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Abstract— This paper presents the practical aspects and
application of a novel data-driven, fixed-structure, robust con-
trol design method. Only the frequency response data of the
system is needed for the design, and no parametric model is
required. The method can be used to design fully parametrized
continuous- or discrete-time matrix transfer function con-
trollers. The control performance is specified as constraints
on the H∞ or H2 norm of weighted sensitivity functions,
and a convex formulation of the robust design problem is
proposed. An application of the presented method is explored
on an experimental setup, where a multivariable controller for
a gyroscope is designed based only on the measured frequency
response of the system.

I. INTRODUCTION

While model-based robust control design techniques have
developed into powerful tools, practitioners often shy away
from their use. Identifying a good parametric model can
be difficult, and is often deemed too time-consuming and
expensive in an industrial environment. On the other hand, it
is generally straightforward to obtain the frequency response
of a system, which is a popular and intuitive tool among prac-
titioners. This fact, combined with the ubiquity of sensors in
modern devices, makes data-driven control design methods
a very attractive alternative in industrial applications [1], [2].

In recent times, several methods have been devel-
oped in the literature that combine data-driven methods
with optimization-based robust control design by taking
a frequency-domain approach. This makes it possible to
achieve significantly better performance than previous data-
driven methods.

Several convex approaches to design linearly parametrized
(LP) controllers for SISO systems with a desired gain and
phase margin have been proposed [3], [4]. A method to
design LP controllers with loop shaping or H∞ performance
has been developed in [5], [6], [7], and is extended to MIMO
systems in [8] with the use of Gershgorin bands.

Another approach for the robust design of LP-MIMO
state-space controllers is presented in [9]. A method to design
MIMO-PID controllers based on a linear approximation of
convex-concave constraints was developed in [10], [11],
although no proof of stability is given. The method is
further extended in [12] and applied in [13]. In [14] a non-
smooth method is used to directly solve the convex-concave
optimization problem to compute fixed-structure controllers
with a wide range of performance specifications. However,
a common limitation of the discussed approaches is that the

C. Kammer and A. Karimi are with the Laboratoire d’ Automatique,
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performance can only be specified in the H∞ and not in the
H2 sense.

The focus of this paper is on a novel data-driven method
developed in [15]. The method can be used to design
fixed-structure, robust controllers based on the frequency
response of multivariable systems and convex optimiza-
tion. This paper aims to discuss some practical aspects
of this method, and presents two comprehensive examples
that demonstrate its applicability. The method allows the
design of fully parametrized, multivariable transfer-function
controllers either in continuous- or directly in discrete-time,
which allows to skip the controller discretization step. Unlike
the methods discussed above, the control performance can
be specified as constraints both on the H2 and H∞ norm of
any weighted sensitivity function. This allows for an intuitive
and powerful problem formulation that is well suited for a
large range of real-world control problems. It is also shown
how the controller synthesis can be formulated as a convex
optimization problem with linear matrix inequality (LMI)
constraints.

The method has been applied in [16] to design monovari-
able data-driven controllers for an atomic force microscope,
and in [17] to synthesize a controller for a power converter
at CERN. In this paper, a more general perspective with a
focus on multivariable systems is considered.

The paper is structured as follows. In Section II a the-
oretical exposition of the control design method is given.
Section III treats the design of a multivariable discrete-time
controller for a Gyroscope based only on the measured fre-
quency response, and validates the achieved performance on
an experimental setup. The paper end with some concluding
remarks.

II. CONTROL DESIGN METHOD

This section will present an overview of the control design
method and discuss the formulation and implementation of
various typical performance specifications. For reasons of
space only an abbreviated version of the method will be
presented. A full theoretical exposition can be found in [15].

A. Frequency Response Data

The system to be controlled is a Linear Time-Invariant
multivariable (LTI-MIMO) system represented by its fre-
quency response G(jω) ∈ Cn×m, where m is the number
of inputs and n is the number of outputs. For the rest of the
paper it is assumed that the Shannon theorem is satisfied for
discrete-time responses such that G(ejω) = G(jω), and for



ease of notation only G(jω) is used. Further, define ω ∈ Ω,
with

Ω =

{
ω

∣∣∣∣− π

Ts
≤ ω ≤ π

Ts

}
(1)

where Ts is the controller sampling time.
The control design method is data-driven in the sense

that G(jω) can be measured directly (e.g. sweep), or easily
obtained from time-domain measurement data (e.g. Fourier
analysis). Unlike with classical robust design methods, no
parametric model is required, and no system identification
step is necessary. Another advantage of using frequency
response data as opposed to a state-space model is that time
delays are represented exactly.

B. Controller Structure

The controller is defined as a fixed-structure matrix trans-
fer function and can be formulated either in continuous- or
discrete-time. As they are analogous, for reasons of space
only the discrete-time definition is given. The controller is
defined as K = X(z)Y (z)−1, with:

X(z) = (Xpz
p + . . .+X1z

1 +X0) ◦ Fx

Y (z) = (Izp + . . .+ Y1z
1 + Y0) ◦ Fy (2)

where Xi ∈ Rm×n and Yi ∈ Rn×n are numerical matrices
containing the controller parameters. The transfer function
matrices Fx, Fy contain desired fixed-terms that should be
contained in the final controller, such as integrators or noise
models, and ◦ denotes the element-wise matrix multiplica-
tion.

This form is able to accommodate a wide range of
controllers (e.g. MIMO-PID, centralized, decentralized and
distributed), and thanks to the full parametrization the order
and structure can be chosen freely as part of the design
specifications.

C. Control Specifications

Control specifications can be expressed as constraints on
the norms of weighted sensitivity functions. It is interesting
to note that there is no limitation on the formulation of
the weighting filters W (jω), which can be defined e.g. as
transfer functions, scalar values, or arbitrary non-smooth
functions such as piece-wise continuous functions. We recall
some typical specifications in this section.

Performance: A classical performance criterion is to
minimize the tracking error of a desired reference signal
(e.g. step, ramp) in the time-domain, which is equivalent
to minimizing the following H2 norm:

min
X,Y
‖W1S‖2 (3)

where S = (I + GK)−1 is the sensitivity function and W1

is the Laplace transform of the reference signal.
Another typical performance specification is to minimize

the H∞ norm of weighted sensitivity functions:

min
X,Y
‖WH‖∞ (4)

where H can be any closed-loop sensitivity function and W
is the performance weight.

The method also accommodates loop shaping, where the
objective is to design a controller such that the open-loop
transfer function L = GK is close to a desired open-loop
transfer function Ld:

min
X,Y
‖L− Ld‖2 (5)

The presented objective functions also lead to a decoupling
of the closed-loop system if the performance criteria are
chosen properly.

Robustness: Robust stability for multiplicative uncertainty

G = G(I +W2∆), ‖∆‖∞ < 1

and additive uncertainty

G = G+W3∆, ‖∆‖∞ < 1

can be guaranteed by constraining the weighted closed-loop
sensitivity T = GK(I +GK) and the input sensitivity U =
K(I +GK), respectively :

‖W2T‖∞ < 1 ; ‖W3U‖∞ < 1

Finally, if a system with different frequency responses in
different operating points is considered, this can be repre-
sented by a multimodel uncertainty set. This allows to design
a robust controller that guarantees the performance for all
operating points. Define the multimodel set as:

G(jω) = {G1(jω), G2(jω), . . . , Gg(jω)} (6)

This can easily be included in the presented framework by
formulating the desired performance specifications for each
different model.

D. Convex Formulation of Robust Control Design Problem

The standard robust control design problems formulated
in the previous section can be cast as a convex optimization
problem with linear matrix inequality (LMI) constraints,
which can be solved efficiently using standard solvers. The
theoretical formulation leads to an infinite number of con-
straints (one for every frequency). A practical way to solve
this issue is to define a frequency grid ΩN = {ω1, . . . , ωN}
with:

ω1 ≥ 0, ωN =
π

Ts
(7)

where Ts is the sampling time of the controller. Then, a
set of constraint is formulated for each frequency point. The
number of points should be high enough to properly represent
the dynamics of the plant. Special care should be taken to
include the resonance frequencies of the plant, to ensure the
constraints are not violated at these points.

Furthermore, an initial controller Kc = XcY
−1
c is required

for the design that satisfies the following conditions:
1) The initial controller Kc and the final controller K

must share the same poles on the stability boundary
(the imaginary axis for continuous-time or the unit
circle for discrete-time controllers).



2) The order of det(Y ) must be equal to the order of
det(Yc).

It should be noted that condition 2 is not restrictive in
practice. Any initial controller of lower order than the final
controller can be augmented without changing its dynamics
by adding an appropriate number of stable zeros and poles
in Xc and Yc such that they cancel each other.

The following paragraphs show a convex formulation of
the example performance constraints in Section II-C. A thor-
ough description on how to derive the convex formulation for
other sensitivity constraints is given in [15].

Performance: Assuming a suitable frequency grid and
initial controller, the performance specification min ‖WtS‖2
in (3) can be formulated as:

min
X,Y

N∑
k=1

trace(Γk) (8)

subject to:[
Γk WtY

(WtY )∗ P ∗Pc + P ∗c P − P ∗c Pc

]
(jωk) > 0

Y ∗Yc + Y ∗c Y − Y ∗c Yc > 0

for all ωk ∈ ΩN , where (·)∗ denotes the conjugate transpose
and Γk ∈ {Γ1, . . . ,ΓN} is an auxiliary matrix variable, with
P = Y + GX and Pc = Yc + GXc. The second constraint
is necessary to guarantee the stability of the closed-loop
system. It is also important to note that if the frequency
points in ΩN are not linearly spaced, a weighted 2-norm
will be minimized.

For the infinity-norm in (4), as an example the convex
LMI formulation of min ‖W1S‖∞ is:

min
X,Y

γ (9)

subject to:[
P ∗Pc + P ∗c P − P ∗c Pc (W1Y )∗

W1Y γI

]
(jωk) > 0

Y ∗Yc + Y ∗c Y − Y ∗c Yc > 0 , ∀ωk ∈ ΩN

where γ ∈ R is an auxiliary variable.
The loop-shaping problem min ‖L − Ld‖2 from (5) can

be formulated as:

min
X,Y

N∑
k=1

trace(Γk) (10)

subject to:[
Y ∗Yc + Y ∗c Y − Y ∗c Yc (GX − LdY )∗

GX − LdY Γk

]
(jωk) > 0

∀ωk ∈ ΩN

Robustness: The constraints ‖W2T‖∞ < 1 and
‖W3U‖∞ < 1 can be formulated as:[

P ∗Pc + P ∗c P − P ∗c Pc (W2GX)∗

W2GX I

]
(jωk) > 0 (11)[

P ∗Pc + P ∗c P − P ∗c Pc (W3X)∗

W3X I

]
(jωk) > 0

Fig. 2. The gyroscope experimental setup by Quanser.

for all ωk ∈ ΩN .
The multimodel uncertainty from (6) can be included by

formulating a set of constraints for each model. Let Pi =
Y + GiX and Pci = Yc + GiXc. Taking the sensitivity
problem in (9) as an example, the convex formulation of
this problem including the stability constraint would be:

min
X,Y

γ

subject to:[
P ∗i Pci + P ∗ciPi − P ∗ciPci (W1Y )∗

W1Y γI

]
(jωk) > 0

Y ∗Yc + Y ∗c Y − Y ∗c Yc > 0 (12)
for i = 1, . . . , g ; ∀ωk ∈ Ωk

E. Iterative Algorithm

Solving the optimization problem formulated in the previ-
ous section results in a suboptimal controller K around the
initial controller Kc. Since the obtained performance can
be quite far from the optimal value for the first solution,
an iterative approach is used. The optimization problem is
solved multiple times by using the obtained controller K as
new initial controller Kc. It can be shown that this iterative
approach converges to a local optimal solution of the initial
non-convex problem. The procedure can be stopped once
the change in the objective function is small enough, which
generally happens within less than 10 iterations.

III. DATA-DRIVEN CONTROL OF A GYROSCOPE

This experimental example presents the design of a data-
driven, robust multivariable controller with multimodel un-
certainty to control the gimbal angles of a gyroscope. The
controller is then applied on the experimental setup to
validate the performance.
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Fig. 1. The measured frequency response of the blackbox model G at different disk speeds. The blue line is the response at a disk speed of 300 rpm,
red at 400 rpm and yellow at 500 rpm.
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Fig. 3. Block diagram of the cascaded controller structure of the gyroscope.

A. Experimental Setup

The experiment was conducted on a 3 DOF gyroscope
setup built by Quanser (see Fig. 2). The system consists of
a disk mounted inside an inner blue gimbal, which is in turn
mounted inside an outer red gimbal. The entire structure is
supported by the rectangular silver frame. The disk, both
gimbals and the frame can be actuated about their respective
axis by electric motors, and their angular positions can be
measured using high resolution optical encoders. For this
experiment, the position of the silver frame is mechanically
fixed in place. The control objective is to achieve a good
tracking performance on the angular positions of the blue
and red gimbal and to minimize the coupling between the
axes. The dynamics of the system change depending on the
angular velocity of the disk, which is included in the control
design as a multimodel uncertainty.

B. Frequency Response

The gyroscope is a strongly nonlinear system, and linear
control design methods only achieve good performance in a
small range around the operation points. In order to improve
this range, a cascaded control architecture was chosen, with

a feedback linearization forming the inner loop. The block
diagram in Fig. 3 shows the structure of the system, where
Gm is the real plant and Kfl is the feedback linearization
controller. The closed-loop response of the inner loop is
taken as the new plant G, which is used to design the outer
controller K.

The variables θ = [θb, θr]
T and θ∗ = [θ∗b , θ

∗
r ]

T are vectors
containing the measured and desired blue and red gimbal
angles, and θu = [θub, θur]

T are the reference gimbal angles
given to the feedback linearization.

The black box model G therefore has 2 inputs and 2
outputs, and a single-channel excitation is applied to cal-
culate the frequency response of G. A PRBS signal with an
amplitude of ±10◦, a length of 511 samples and a sampling
time of 20 ms was applied for 4 periods to θub and θur
respectively. The non-excited input was set to zero during the
process. The frequency response was calculated in Matlab
using the spa command with a Hann window length of
150. The frequency response was measured for the three
different disk velocities v = [300, 400, 500] rpm, resulting
in three models G = [G1, G2, G3]. The frequency responses
are shown in Fig. 1. It can be seen that the coupling and
resonance modes become stronger at higher disk speeds.

C. Control Design Formulation
Based on the three frequency responses, a multivariable

controller is designed. The goal is to decouple the system
while also achieving good tracking performance of the
reference angles θ∗. Therefore, as objective function we
choose to minimize the 2-norm ‖L−Ld‖2 between the actual
open-loop transfer function L and desired open-loop transfer
function Ld = ωc

s I , where a bandwidth of ωc = 4 rad/s is
desired for the decoupled system.
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Fig. 4. Bode magnitude plots of the desired open-loop transfer function Ld and the achieved L1,2,3 for the three different plant models. The blue line
is the achieved response at a disk speed of 300 rpm, red at 400 rpm and yellow at 500 rpm. The desired Ld is shown in dashed purple.

To limit the overshoot and to guarantee the resonance
mode at 10 rad/s is sufficiently damped, an additional H∞
constraint is put on the complementary sensitivity function:

‖W2T‖∞ < 1 , W2(jω) =
jω + 6.5

1.05 · 6.5I (13)

where W−12 has the form of a low-pass filter to ensure a roll-
off at high frequencies. The fact that W2 is not proper does
not create any problem in practice because the constraints
are evaluated only for finite values of ω. To prevent input
saturation, a constraint on the input sensitivity is included:

‖W3U‖∞ < 1 , W3 = 0.05I (14)

where the magnitude of the weighting filter is chosen based
on the expected worst-case disturbance.

A 5th-order discrete-time controller with a fixed integrator
and a sampling time Ts = 0.04 s is chosen. This leads to
the following structure:

X = X4z
4 +X3z

3 +X2z
2 +X1z +X0 (15)

Y = (Iz4 + Y3z
3 + Y2z

2 + Y1z + Y0) ◦ (z − 1)I

where Xi ∈ R2×2 is a full matrix and Yi ∈ R2×2 is a
diagonal matrix (i.e. the off-diagonal elements are fixed to
zero). Fixing the structure of Y to be diagonal is useful in
practice, as it greatly simplifies the calculation of the inverse
and preserves the order of the controller. Note that the desired
Ld and the weighting filters can be in continuous-time, while
the designed controller is in discrete-time.

The optimization problem is sampled using N = 500
frequency points in the interval ΩN =

[
10−1, 25π

]
(the

upper limit being the Nyquist frequency of the controller).
The lower limit is chosen greater than zero in order to

guarantee the boundedness of L − Ld. In fact a weighted
two-norm of L− Ld which is bounded is minimized.

The constraint sets are formulated for each of the three
models [G1, G2, G3], resulting in the following optimization
problem :

min
X,Y

3∑
i=1

N∑
k=1

trace[Γki ]

subject to:[
Y ∗Yc + Y ∗c Y − Y ∗c Yc (GiX − LdY )∗

GiX − LdY Γki

]
(jωk) > 0[

P ∗i Pci + P ∗ciPi − P ∗ciPci (W2GiX)∗

W2GiX I

]
(jωk) > 0[

P ∗i Pci + P ∗ciPi − P ∗ciPci (W3X)∗

W3X I

]
(jωk) > 0

k = 1, . . . , N ; i = 1, 2, 3

As the gyroscope is a stable system, the initial controller
was chosen as an integral controller with low gain. Further-
more, the condition on the order of the initial controller is
satisfied by augmenting it with the right number of poles
and zeros at 0: Xc = 0.01z4I and Yc = z4(z − 1)I . It
is important to note that Yc has to contain an integrator to
satisfy the first condition on the initial controller.

The optimization problem is implemented in Matlab using
Yalmip [18], and solved with Mosek [19]. The iteration con-
verges to a final controller in 10 steps. The Bode magnitude
plots of Ld and the obtained L1,2,3 for the three different
plant models are shown in Fig. 4. It can be seen that the
designed controller approximates the desired loop shape well
at low frequencies, and that the system is well decoupled.
The singular value plots of the obtained closed-loop and
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Fig. 6. Step response of the blue and red gimbal angles during a varying
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input sensitivity are displayed in Fig. 5. It can be seen that
the constraints are satisfied for all three plant models.

D. Experimental Results

To validate the results, the controller was applied on the
experimental setup. The step responses of the blue and red
gimbal angle were measured for varying disk speeds, and the
results are shown in Fig. 6. It can be seen that the decoupling
is good, and that the multimodel uncertainty introduced by
the varying disk speed is handled well. The rise time is
0.625 s for the blue and 0.486 s for the red gimbal angle,
which matches well the desired bandwidth specified for Ld.
Furthermore, the overshoot is limited to less than 10 %.

IV. CONCLUSION

A data-driven method for the robust design of fixed-
structure multivariable controllers was presented. The
method enables the design of complicated controllers with
both H2 and H∞ control specifications based solely on
the frequency response of the system, and no modeling or
system identification is required. An example demonstrated
the design a low-order multivariable controller for a 2-DOF
gyroscope, and the achieved performance was validated on
an experimental setup.
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