV presents

the experimental setup followed by the presentation of the

experimental results in Section V, and Section VI presents

the conclusions.

II. FAMILY OF DOCKING SPIRALS

This section presents the docking spiral and the conditions

that it must fulfill in order to have the preferential features for

docking under restricted FOV, described in the Introduction.

Due to the nature of the spirals, this paper will follow a

notation in polar coordinates (r, φ) to describe the spirals

f=0

f=p/6

f=p/3

f=p/2

f=2p/3

f=5p/6

f=-p/6

0.20.40.60.8r/r0=1

p =[r ,f ]0 0 0

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

q
m

a
x

qmax

Radius (r/r0)B
e

a
ri
n

g
 A

n
g

le
 Q

Fermat Spiral
Logarithmic Spiral
Docking Spiral

0.0.0.22

q
m

a
x

Fig. 2. Differences between the Fermat, logarithmic and docking spirals.

(see Fig. 2). Here the initial position of the vehicle is P0 =
[r, φ], and the docking station is at the origin Pd = [0, 0]
with its entrance facing the direction of φ = 0. The bearing

angle Θ is the angle between the tangent direction of the

spiral and the direction of the radial vector.
The following conditions are desired to make a path useful

for a docking maneuver with a underactuated vehicle with

restricted FOV:

Condition 1. The path is continuous and connects a starting

point P0 = [r0, φ0] with the entrance of the docking station

at the origin.

Condition 2. The tangent of the path becomes parallel to

the center line of the entrance of the docking station, and

the path curvature becomes zero at the origin.

Condition 3. The docking station is always preserved inside

the limits of the FOV, i.e. |Θ| ≤ |θmax|.

Remark 1. Condition 2 is desired to make a smooth transi-

tion into the inside chamber of the docking station. A path

with zero curvature will not have any lateral acceleration

when the vehicle transits from a curve to the inside of the

docking station. A straight entrance will also avoid lateral

collisions with the funnel of a docking station. From a

navigation perspective, Condition 3 is desired to ensure that

the vehicle constantly obtains position measurements with

respect to the docking station.

The docking spiral results from the combination of two

well-known spirals where a is an scaling factor:

Fermat Spiral: r(φ) = a
√

φ (1)

Logarithmic Spiral: r(φ) = ae
φ

tan θ (2)

The Fermat spiral reaches the origin with zero curvature,

fulfilling conditions 1 and 2. However, when far from the



origin its bearing angle increases until being outside of the

FOV. The logarithmic spiral has the property of preserv-

ing the same bearing angle with respect to its origin (see

Figure 2). This implies that if the bearing angle is located

inside the FOV initially, then when following the logarithmic

spiral the docking station will be always kept inside the FOV,

thus fulfilling Condition 3. However, the main drawback of

using the logarithmic spiral is that it spirals infinitely around

the origin, and thus it would not give a path where the

AUV approaches the entrance of docking station following

a straight line. In this paper we describe a family of spiral

paths, which merges the properties of the Fermat and the

logarithmic spirals, and which fulfills Conditions 1-3. We

will refer to these spiral paths as docking spirals. The

equation that describes the family of spirals is the following:

Docking Spiral: rλ(φ) = a

√

e

2φ
tan(θ)−e

−λ
2φ

tan(θ)

2

{φ ∈ R | φ
tan(θ) ≥ 0 , |θ| ≤ |θmax|}

(3)

where the angle θ is the largest bearing angle that the spiral

is allowed to reach and must have the same sign as tan(θ),
the nonnegative parameter λ adjusts the transition from the

logarithmic spiral to a straight line when nearing the origin

(i.e. the docking station), and a is a positive parameter that

scales the size of the spiral.

A. Bearing angle

The bearing angle Θ determines if the spiral path will

allow to maintain the docking station inside the FOV. In this

section we will show that the bearing angle of the proposed

spiral never exceeds a value θ, thus we can be sure that if

initially |θ| ≤ |θmax| Condition 3 holds.

Proposition 1. The bearing angle of the docking spiral given

in (3), always satisfies |Θ| ≤ |θ| for θ ∈ (−π/2, π/2).

Proof. The bearing angle Θ at any point of a path described

in polar coordinates, is given by

tan(Θ) = r(φ)
dr(φ)
dφ

(4)

Then inserting (3) into (4) we find that:

tan(Θ) = tan(θ)



 e

2φ
tan(θ)−e

−

2λφ
tan(θ)

e

2φ
tan(θ) +λe

−

2λφ
tan(θ)





︸ ︷︷ ︸

≤1

≤ tan(θ) (5)

Then, since the tangent is a class K function for arguments

within (−π/2, π/2), it follows that the bearing angle Θ is

always less than or equal to the spiral’s θ parameter i.e.

|Θ| ≤ |θ|.

B. Zero curvature at the origin

This section shows that all the spirals of the family have

zero curvature at the origin.

Proposition 2. The curvature, κ, of the docking spiral given

in (3) is zero at the origin.

Proof. The curvature of a path described in polar coordinates

is given by the following expression:

κ(r, φ) =
r2+2

(

dr
dφ

)

2

−r

(

d2r
dφ2

)

[

r2+

(

dr
dφ

)

2
]3/2 (6)

lim
φ,r→0

κ(r, φ) = 0 (7)

For a more concise expression, the equation of the docking

spiral will be written as:

r(φ) = a
√

f(φ) (8)

where

f(φ) = e

2φ
tan(θ)−e

−

2λφ
tan(θ)

2 (9)

The first and second derivatives of (8) are:

dr
dφ =a2

2r
df(φ)
dφ

d2r
d2φ = a2

2r2

[

d2f(φ)
d2φ r − a2

2r

(
df(φ)
dφ

)2
]

(10)

Substituting the derivatives in Equation (10) into the

expression of the curvature (6) we obtain:

κ(r, φ) =

[

6 a4

(

d f(φ)
dφ

)

2

−4 ar2

(

d2f(φ)
d2φ

)

+8 r4

]

r

[

a2

(

d f(φ)
dφ

)

2

+4 r4
]3/2 (11)

Then evaluating (10) at the origin, i.e. for r = 0, φ = 0, we

find that f ′ and f ′′ are:

df(φ)
dφ

∣
∣
∣
∣
r,φ=0

= λe

−2λφ
tan(θ) +e

2φ
tan(θ)

tan(θ)

∣
∣
∣
∣
φ=0

= λ+1
tan(θ) > 0

d2 f(φ)
dφ2

∣
∣
∣
∣
r,φ=0

= 2−λ2e

−2λφ
tan(θ) +e

2φ
tan(θ)

tan2(θ)

∣
∣
∣
∣
φ=0

= 2 1−λ2

tan2(θ)

(12)

From (12), it can easily be seen that the limit of the curvature

exists and is zero
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C. Special cases: λ = ∞ and λ = 1

As illustrated in Fig. 3, for the particular case of λ = ∞,

the docking spiral follows exactly the logarithmic spiral until

it reaches point 1© (from Fig 1) and abruptly switches to a

straight line that enters into the docking station. Even though

the spiral λ = ∞ fulfills the Conditions 1-3, it is not a good

choice due to the sudden change in the path. However since

it goes trough point 1©, it can serve as a reference spiral for

determining the maximum bearing angle, θ, from the desired

distance, d. Note that d is a prescribed distance to allow

the vehicle to stabilize and follow the path to the docking

station according to the dynamics of the vehicle. For the

particular choice of λ = 1, the docking spiral simplifies to

the following expression:

rλ=1(φ) = a

√

sinh
(

2φ
tan(θ)

)

(13)

or alternatively:

φλ=1(r) =
tan(θ)

2 arcsinh
(

r2

a2

)

(14)

D. Path planning with the docking spiral

This section proposes a method to adapt the equation of

the docking spiral into a docking path. First, the method

uses the λ = ∞ spiral to obtain the parameter θ. Note

that as described in the previous section, the particular case

of λ = ∞ has a segment that is a logarithmic spiral. By

connecting the initial point p0 = [r0, φ0] and the point

p1 = [d, 0] (Point 1© defined in Section I) with a logarithmic

spiral, it allows us to identify the parameter θ. According to

[11] the logarithmic spiral connecting the points p0 and p1
has the following bearing angle θ:

θ = atan
(

φ0

ln(r0/d)

)

(15)

According to Proposition 1 if |θ| ≤ |θmax|, it gives the

certainty that the docking station will always be preserved

inside the FOV.

Secondly, we find the value of the scaling factor a by

imposing that p0 = [r0, φ0] belongs to the spiral described

by Equation (3):

a = r0
√

√

√

√

e

2φ0

tan(θ)−e
−λ

2φ0

tan(θ)

2

(16)

For the particular case when λ = 1, then (16) becomes:

a = r0
√

sinh

(

2φ0

tan(θ)

)

(17)

The generated path, with parameters θ, a given by (15) and

(16), goes from p0 to the docking station’s entrance, while

keeping a bearing angle with respect to the docking station

that is always smaller than θ.

III. GUIDANCE SYSTEM

In this paper we propose to use the guidance law for

logarithmic spirals described in [11] in order for the vehicle

to converge to and follow the spiral path. We have chosen

this specific guidance law because it is shown in [11] that

it preserves the docking station inside the FOV also when

steering towards the path. However, we can not apply the

guidance from [11] directly to the proposed docking spiral

path, because it is only applicable for logarithmic spirals. To

solve this, we propose an interpolation of the docking spiral

path into smaller segments of logarithmic spirals.
Also this guidance method will use the (λ = 1) docking

spiral described by Equations (13-14), and the reason why

this particular value of λ is chosen is because it allows us

to obtain explicit expressions of both r and φ.

A. Interpolation of the Docking path

The path is interpolated by splitting the spiral into n
segments, each connected with segments of logarithmic

spirals (see Fig. 4):

P = {p ∈ R
2 : p = [r(̟, i), φ(̟, i)], ̟ ∈ [0, 1], i ∈ [1...n] }

(18)

where i is the index for each segment and ̟ is a parametriza-

tion of each point within the segment. The segments are cre-

ated by n+1 waypoints: pi = [ri, φi], spaced with constant

radius steps. This allows an explicit and compact formulation

that only depends on the index i for both ri and φi:

ri = r0
[
n−i
n

]
(19)

Inserting (17) and (19) into (14) we get:

φi =
tan(θ)

2 arcsinh
([

n−i
n

]2
sinh

(
2φ0

tan(θ)

))

(20)

The consecutive pair of waypoints are interpolated by loga-

rithmic spirals, for which their constant bearing angle, found

according to [11, Eq.(3)], is:

θi = atan
(

φi−φi−1

ln(ri/ri−1)

)

(21)
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Then the general expression of the interpolated path P can

be obtained from substituting the waypoints from Equations

(19-20) into the expression of a logarithmic spiral path found

in [11, Eq.(2)]:

r(̟, i) = r0
n (1−̟ + n− i)

φ(̟, i) = φi−1 + tan(θi) ln
[

1− ̟
n−i+1

] (22)

The length l of a logarithmic spiral between ̟a and ̟b can

be calculated by integrating the curve between the two radii

r(̟b, i), r(̟a, i):

l =

∫ r(̟b,i)

r(̟a,i)

√

1 + (rdr/dφ)2dr = r(̟b,i)−r(̟a,i)
cos(θ) (23)

Note that for a logarithmic spiral rdr/dφ = tan(θ). Thus the

length li of each full segment, i.e. from ̟b = 0 to ̟a = 1
is:

li =
r(0,i)−r(1,i)

cos(θi)
= r0

n cos(θi)
(24)

B. Serret-Frenet frame

In problems of tracking and path following, Serret-Frenet

frames are often used to describe the position of the vehicle

relative to a virtual particle that moves along the path

(Similar approaches have been presented in [11]–[14]). The

position of the particle along the path is parametrized by

a distance s. However, since the proposed interpolation of

the path is described by different segments of spirals, the

system must first identify to which segment is and point

̟s the parametrization s maps to. Then the position of the

particle is ps = [r(̟s, is), φ(̟s, is), ] (see Fig. 6).

To calculate ̟s, is given s we first identify is by finding

the smallest value of the index i such that the travelled

distance s is smaller than the sum of lengths of the first

i segments:

is = min i s.t.

i∑

1

li ≥ s (25)

Once the index of the current spiral is is known, the distance

travelled for that specific segment z can be calculated by

subtracting the length of the previous segments:

z = s−

is∑

2

lis−1 (26)

Afterwards, the traveled distance z within that segment can

be found by solving Equation (23 from the waypoint ̟b = 0
to the uknown ̟a = ̟s:

z = r(0,is)−r(̟s,is)
cos(θis )

= r0̟s

n cos(θis )
(27)

which makes ̟s:

̟s = z/lis (28)

Once the position of the Serret-Frenet particle is known,

ps = [r(̟s, is), φ(̟s, is), ] (Fig. 6), the position of the

vehicle with respect to the path is calculated relative to the

Serret-Frenet frame. The relative position of the vehicle is

denoted by xb/f , yb/f and ψb/f , ψ − ψs is the yaw angle

relative to the frame.

C. Guidance Law

In this section a brief presentation of the guidance law

proposed in [11] is given, adapting it to be used for the

interpolated docking spiral. The guidance has two elements:

First an update law that moves the position of the Serret-

Frenet frame along the path according to the update equation

from [11, Eq. (13)]:

ṡ = u cos(ψb/f )− v sin(ψb/f )− kxxb/f (29)

where u and v are the surge and sway velocities and −kxxb/f
acts as a restoring spring for the particle. The second element

calculates the desired yaw that allows the vehicle to converge

to the path while also maintaining the FOV. The desired yaw

is found in [11, Eq.(14-15)].

ψd = ψf−θi−atan
( v

u

)

−atan




tan(θmax)(yb/f + dθi)
√

∆2 + (yb/f + dθi)
2





(30)

dθi = ∆tan(θi)/
√

tan2(θmax)− tan2(θi) (31)

which is shown to be uniformly globally asymptotically

stable (UGAS) for the close-loop kinematic system. ∆ is

a design parameter that adjusts how sharp the vehicle should

turn towards the path.

IV. EXPERIMENTAL SETUP, UNDERWATER SNAKE ROBOT

AND CONTROLLERS

This section presents the experimental setup used to im-

plement and test the docking spiral described in Section II

with the interpolation and the guidance system described in

Section III. Notice that the guidance is independent from

the dynamics of the system, making it applicable to many

different type of vehicles. For the experimental testing in

this paper, we used the underwater snake robot Mamba with

thrusters [15] as a test platform to validate the proposed

docking approach. This is an articulated AUV with a thruster

module for forward thrust, and where the joints of the

robot are used instead of rudders to control its direction.

In the following, the experimental setup employed for the

docking and details of the underwater snake robot are briefly

presented. More details can be found in [15], [16].

A. Experimental setup

The experiments were performed in the Marine Cybernet-

ics Laboratory (MC-lab) at NTNU, Trondheim, Norway [17],

in a tank of dimensions L: 40 m, H: 1.5 m and W: 6.45 m.
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Fig. 6. Representation of the Serret-Frenet frame



Real time measurements of the position and orientation of the

robot were obtained by using an underwater motion capture

system from Qualisys [18] installed in the basin. The system

consists of six identical cameras, that can track reflective

markers under water inside a working area of dimensions

12m×1.35m×5.45m. In the tank we installed a mockup of

a docking station consisting of a flat panel with a reflective

circle of diameter 50 cm representing the entrance of the

docking station.

The robot used for the docking experiment had a front

camera with a FOV of ±30◦. Below the camera the robot

had mounted a template of markers that allowed the camera

positioning system to accurately determine the position and

heading of the robot at any time (see Fig. 5).The position

of the docking station was obtained using the underwater

camera system by attaching a single reflective marker on the

flat panel. Afterwards, this information was used to define

the docking spiral path. The position and the heading of the

robot were received from an external computer to which the

Qualisys system [18] was connected, and afterwards these

measurements were sent through UDP in LabVIEW 2013

to another computer where the guidance and controller were

implemented. The Mamba robot consists of 18 identical joint

modules mounted horizontally and vertically in an alternating

fashion [10], [15]. In order for the robot to move according to

a strictly horizontal motion pattern, the angles for the joints

with vertical rotating axis were set to zero degrees. During

the experiments, the robot had a slightly positive buoyancy

and was swimming near the water surface. For more details

regarding the experimental setup see [15], [16].

B. Heading Control

This subsection presents the heading controller imple-

mented for directional control of underwater snake robots

with thrusters. In previous studies, a sinusoidal motion

pattern [16], [19] is commonly used, in order to provide both

propulsion for underwater snake robots and for directional

control. In this paper, however, we consider underwater

snake robots that also are equipped with thrusters at the

tail module that can provide propulsion. Results presented

regarding the energy efficiency in [15] showed that it is sig-

nificantly more energy efficient that USRs use the thrusters

for propulsion instead of using a combination of thrusters

and body undulation for propulsion. Therefore, in this paper

we propose a new concept for control of underwater snake

robots (USRs) with thruster. In particular, we propose that

the robot joints are used for directional control, while the

propulsion of the robot is only given by the thrusters. The

robot thus functions as an articulated AUV, with improved

maneuverability compared to rigid AUVs that use rudders for

directional control. The Mamba AUV is therefore a useful

platform for experimental testing in a tank of limited size,

due to its excellent maneuverability properties.

There exists no previous results for such control of an

articulated AUV, and we propose the following approach for

heading control: Let each joint k ∈ [1, . . . , n−1] of the robot
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track the reference signal:

ϕ∗
k(t) = ϕ0

[
n−k
n+1

]

︸ ︷︷ ︸

Scaling factor

(32)

where the scaling factor is introduced in order to achieve an

increasing reference signal from head to tail. This feature

is advantageous for the docking approach, since it produces

smaller deflections at the head module where the camera is

attached. We choose the orientation of the head angle to

represent the heading, ψ, of the robot, and the reference

heading ψd is given by the guidance law (30). The following

PI heading controller is then used to make the actual heading

follow its reference:

ϕ0 = kP (ψ − ψd) + kI(
∫
ψ − ψd) (33)

where kP > 0 and kI > 0 are control gains.

Note also that low level joint P controllers are imple-

mented in the microcontrollers inside the modules of each

link of the robot, making each joint follow the reference an-

gles calculated by (32). In addition, a low level thruster con-

troller is implemented, responsible for making the thruster

inputs follow its references, represented by Uc in Fig. 6. The

mapping from the thruster inputs to thruster forces for the

underwater snake robot used in these experiments can be

found in [15].

Remark 2. In this paper, the underwater snake robot

Mamba with thrusters is used as a test platform to validate

the proposed docking approach. However, note that to the

authors’ best knowledge, investigation of docking for this

kind of articulated robot has not been studied in previous

literature. Therefore, the results presented in this paper not

only validate the docking concept, but also present a proof

of concept of using underwater snake robots for applications

where docking is required.

V. EXPERIMENTAL RESULTS

This section presents experimental validation of the pro-

posed docking spiral described in Section II, together with

the interpolation and the guidance and control system de-

scribed in Sections III and IV. The results are shown in

Figures 8 and 7. In Fig. 8 it is shown how the interpolation

of the docking spiral through logarithmic spirals, combined

with the guidance control, enables the vehicle to follow the

proposed path and successfully reach the entrance of the

docking station. At point A: The vehicle starts away from

the path’s initial point and the heading direction does not

face the desired direction. From A to B the vehicle heading

converges to the desired heading given by (30). The distance

to the path increases during this transient period. At B the

vehicle has the desired heading, and is at an offset distance

from the path. Since the docking station is on the limits of

the FOV, how directly the robot can steer towards the path is

limited by the FOV, something which limits the convergence

rate to the path. In C the vehicle reaches the path and from

C to D the vehicle overshoots slightly. With better tuning we

could have avoided this slight overshooting, but this was not

possible due to the limited coverage area of the underwater

camera positioning system. We therefore had to give priority

to fast convergence instead of a slower convergence without

overshoot. After D, the vehicle manages to successfully reach

the entrance of the docking station with a small offset. Note

that this offset would be much smaller if the coverage area

of the underwater camera system was larger, allowing us to

operate in a larger area. Furthermore, the drag effects of the

tether also contribute to this offset.. Fig. 7 shows how the

bearing angle of the docking path, and the actual bearing

angle of robot, evolves together with the FOV of the camera.

As it can be seen from the series of frames, the vehicle

always preserves the docking station inside the FOV. In frame

3, it can be seen how the docking station is on the limits of

the FOV, and thus allows only for a small margin of steering,

as we also saw for point B in Fig. 8. In frame 5 the red

line seems to diverge, but this is only because the vehicle is

getting close to the docking station and a small side offset

represents a big bearing angle. Notice that after frame 6 the

entrance of the docking station encompasses the FOV (see

the angular size shaded in white) meaning that the dock is

successful.

VI. CONCLUSIONS

This paper presented the development of a docking spiral

path, based on the Fermat and the logarithmic spirals. The

objective of the proposed spiral is to generate paths that can
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be used in applications where underactuated vehicles with

restricted FOV have to reach a target, approaching it in a

certain direction, while at the same time the target must

be preserved inside the FOV. Additionally, this paper has

proposed an interpolation of the docking spiral into segments

of small logarithmic spirals, which makes it possible to

implement existing guidance laws for path following of

logarithmic paths.

Docking experiments have shown that the use of the

docking spiral path together with an adaptation of a path

following guidance control law from [11], enables an AUV

to dock while preserving the docking station inside the FOV.

Future work may extend the path from 2D to 3D cases and

use the observed target instead of an independent positioning

system, to produce navigation data.
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