
c© 2017 Lucas Buccafusca

MODELING AND MAXIMIZING POWER IN WIND TURBINE ARRAYS

BY

LUCAS BUCCAFUSCA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Adviser:

Associate Professor Carolyn L. Beck

ABSTRACT

This work considers a specific application domain, that of wind turbine arrays, and ex-

plores algorithms for determining individual axial induction factors that optimize overall

energy extraction. Large wind turbine arrays, or wind farms, can be viewed as large

coupled networks, for which the application of traditional optimization techniques are

impractical.

A brief discussion on wind farm models and traditional optimization approaches leads

us to a spatial dynamic programming approach to maximize power extraction under

the condition of uniform wind. This differs from prior work in which only a dynamic

programming approach for a more restrictive near-field model has been analyzed.

In our work, we propose an algorithm that leads to solutions for both the near-field and

far-field models. Simulation results are discussed, which demonstrate our algorithm pro-

vides improved performance compared to prior work using only near-field approaches.

ii

To my parents, Monica and Osvaldo, for their love and encouragement

To my sister, Lisa, for always being there

And to Vidya, who never left my side

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Carolyn Beck, for all of her

guidance throughout the research process. I will always be grateful for her patience,

dedication, and unparalleled continuous support. I could not have imagined having a

better advisor and mentor.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 WIND FARM MODELS . 2
2.1 Park (Jensen) Wake Model . 2
2.2 G. C. Larsen Wake Model . 8
2.3 Ainslie Eddy Viscosity Wake Model . 9

CHAPTER 3 PRIOR WIND FARM ANALYSIS RESULTS 10
3.1 Near-Field Approximation Results . 10
3.2 Far-Field Approximation Results . 11

CHAPTER 4 PROPOSED ALGORITHM . 13
4.1 Background on Optimization Methods 13
4.2 Algorithm . 16

CHAPTER 5 SIMULATIONS . 20
5.1 Seven-Turbine Array . 20
5.2 Three-Turbine Configurations . 22
5.3 Six-Turbine Tree . 26

REFERENCES . 28

v

CHAPTER 1

INTRODUCTION

Wind energy was the largest source of new power generation in the United States in 2015

[1]. With nearly $100 billion invested in new wind projects since 2008, wind farms are at

the forefront of sustainable energy. In addition to building new wind farms, new control

algorithms are being designed to make current wind farms more cost efficient [2].

Studies on the optimization and analysis of wind turbines focus either on single turbines

using a complex wake model or on large groups of turbines using a simple wind model.

Due to the complexity of the dynamics of the system [3], it becomes infeasible to handle

detailed wind models with large numbers of turbines. In extending the results provided

by elaborate models to arrays of turbines, many of the aerodynamic interactions between

turbines are overlooked. While the single turbine models can be used to accurately

maximize power extraction for the single turbine case, power losses arise from turbines

negatively impacting each other; when a turbine lies in another turbine’s wake, increasing

the rotation speed of the upstream turbine reduces the amount of energy that can be

extracted downstream. As such, most algorithms seek to find the set of controls that

maximize power extraction for the wind farm as a whole [4].

We begin by analyzing the three wind models most commonly used for axial-induction-

factor-based control in Chapter 2. In Chapter 3 is a brief discussion on previous wind farm

results. This provides a background on solving the wind farm problem using non-convex

optimization techniques.

There exist many ways to handle optimization problems. Chapter 4 provides some

background in using coordinate ascent algorithms and gradient methods under the con-

straint of a non-convex problem. Combining these ideas with Bellman’s ‘principle of

optimality’ [5] leads to the derivation of our control algorithm. This synthesis is also

covered in Chapter 5. Finally, Chapter 6 provide simulations comparing wind power

extraction for various turbine setups and control schemes.

1

CHAPTER 2

WIND FARM MODELS

The conversion of wind energy into power involves two processes: the first is extracting

the kinetic energy from wind and its transformation into mechanical energy at the rotor

axis, and second is the processing it into useful energy [6]. In the primary process, wind

turbines extract the energy from wind, leading to a reduction in the wind speed behind

the rotor and disrupt the air flow, which is known as the wake effect of the wind turbine.

Thus, the downstream wind turbines receive a modified wind inflow both in terms of

mean velocity and turbulence, producing less energy as a result.

2.1 Park (Jensen) Wake Model

The Park wake model (otherwise known as the Jensen wake model) is an empirically

based linear expanding wake model. The model was first described by N. O. Jensen in

1984. The model is a single wake model that describes the turbine wake in terms of an

initial loss and a decay rate. It is represented by a uniform velocity profile at any one

location downstream. In 2-D models, this is characterized by an x-coordinate within a

wake profile. Due to the simplified constant velocity profile, the model behaves poorly

when used to make wake predictions near the turbine, as it oversimplifies many of the fluid

behaviors that occur. Nevertheless, due to the simplicity of the model, this wake model

is used to design and compare axial-induction-based control algorithms. The typical one-

turbine model is shown in Figure 2.1: The wake size is dependent on a constant k (known

as a roughness coefficient). This roughness coefficient depends on many factors of the

wind, including density, temperature and humidity. The larger the k, the wider out the

wake expands. In practice, this k varies based on the distance between the turbines with

a typical value being k = 0.075 over land and k = 0.04 for offshore. It has been shown

that the lower decay factor results in slower growth of the wake width. This decay is

explicitly shown in Figure 2.2.

2

Figure 2.1: One-turbine model where Di is the diameter of the turbine, U∞ is the
uniform infinite wind, and x is the horizontal displacement from the turbine. Adapted
from [7].

Figure 2.2: Simulations demonstrating wake degradation with identical settings but
different k values [8].

The Park model is derived by the defining equations from an actuator disk, when the

equation for power is modeled as

P (λ, β) =
1

2
ρArotorv

3Cp(λ, β) (2.1)

where ρ is the air density, Arotor is the area swept by the rotor, v is the velocity of the

wind traveling through the disk and Cp(λ, β) is a power coefficient that is determined

based on the blade angle to the wind (β) and the tip speed ratio (λ) defined as

Cp(λ, β) =
1

2
(
116

λ
− 0.4β − 5)e

−21
λ (2.2)

The Park model, parameterizes Cp(λ, β) into a single variable known as the axial induction

factor. This has an explicit meaning when dealing with wind turbines, as it is defined as

3

the fractional decrease in wind velocity between the external wind and the wind turbine

itself.

We consider a wind farm consisting of n wind turbines. For simplicity in developing

the model, a common assumption is to have all wind turbines oriented orthogonal to the

direction of wind travel.

Given uniform wind with magnitude, U∞, the Park wake model states that each turbine

affects wind velocity downstream by a diminishing multiplicative factor

Vi = U∞(1−∆Vi), (2.3)

with

∆Vi = 2ui

(
D

D + 2k∆d

)2

(2.4)

where ∆d is the horizontal displacement from the turbine in question, k is the roughness

coefficient, D is the diameter of the wave propagation cone, and ui is the axial induction

factor for turbine i.

Adapting (2.1) leads to the power equation:

Pi(ui) = Ciui(1− ui)2V 3
i (2.5)

where the coefficient Ci combines Arotor and ρ for a turbine i. At a known location in

the intersection of wakes 1, . . . , i, the aggregate wind velocity is determined by:

Vi = U∞

1−

√√√√ k∑
i=1

(pij∆Vi)2

 (2.6)

where pij is the proportion of turbine j lying in the i’th wake, measured in the cross-

sectional area between the velocity cone of the two turbines. A visual representation of

this is seen in Figure 2.3.

Additionally, from actuator turbine dynamics it has been shown that in the absence of

any interactions between turbines, there exists an upper bound on the amount of energy

that can be extracted. This upper bound is to set ui = 1/3 for all i, which approximates

the optimal solution if the turbines are located sufficiently far apart for wake effects to

be negligible.

It is important to note that since the eventual goal is to solve for the net power

extraction of the whole system, the wind farm becomes an optimization problem in which

we are attempting to solve for the value of ui for each turbine that maximizes power.

4

Figure 2.3: Two-turbine illustration showing the term pij.

Explicitly written, for the Park wake model have the following bounded optimization

problem:

max
ui...un

Ptotal(ui...un) = max
ui...un

n∑
i=1

Ciui(1− ui)2V 3
i (2.7)

s.t. 0 ≤ ui ≤
1

3
(2.8)

This problem is difficult to solve for a global optimum solution. In fact, attempting to

solve for each ui by exhaustively searching and optimizing over the full range of axial

induction factors even for small numbers of turbines, becomes unreasonable.

For the majority of this work, the focus will be on solving for the optimal solutions of

the optimization problem provided by (2.7) and (2.8). Once an algorithm is developed

for this problem, it can be extended to other wind farm models.

For most works analyzing axial-induction-based control, variants of the Park model are

often used. These still take advantage of the simplistic nature of combining wake effects

and require less computational time.

2.1.1 Near-Field Approximation

Previous work has focused on exploring the near-field model between turbines in which

it is assumed that each turbine only affects adjacent turbines in the array. This model

5

allows for an optimal solution to be obtained using the Bellman equation, rather than a

model that more accurately represents wind and turbine dynamics.

The near-field equations that dictate downstream wind wake effects for a single turbine

are identical, but when solving for the aggregate wind velocity using (2.6) we instead have

pij = 0 for i 6= j − 1.

We demonstrate the differences using a simple example: three turbines in an array as

shown in Figure 2.4.

Figure 2.4: Simple three-turbine wind farm. Each turbine has a diameter of 80 meters,
and they are spaced 400 meters apart. Turbines are numbered from upstream to
downstream, i.e. since the wind is traveling in the direction of the positive x-axis, they
are indexed from left to right.

Our optimization problem for this simple example becomes:

max
u1,u2,u3

Ptotal(u1, u2, u3) = max
ui...un

3∑
i=1

Cui(1− ui)2V 3
i (2.9)

In this case, the velocities across the three turbines in the array can be written explicitly

using the Park wake model given by (2.9):

V1(u) = U∞ (2.10)

V2(u) = U∞(1− 2u1p12) (2.11)

V3(u) = U∞(1− 2
√

(u1p13)2 + (u2p23)2) (2.12)

6

For the near-field, in which we disregard the interaction between turbines 1 and 3, the

equations become:

V1(u) = U∞ (2.13)

V2(u) = U∞(1− 2u1p12) (2.14)

V3(u) = U∞(1− 2u2p23) (2.15)

The solution to the set of axial induction factors to maximize the power differ because

of the cross-turbine terms found in V3(u).

2.1.2 High-Fidelity Extensions

A high-fidelity simulator designed for wind plant studies is known as Simulator fOr

Wind Farm Applications (SOWFA). SOWFA provides a solver that has been used in

numerous prior wind control studies. Vigorous simulations have demonstrated that re-

sults provided by SOWFA differ from the Park wake model. As such, the goal has been

to extend the model to further increase the validity to real-world applications.

To better accommodate the effects of partial wake overlap, the Park wake model is

expanded by adding a correction factor η in the power term of each turbine thereby

adjusting (2.7) to become

max
ui...un

Ptotal(ui...un) = max
ui...un

n∑
i=1

Ciui(1− ui)2V 3
i η (2.16)

s.t. 0 ≤ ui ≤
1

3
(2.17)

where η = 0.8051 has been derived to match real-world data from the National Renewable

Energy Laboratory [9].

Another improvement to the Park model is to separate the wake into three zones: an

inner, middle and outer wake. This changes (2.4) to become

∆Vi = 2ui

(
D

D + 2mU,qki∆d

)2

(2.18)

where mU,q are scaling factors that define velocity breakdown in each zone. A wake ad-

justment term ki is introduced for each turbine, derived from the axial-induction settings

of the turbines that are upstream from it.

7

2.2 G. C. Larsen Wake Model

This model was first described by Larsen in 1988 [8]. Originally derived from the Prandtl

turbulent boundary layer equations, it results in closed-form solutions for the width of

the wake and the mean velocity profile in the wake. The final form of the equation used

to determine the velocity difference at the radial position r at the position x downstream

is

U∞ − Vi = −U∞
9

(CtArotorx
−2)

1
3

{
r

3
2 (3c21CtArotorx)−

1
2 −

(
35

2π

) 3
10

(3c21)
− 1

5

}2

(2.19)

where U∞ is the free stream velocity, Vi is the downstream velocity of the wake, Arotor

the rotor area, C is the coefficient of thrust, and the constant c1 is known as the mixing

length. c1 is correlated to the k discussed earlier. Figure 2.5 simulates a single wake using

this model.

Figure 2.5: Simulation demonstrating the G. C. Larsen wake model with identical
settings but different k values [8].

Due to the use of a power curve based on a single wind speed, the non-uniform velocity

profiles calculated by the Eddy and Larsen wake models must be averaged in order to

predict power. Summation of multiple wakes is often calculated using the velocity deficit

sum of squares. As the number of turbines grows, this rapidly becomes computationally

intractable, as it often involves integrating over the entire area of the turbine and aver-

aging out multiple nonlinear effects. For this reason, this model is often used when the

number of turbines is small.

8

2.3 Ainslie Eddy Viscosity Wake Model

As opposed to the previous two models based on the kinematics of the wind, a more com-

plex model is based on the thin shear layer approximation of the Navier-Stokes equation.

This model is derived on the field and wake turbulence models. The most commonly used

2-D eddy viscosity model was derived by Ainslie in 1988. The approximation assumes

an axisymmetric, stationary, fully turbulent wake with zero circumferential velocity and

negligible pressure gradients outside the wake region. By writing the differential equa-

tion in cyclindrical coordinates, aligned with the rotation of the turbine, the model is

straightforward to use to numerically simulate the wake. This model is simulated in

Figure 2.6.
1

r

∂

∂r
(rur) +

1

r

∂uφ
∂φ

+
∂uz
∂z

= 0 (2.20)

Figure 2.6: Simulation demonstrating the Ainslie Eddy viscosity wake model with
identical settings but different k values [8].

The eddy viscosity model disregards effects that are necessary for the velocity in the

wake to recover far downstream. As such, this model is primarily used when turbines are

expected to be close to each other. Almost all analyses using this model use a near-field

approximation in which any wake effects beyond the nearest neighbor are disregarded.

9

CHAPTER 3

PRIOR WIND FARM ANALYSIS RESULTS

Most prior work on analysis of wind farms is focused either on what is referred to as a

near-field simplification or on a single-turbine model.

3.1 Near-Field Approximation Results

In this methodology, one of the wake models (typically the Park model) is taken and

used to find the wind degradation only of adjacent turbines [10]. All other interactions

are ignored. Upstream turbine axial induction factors affect all turbines downstream in

a cascading manner, rather than directly. Most near-field approximation methods use a

configuration derived from dynamic programming [11].

Dynamic programming is based on Bellman′s principle of optimality. He argues that

the optimization problem can be solved by recursively solving Bellman′s equations to find

time consistent policy functions. For a system of the form

xt+1 = f(xt, ut) (3.1)

To solve this problem using Bellman′s method for control problems is to go backward

in time. This can also be done spatially rather than temporally, if the terminal cost is

known. For each xt we find the xk+1 to have the smallest cost (a combination of the

running cost and terminal cost). This is known as the ‘cost-to-go.’ Upon termination, an

optimal sequence of xt would be obtained, known from the principle of optimality. This

states that an optimal policy has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy for all substates

resulting from the first choice.

Two different methods were used to solve for optimal axial induction factors in the

near field. For the first approach, the framework for the derivation was to explicitly

use the near-field approach as a multi-stage optimal control problem. This allows the

10

optimization problem at each stage of the recursion is similar to optimizing the power

Pi(ui) of a single turbine plus an additional term that comes from the optimal value

function modeling the downstream system. Using this method the optimal axial induction

factors for the near-field problem are given by the recursions:

For i = N,N − 1, . . . , 1

ui :=
1

2 + (1− 6Qi+1)−1/2
(3.2)

Qi := (ui)(1− ui)2 + (1− 2ui)
3Qi+1 (3.3)

with the boundary condition QN+1 = 0.

One approach is taken when the problem is converted from a temporal control problem

to a spacial near-field interaction model. Rather than model the problem with controls,

prior work [10] derives the dynamic programming equations that dictate the principle of

optimality. Their derivation for the the optimal axial induction factors for the near-field

problem are given by the following recursions:

For i = N,N − 1, . . . , 1

ui :=
1

3

(2− 3φi+1p
2
ij −

√
1− 12φi+1p2ij + 9φi+1pij + 3φi+1p3ij

1− φi+1p3ij

)
(3.4)

φi := (ui)(1− ui)2 + (1− pijui)3φi+1 (3.5)

with the boundary condition φN+1 = 0 and pij = 0 for for i 6= j − 1.

These solutions allow for the values of the axial induction factors to be solved rapidly

for strings. Each term is found recursively, i.e. only depending on the prior turbine,

and the proof guarantees optimality of the solution. The trade-off is that taking the

near-field approximation as a wind farm model in order to analyze axial induction based

control leads to solutions that vary wildly from using the far-wake version of the Park

wake model. A clear example of this comes in Chapter 6, for the seven-turbine string.

3.2 Far-Field Approximation Results

The far-field model, in which the effect of turbines on all adjacent downwind turbines are

included, is traditionally not examined. As the number of turbines increases, the size of

the resulting matrix that tracks the coefficients between pairs of turbines grows combina-

torically. In order to handle this, prior work [7] developed a model-free approach focusing

11

on the design of local turbine control policies. With both simulations and through proofs,

their algorithm convergences to a solution that improves on a greedy policy. However,

this is not feasible in practice, as it cannot guarantee convergence in finite time.

12

CHAPTER 4

PROPOSED ALGORITHM

4.1 Background on Optimization Methods

4.1.1 General Framework of Coordinate Ascent

Coordinate ascent algorithms are derivative-free optimization methods [12]. To find a

local minimum of a function f(x), one searches along one coordinate direction at the

current point in each iteration. Different coordinate directions are evaluated throughout

the procedure. The motivation comes from trying to solve the maximization problem

max
x∈Rn

f(x) where f is smooth and concave. (The f is continuously differentiable and the

gradient is Lipschitz continuous.)

When trying to solve optimization problems in this manner, coordinate ascent algo-

rithms have certain trade-offs to their simplicity in use. For some problems, the dimen-

sion is very large so it becomes computationally expensive to calculate gradients at each

timestep. Thus, these derivative-free methods that involve maximizing each coordinate

independently can converge to optimal solutions under certain conditions.

General pseudocode for a coordinate ascent algorithm is given by

Initialize x(0)

for t = 1, 2, . . .

Pick one coordinate i from 1, 2, . . . n

x
(t+1)
i = xi∈Rf(x

(t)
i , ω

(t)
−i)

end

where ω
(t)
−i are fixed values that represent all other coordinates besides x

(t)
i .

There are many ways to choose ω
(t)
−i and several possible methods to choose which

indices will be used.

13

Updating Coordinates at Each Iteration

ωt−i = (x
(t+1)
1 , . . . , x

(t+1)
i−1 , x

(t)
i+1, . . . , x

(t)
n)

Gauss-Seidel Update This method uses the most updated value for each coordinate

less than index i. Other values are from the previous iteration. An advantage of this

method is the potential to converge faster, since recent updates are used. This method of

coordinate update naturally fits well when applied to the Park wake model, as updating

each variable is akin to updating turbines sequentially.

ωt−i = (x
(t)
1 , . . . , x

(t)
i−1, x

(t)
i+1, . . . , x

(t)
n)

Jacobi Update The coordinates are updated with the previous solution simultane-

ously, i.e. we do not care about intermediary iterates until we complete all coordinates.

The Jacobi update has a unique advantage: since only previous iterates are used, which

are always known, it can be run in parallel for each coordinate. It is feasible for large

configurations of turbines to cluster them into smaller groups and implementing a two-

step method. After the turbines are grouped, we run a Gauss-Seidel update on the small

groups. Once those values are returned, we update the wind farm as a whole using the

Jacobi update. This allows for extensions of our algorithm to larger configurations of

turbines.

Updating the Order of Index of Each Iteration

There are several ways to update the order of which index during each iteration.

• Cyclic Order: Index chosen is 1→ 2→ 3→ . . .→ n at each iteration

• Random Sampling: Randomly select some i (this selection can be uniform or

not)

• Gauss−Southwell: At each iteration, pick i so that i =i≤j≤n |∇jf(x(t))|

• Random Permutation Communication: Cyclic order on a permuted index

• Double Sweep: Index chosen is 1→ 2→ . . .→ n then (n−1)→ (n−2)→ . . .→ 1

• Almost Cyclic: Each coordinate is picked at least once every B ≥ n successive

iterations

14

Depending on the configuration of turbines, any different method of updating the

indices become prevalent. For example, for strings of turbines it is simplest to implement

a reverse cyclic order.

Coordinate maximization offers certain useful properties. To begin, the function values

are nondecreasing: f(x(0)) ≤ f(x(1)) ≤ Additionally, if f is strictly concave and

smooth, it converges to a global maximum (optimal solution [13]). However, if f is only

locally concave, it may converge to a local maximum if the starting point is near the local

maximum.

Additionally, knowledge about differentiability of the function f allows for further

exploitation of this algorithm. By using gradient methods to update each coordinate,

one can improve the rate of convergence. These are known as coordinate gradient ascent

methods [14].

Gradient Methods

There exist many gradient methods designed to solve optimization problems. A short list

of some of the most common examples includes:

• Steepest gradient ascent

• Nesterov′s accelerated gradient ascent

• Coordinate ascent

• Frank-Wolfe method

• Subgradient methods

• Primal-dual methods

• Stochastic and incremental gradient methods

A brief discussion of some of these methods is included next.

Steepest Gradient Ascent

Gradient ascent (otherwise known as steepest ascent) is a first-order iterative optimization

algorithm. To find a local maximum of a function using gradient ascent, the function

15

follows a series of points in the direction of the gradient of the function at the current

point. Given a starting point x0 ∈ domf , and step-size γ < 0, it works as follows,

xt+1 = xt − γ∇f(xt), t = 0, 1, 2, . . . (4.1)

until a stopping criterion is satisfied.

Gradient descent direction is easier to calculate, and performing a line search in that

direction is a more reliable progress toward an optimum. However, for some optimization

problems, gradient descent is slow near the optimal point. Its rate of convergence is

inferior to many other methods.

Newton Method

Newton’s method is applied to the derivative ∇f of a twice-differentiable function f.

xt+1 = xt − [∇2f(xt)]
−1∇f(xt), t = 0, 1, 2, . . . (4.2)

Newton’s method is relatively expensive in that you need to calculate the Hessian on

sequential iterations. For well-behaved functions, Newton’s method can be computation-

ally less intense. There also exist methods that only slightly update the prior iteration’s

Hessian. These are known as quasi-Newton methods.

Stochastic Gradient Ascent

In stochastic gradient ascent we iteratively update our weight parameters in the direc-

tion of the gradient of the reward function until we have reached a maximum. Unlike

traditional gradient ascent, only a subset of the entire dataset is used to compute the

gradient at each iteration. Instead, at each iteration we randomly select a single data

point from our dataset and move in the direction of the gradient with respect to that

data point. This is only an approximation of the true gradient but it can be proven that

this algorithm will eventually converge.

4.2 Algorithm

Suppose we have N turbines in an array. Since the rearmost turbines’ control values are

fixed if no other turbines are downstream, we set uN = u? = 1
3
. We then consider the

16

next turbine and search over possible values of uN−1 to find an optimal solution for the

two turbine pair {N − 1, N}. This solution is optimal for the two turbine case, since

we are solving a concave function of a single variable. However, since there are likely

other turbines in the string, this solution will only approximate the optimal solution for

the entire array. We continue appending turbines to the front of the array and solving

for optimal solutions assuming that the prior axial induction factors are fixed. This

initial set of axial induction factors provides a reasonable estimate of the true solution, as

downstream turbine effects are observed, but is not a global solution as upstream turbine

effects are disregarded.

Following this initialization of axial induction factors, the goal is to search for improved

locally optimal solutions that exist near those values. Since downstream effects were taken

into account during initialization, we are likely to converge to global optimal solutions.

In order to guarantee convergence, we apply a traditional coordinate ascent method on

our power function Ptotal(ui...un) for the entire system, using the initial axial induction

factors derived from initialization.

In a similar order to the initialization, we begin at the rearmost turbine and locally

optimize that axial induction value assuming the remainder of the array is fixed. This

function is concave so we either return the same value or find a new axial induction factor

that increases the value of Ptotal(ui...un). Thus, at each iteration, we have a monotonically

nondecreasing function in Ptotal(ui...un). Since the function is bounded by above, i.e. the

energy extraction of a single wind farm is finite, we are able to guarantee convergence of

our algorithm.

This procedure to determine axial induction factors is for a fixed wind direction and

magnitude. Under varying wind conditions, the overlap between turbine wakes would

need to be updated. Simulations demonstrate that our algorithm is fairly efficient, and

thus can rapidly adapt to wind changes. A changing wind direction redefines which

turbines are downstream and the cross-sectional overlap of the wakes, and a varying

wind velocity influences the magnitude of that effect.

The mathematical representation of our algorithm is shown in Algorithm 1. In simula-

tions, Ci is not an input, but directly calculated given a configuration of turbines, wind

velocity and direction.

Theorem 1. Given a continuously differentiable function Ptotal(ui, . . . un) over the closed

and bounded set defined by the optimization problem in Equations (2.7) and (2.8), the

nondecreasing sequence P j
total(ui...uN) at iteration j provided by ICyCA-WF converges to

a local maximum solution.

17

Algorithm 1: Initialized Cyclic Coordinated Ascent for Wind Farms (ICyCA-WF)

Data: Ci, U∞
Result: ui for all turbines
Step 1: Assign for rear turbines: u∗N = 1

3

Step 2: For all other turbines define ui = 0
Step 3: Initialization
for ∀ turbines ti /∈ rear turbines sequentially from tN−1 to t1 do

Solve
max Pi(ui) =

∑N
j=iCjuj(1− uj)2V 3

j

s.t. 0 < uj ≤ 1
3

and uj+1 . . . uN fixed
end
Step 4: Update
for ∀ turbines ti /∈ rear turbines sequentially from tN−1 to t1 do

Solve
max Ptotal(ui...un) =

∑N
j=1Cjuj(1− uj)2V 3

j

s.t. 0 < uj ≤ 1
3

and u1, . . . , ui−1, ui+1, . . . , uN fixed from prior iterations.
end
Step 5: Update ui if and only if Ptotal(ui...un) increases.
Step 6: Repeat Steps 4 and 5 until convergence.

To prove the theorem, we require the following two lemmas.

Lemma 1. Under the assumptions of Theorem 1, the sequence P j
total(ui...un) provided by

ICyCA-WF converges.

Proof. Since the sequence P j
total(ui...un) is bounded from above (by Betz’s law [15]), there

exists a value M such that |Ptotal(ui...uN)| ≤M over our compact set of ui. Further, since

our sequence is nondecreasing, ui are in a compact set and P j
total(ui...uN) is continuous in

ui, there exists a maximum P ≤ M , such that P j
total(ui...uN) → P as j → ∞. Thus the

sequence converges. [16] �

Lemma 2. Under the assumptions of Theorem 1, ICyCA-WF terminates at a local max-

imum.

Proof. Given the properties of Ptotal(ui, . . . un) combined with Lemma 1, it suffices to

show that the algorithm converges to a limit point that is a stationary point.

Denote zkj = (uk1, . . . , u
k
j , u

k+1
j+1 , . . . , u

k+1
N), and let {uk} represent the sequence of axial

induction factors generated by applying coordinated ascent. We see that

Ptotal(u
k) ≤ Ptotal(z

k
1) ≤ Ptotal(z

k
2) . . . ≤ Ptotal(z

k
N−1) ≤ Ptotal(u

k+1) (4.3)

18

Let ū = (ū1, . . . , ūN) be a limit point of the sequence {uk}. Equation (5.1) implies that the

sequence of {Ptotal(uk)} converges to {Ptotal(ū)}. Let {ukj |j = 0, 1, . . .} be a subsequence

of {uk} that converges to ū. From the properties of coordinated ascent and (5.1), we

have Ptotal(u
kj+1) ≥ Ptotal(z

kj
1) ≥ Ptotal(u1, u

kj
2 , . . . u

kj
N).

Taking the limit as j →∞, we obtain

Ptotal(ū) ≥ Ptotal(u1, ū2, . . . ūN) (4.4)

The idea of the remainder of the proof is to show that z
kj
1 converges to ū as j →∞. If this

is true, by symmetry we get that each z
kj
i converges to ū as j →∞ ∀i, thus guaranteeing

(5.2), and a unique maximum. Since our set of variables is compact, we note z
kj+1

1 remains

in our compact set U1. Thus a limit point, ξ̄, is a minimizer of Ptotal(u1, ū2, . . . ūn). It is

concave in each variable when all others are held fixed, so ξ̄ = ū1. Thus we see that z
kj
1

converges to ū. This argument holds for each variable, thus we see the point is stationary.

A stationary point under our assumptions of a concave, nondecreasing function is a local

maximum. �

Simulations were implemented to compare the ICyCA-WF algorithm to other methods

of solving the wind farm problem.

19

CHAPTER 5

SIMULATIONS

We can now compare the ICyCa-WF algorithm to other techniques via simulations. The

three major properties that we will use to compare the methods are:

• Axial Induction Factor Structure

• Total Power Extracted

• Runtime

We can compare each method to what we solve using an exhaustive search. By taking

the brute-force method to solve the problem (explicitly testing every possible value) we

can observe the structure that should exist for the optimal set of axial induction factors.

In general, the form of the solution is one that has the most upstream turbine that has a

higher value (implying a faster rotation and greater power extraction) because it has no

upstream effects. The central turbines are known to have similar values, and the rearmost

turbine is set to uN = 1
3
.

After solving for the different values, we can then compare the power extracted by

plugging them into the equations defining the model and observing the runtime of the

program. In theory, the runtime will be proportional to the theoretical computation

complexity. The use of exhaustive search to solve for the optimal values of the axial

induction factors requires fully exploring the U1 × U2 × · · · × UN control space. Given

some level of precision where U1 is divided into k equally spaced partitions for each of the

N turbines, to fully search the state space and identify the near-optimal values requires

O(kN) operations.

5.1 Seven-Turbine Array

We consider a string of seven turbines illustrated by Figure 6.1. This provides sufficient

complexity for exposing some of the intricacies of wake interactions but also is simple

20

enough that we can use exhaustive search over the U1 × ...× U7 range of axial induction

factors to compare directly to the axial induction factors obtained from our algorithm for

each turbine.

Figure 5.1: Seven-turbine array used for simulations.

For the seven-turbine array, a near-optimal solution for the axial induction settings,

obtained by exhaustive search, is given by

uopt = [
0.2260 0.1910 0.1940 0.1960 0.1990 0.2110 0.3333

]
All axial induction factors were initialized at ui = 0, and the search space was gridded

to resolution 1
1000

. The rearmost turbine is known a priori. Regardless of initialization,

an exhaustive search has a fixed runtime in order to test every combination.

Using our heuristic algorithm, and iterating until termination, we determine the fol-

lowing axial induction factors for the seven-turbine array

uarray = [
0.2265 0.1856 0.1874 0.1925 0.1950 0.2056 0.3333

]
This set of axial induction factors provides a power ratio of

PICyCA−WF

P ∗ = 0.9944 of the

total power possible. P ∗ was obtained by an exhaustive search, which had a runtime of

approximately 40 hours; our algorithm terminated in under 5 seconds.

Simulations were run in MATLAB on an Intel i5-3210M CPU at 2.5 GHz. We note that

our approach yields a set of axial induction factors whose structure is similar to that of the

exhaustive search. Prior works [10] focused exclusively on the near-field approximation

21

lead to the following set of axial induction factors for the same array

unear−field =[
0.0667 0.0769 0.0909 0.1111 0.1429 0.2000 0.3333

]
A graphical representation of the various results can be seen in Figure 6.2. We observe

how the near-field approximation varies in result as more turbines are included in a

string. Simulations and comparisons have also been completed for three-turbine strings

Figure 5.2: Graphical representation of axial induction factors for seven-turbine array
from Figure 6.1 for different methods. The optimal solution is found via an exhaustive
search.

with similar results. In addition, three-turbine arrays in which not all turbines have the

same y-coordinate (which only influences pij) have also yielded promising results.

5.2 Three-Turbine Configurations

To further demonstrate the efficiency of our algorithm, we consider three configurations

of three turbines: a string (Figure 2.4), an off-center string (Figure 6.3) and a tree (Figure

6.4).

22

In order to compare our algorithm, we use three additional metrics: Greedy (in which all

ui are set to 1
3
), Locally Selfish (where turbines upstream are maximized with no regard

to downstream turbines), and Exhaustive Search (where the control space is discretized

and all possible values are explored). The exhaustive search result is known to be an

approximately optimal solution for (2.7).

Figure 5.3: Three-turbine off-center string configuration.

5.2.1 Three-Turbine String

The simple example given in Chapter 2 is an excellent example to demonstrate the issues

with greedy and locally selfish metrics for axial induction factor assignments. The results

of the three metrics, along with our algorithm and the near-field solution are given in

Table 6.1.

23

Table 6.1 Axial Induction Factors for Three-Turbine String

Algorithm Axial Induction Factor [u1, u2, u3]

uGreedy = [0.3333 0.3333 0.3333]

uSelfish = [0.3333 0.2085 0.1694]

uNear−Field = [0.1429 0.2000 0.3333]

uExhaustive = [0.2320 0.2080 0.3333]

uICyCA−WF = [0.2320 0.2080 0.3333]

We can also compute and compare total power extracted as shown in in Table 6.2.

Table 6.2 Power Extracted and Runtimes for Three-Turbine String

Algorithm Total Power Extracted Runtime

Greedy 3,260 KW 0.0041 sec

Selfish 3,699 KW 0.0334 sec

Near-Field 2,610 KW 0.0271sec

Exhaustive 3,772 KW 10.8244 sec

ICyCA-WF 3,768 KW 0.0343 sec

Clearly both the greedy and selfish solutions deviate in structure from the optimal

solution, and the fact that the near-field case ignores the interaction between turbines 1

and 3 leads to a suboptimal solution. The slight discrepancy in resulting power values

between our algorithm and the exhaustive search solution is attributed to small round-

ing errors that propagate in the power equation. As the number of turbines increases,

exhaustive search becomes infeasible.

5.2.2 Three-Turbine Tree

The results for a tree-like configuration are given in Table 6.3.

Table 6.3 Axial Induction Factors Obtained for Three-Turbine Tree

Algorithm Axial Induction Factor [u1, u2, u3]

uGreedy = [0.3333 0.3333 0.3333]

uSelfish = [0.3333 0.2717 0.2717]

uExhaustive = [0.2360 0.3333 0.3333]

uICyCA−WF = [0.2360 0.3333 0.3333]

24

Table 6.4 Power Extracted and Runtimes for Three-Turbine Tree

Algorithm Total Power Extracted Runtime

Greedy 4,522 KW 0.0062 sec

Selfish 4,606 KW 0.0327 sec

Exhaustive 4,657 KW 11.0646 sec

ICyCA-WF 4,652 KW 0.0131 sec

Again we note convergence to the solution of the exhaustive case, but with much faster

termination times as seen in Table 6.4. For this case, ICyCA-WF converges faster than

the selfish algorithm, as the algorithm detects the two rearmost turbines and thus assigns

the axial induction factors immediately to 1
3
.

5.2.3 Three-Turbine Off-Center String

We now consider the off-center string and note the final axial induction factors in Table

6.5.

Table 6.5 Axial Induction Factors Obtained for Three-Turbine Off-Center String

Algorithm Axial Induction Factor [u1, u2, u3]

uGreedy = [0.3333 0.3333 0.3333]

uSelfish = [0.3333 0.2818 0.2818]

uExhaustive = [0.2920 0.2800 0.3333]

uICyCA−WF = [0.2910 0.2810 0.3333]

We can compare total power extracted and runtimes in Table 6.6.

Table 6.6 Power Extracted and Runtimes for Three-Turbine Off-Center String

Algorithm Total Power Extracted Runtime

Greedy 4,673 KW 0.008 sec

Selfish 4,712 KW 0.0269 sec

Exhaustive 4,728 KW 12.6473 sec

ICyCA-WF 4,727 KW 0.0223 sec

25

5.3 Six-Turbine Tree

To demonstrate the resiliency of our algorithm, we consider the six-turbine tree in Figure

6.4.

Figure 5.4: Six turbines arranged in a tree formation.

We immediately note how the exhaustive search algorithm terminates at basically the

same values. The differences come primarily from rounding errors.

uExhaustive = [
0.2170 0.2430 0.2440 0.3333 0.3333 0.3333

]
uICyCA−WF = [

0.2160 0.2440 0.2440 0.3330 0.3330 0.3330
]

We compare total power extracted and runtimes for all four methods. Comparing these

results to the prior ones we see as the number of turbines increases the runtime grows

exponentially.

26

Table 6.7 Power Extracted and Runtimes for Six-Turbine Tree

Algorithm Total Power Extracted Runtime

Greedy 7,851 KW 0.011 sec

Selfish 8,268 KW 0.262 sec

Exhaustive 8,656 KW 313.39 sec

ICyCA-WF 8,643 KW 0.4201 sec

27

REFERENCES

[1] A. W. E. Association, “Wind industry annual market report 2015,” 2015. [Online].
Available: http://www.awea.org/2015-market-reports

[2] J. S. Gonzlez, M. B. Payan, and J. R. Santos, “Optimal control of wind turbines for
minimizing overall wake effect losses in offshore wind farms,” EuroCon, 2013.

[3] A. Bonanni, T. Banyai, B. Conan, J. VanBeeck, H. Deconinck, and C. Lacor, “Wind
farm optimization based on cfd model of single wind turbine wake,” Wind Energy,
2015.

[4] M. A. Ahmad, S. Azuma, T., and Sugie, “A model-free approach for maximizing
power production of wind farm using multi-resolution simultaneous perturbation
stochastic approximation,” Wind Turbines, 2014.

[5] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton University Press,
1957.

[6] A. C. Aranake, V. K. Lakshminarayan, and K. Duraisamy, “Assessment of low-order
theories for analysis and design of shrouded wind turbines using cfd,” in Journal of
Physics: Conference Series, vol. 524, 2014, p. 524.

[7] J. Marden, S. D. Ruben, and L. Pao, “A model-free approach to wind farm control
using game theoretic methods,” 2013, pp. 1207–1214.

[8] D. R. VanLuvanee, “Investigation of observed and modeled wake effects at horns
rev using windpro,” 2012. [Online]. Available: http://www.mek.dtu.dk/ /me-
dia/Institutter/Mekanik/Sektioner/FVM/uddannelse/eksamensprojekt/mastertheses

[9] J. Annoni, P. Gebraad, A. Scholbrock, P. Fleming, and J. W. van Wingerden, “Anal-
ysis of axial-induction-based wind plant control using an engineering and a high-order
wind plant model,” Wind Energy, vol. 19, pp. 1135–1150, 2016.

[10] E. Bitar and P. Seiler, “Coordinated control of a wind turbine array for power
maximization,” in American Controls Conference, Washington DC, 2013.

[11] M. Rotea, “Dynamic programming framework for wind power maximization,” in
The International Federation of Automatic Control, Cape Town, South Africa, Aug.
2014.

28

[12] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY: Cambridge
University Press, 2004.

[13] S. Adlakha, R. Johari, G. Weintraub, and A. Goldsmith, “Oblivious equilibrium: an
approximation to large population dynamic games with concave utility,” in Proceed-
ings of the Workshop on Game Theory for Networks, Istanbul, Turkey, 2009, pp.
68–69.

[14] Y. Nesterov, “Efficiency of coordinate descent methods on hugescale optimization
problems,” in SIAM Journal on Optimization, Jan. 2010, pp. 341–362.

[15] A. Betz, Introduction to the Theory of Flow Machines. London: Pergamon Press,
1966.

[16] D. P. Bertsekas, Nonlinear Programming. Cambridge, MA: Athena Scientific, 1999.

29

