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Abstract—This paper presents a three dimensional guidance
strategy for fixed-wing UAVs using quaternions. The algorithm
is based on constructing two quaternions, one which makes the
UAV fly towards the path and one that makes the UAV follow the
path. These two quaternions are then blended together such that
the path-following objective is reached. The guidance algorithm
is applied to a simple kinematic model for a fixed-wing UAV with
a simple kinematic controller. Simulations are provided to show
the potential of this approach.

I. INTRODUCTION

In the last decades there has been significant impovements
in technology which has contributed to the possibility of
designing small and cheap autonomous aircraft. The potential
applications for these autonomous vehicles are vast, but the
increased autonomy means that robust and reliable algorithms
needs to be developed to ensure safe operation. The algorithms
that generate desired states based on the actual state of the
system and a certain mission for the control system to follow
are often called guidance algorithms. In most cases the mission
to be solved is stated as a geometric mission such as staying
on some predefined path termed path-following.

A lot of work has been devoted to path-following within
robotics and several algorithms have been developed. One of
the most studied guidance methods is the Line-of-Sight (LOS)
guidance approach. It has successfully been applied to surface
vehicles [1], underwater vehicles [2] and UAVs [3]. In [4]
path-following using LOS guidance in 2D was thoroughly
analysed and solved in the ideal case of no disturbances. It
was also shown how 3D path-following can be divided into
a horizontal plane and a vertical plane, effectively reducing
the 3D path following problem into two 2D path following
problems. This approach for solving the 3D path-following
problem has been widely used in literature, for instance in [5],
[6] where LOS guidance is incorporated into the dynamics
of the vehicles. There has also been considerable research
on disturbance rejection for LOS-guidance cf. [7], [8] and
references therein.

In recent years other guidance algorithms have also been
developed. In [9] the authors derive a nonlinear path-following

approach adapted from pure-pursuit methods. In [10] an LQR
guidance based method is derived for straight line and circular
path-following. Another path-following strategy is the vector-
field type guidance algorithms [11], [12] and [13] where
a vector field for the course angle is made to drive the
UAV towards the desired path. A survey of two dimensional
guidance algorithms applied to a kinematic model for a fixed-
wing UAV can be found in [14]. The vector-field methods have
also been extended to 3D in [15] and n-dimensions in [16].

A problem with previous approaches of dividing the guid-
ance into a horizontal and vertical plane is that those methods
assumes that there is little cross-coupling between the longi-
tudinal and lateral motion of the UAV which in many cases
is not accurate. Additionaly in most of the research on path-
following, Euler angles are used to formulate the guidance
strategies and seemingly less research has been done to design
three dimensional path-following strategies using quaternions.
It is desirable to develop guidance algorithms that allow for
the coupling between longitudinal and lateral motion. In [17]
conventional LOS guidance was converted to quaternion form
and in [18] a quaternion path-following controller was derived
for acrobatic maneuvers. To the authors best knowledge little
work outside of this exists on three dimensional guidance of
underactuated vehicles using quaternions.

The contribution of this paper is a three-dimensional quater-
nion based guidance approach for general paths such as
splines. The work is an extension of [19] where a similar
guidance approach is developed for straight lines and circles.
The proposed algorithm separates the path-following mission
into first converging to the path and then following the path
and for each task a quaternion is constructed to ensure that the
task is fulfilled. The proposed algorithm takes advantage of
the fact that summing unit-quaternions representing rotations
yields average or blended rotations and the two quaternions
are blended together such that the overall mission of path-
following is solved. A blending functions that will blend
the two quaternions is presented. The proposed method is
compared to results presented in [20] and it shows good
performance.



This paper is organized in the following way, Section II
introduces quaternions, and some useful properties. Section
III details the kinematic model for the aircraft. Section IV
introduces the quaternion guidance algorithm. In Section V
the stability of the proposed guidance method is analysed.
In Section VI a simple kinematics controller is presented. In
Section VII simulations are performed to show the potential of
the approach and a brief conclusion is given in Section VIII.

II. PRELIMINARIES

A. Notation

Vectors are denoted by lower-case bold letters while scalars
are non-bold for instance x ∈ Rn is an n-dimensional real
vector while a ∈ R is a real scalar. A positive real scalar
number a > 0 is written as a ∈ R+. The time derivative of a
vector is denoted as ẋ = dx

dt . Superscripts are used to denote
the reference frame a vector is expressed in, for instance xA ∈
R3 is a three dimensional vector in frame FA. The inner-
product between two vectors x ∈ Rn and y ∈ Rn is written
as 〈x,y〉 = xTy. The euclidian norm is denoted as ‖x‖ =
〈x,x〉 12 .

B. Reference frames

NED frame: This frame denoted Fn has the x-axis point-
ing north, the y-axis pointing east and the z-axis pointing down
completing the right-handed system and it is also assumed to
be inertial.

Body frame: This frame denoted Fb is fixed to the UAV’s
centre of mass. The x-axis points through the front of the UAV,
y-axis is normal to the UAVs plane of symmetry and the z-
axis points downwards completing the right handed coordinate
reference frame.

Wind frame: This frame denoted Fw differs from the
UAV’s body frame by the aerodynamic angles α and β
denoting the angle of attack and sideslip angles respectively.
The x-axis is aligned with the air-relative velocity vector of
the UAV.

Path frame: This coordinate reference frame denoted Fp
has its origin on the desired path at the point closest to the
UAV and the orientation of the frame is aligned with the
desired path. The path-following goal of the UAV is to align
with this frame when it is on the path.

Cross-track frame: This coordinate reference frame de-
noted Fc has its origin fixed to the UAV’s centre of mass.
The x-axis of this frame points towards the point on the path
which is closest to the position of the UAV.

C. Quaternions

In this section a brief overview of quaternions are given, for
a more complete formulation consult [21] or [22]. Quaternions
are well known to offer a singularity free parameterization of a
rigid-body’s orientation using only four parameters in contrast
to nine parameters for the direction cosine matrices. Similary
to direction cosine matrices they can also be used to transform

vectors between reference frames. A vector ub ∈ R3 can be
rotated from Fb to Fn by the use of the sandwich product

un = qn,b ⊗ ub ⊗ q∗n,b (1)

where the quaternion product for two arbitrary quaternions
q1 =

[
q1,0 q1,v

]
and q2 =

[
q2,0 q2,v

]
is defined as

q1 ⊗ q2 =

[
q1,0q2,0 − qT1,vq2,v

q1,0q2,v + q2,0q1,v + q1,v × q2,v

]
, (2)

and (·)∗ is the quaternion conjugate q∗ =
[
q0 −qv

]T
. The

norm of a quaternion can be defined through the quaternion
product as

‖q‖ =
√
q∗ ⊗ q

and should always be equal to unity to ensure that lengths
are preserved when using (1). Therefore in this paper all
quaternions are assumed to belong to H̄ = {q ∈ H : ‖q‖ = 1}.
Several quaternions can also be combined using the quaternion
product to represent composite rotations as

qa,c = qa,b ⊗ qb,c

and difference in rotations can be defined as

qb,d = q∗a,b ⊗ qa,d.

The quaternion kinematics is defined as [21]

q̇a,b =
1

2
ωaa,b ⊗ qa,b =

1

2
qa,b ⊗ ωba,b (3)

where ω
(·)
a,b ∈ R3 is the angular velocity of Fb relative to

Fa, expressed either in Fa or Fb. It is possible to interpolate
between quaternions and many methods have been developed
[22]. The simplest interpolation method is linear interpolation,
given two quaternions qa and qb they can be interpolated as

qc = (1− h)qa + hqb (4)

where h ∈ [0, 1]. When h = 0 the quaternion qc is equal to qa,
but as h tends towards 1 the quaternion qc will tend towards
qb. Since it is a simple linear interpolation qc will in general
not be a unit-quaternion and would have to be normalized.

D. Hermite splines
Given a set of n points pi ∈ R3 and corresponding n

tangents mi ∈ R3, i = 1, 2..., n the parametric cubic hermite
spline polynomial is defined as

p(θ) = H1(θ)pi +H2(θ)pi+1 +H3(θ)mi +H4(θ)mi+1 (5)

where θ ∈ [0, 1] is the path parameter and the coefficients H1,
H2, H3 and H4 are the hermite coefficients defined as

H1(θ) = 3

(
θi+1 − θ

hi

)2

− 2

(
θi+1 − θ

hi

)3

(6)

H2(θ) = 3

(
θ − θi
hi

)2

− 2

(
θ − θi
hi

)3

(7)

H3(θ) = −hi
(
θi+1 − θ

hi

)3

+ hi

(
θi+1 − θ

hi

)2

(8)

H4(θ) = hi

(
θ − θi
hi

)3

− hi
(
θ − θi
hi

)2

(9)



where hi = θi+1 − θi. A well known application of hermite
splines is to interpolate between a set of n waypoints with
Wi =

[
xi yi zi

]
for i = 1, 2, 3....n − 1, n, such that the

global curve is C1 continuous. To construct a hermite spline
interpolated path a set of θi needs to be defined such that when
inserted into (5) they yield

p(θi) = Wi

with θ1 = 0 and θn = 1. The length of the path can be
approximated as

ρ =

n−1∑
i=1

‖Wi+1 −Wi‖

and can be used to partition the path parameter such as for
any 1 ≤ m < n the path parameter can be calculated as

θm+1 = θm +
‖Wm+1 −Wm‖

ρ
.

There are several ways to define the tangent vectors for
instance in [23] the tangents are defined to perserve monoticity,
however in this paper they are defined through the three point
difference formula

mi =
1

2

(
Wi+1 −Wi

θi+1 − θi
+

Wi −Wi−1

θi − θi−1

)
with start and end tangents defined as

m1 =
W2 −W1

θ2 − θ1
mn =

Wn −Wn−1

θn − θn−1
.

To calculate the tangent at an arbitrary point the derivative with
respect to time of (5) is needed which involves the derivative
of (6)-(9) with respect to the path parameter. The tangents
vector can be calculate as

m(θ) = H ′1(θ)pi +H ′2(θ)pi+1 +H ′3(θ)mi +H ′4(θ)mi+1

(10)
where H ′i(θ) denotes the derivative of basis function i with
respect to the path parameter.

III. MODELING

A kinematic model of a fixed-wing UAV can be expressed
using quaternions as

ṗn = qn,w ⊗ vw ⊗ q∗n,w (11)

q̇n,w =
1

2
qn,w ⊗ ωwn,w (12)

ω̇wn,w = kω
(
ωwc − ωwn,w

)
(13)

where pn ∈ R3 is the UAV’s inertial position, vw ∈ R3 is the
UAV’s velocity in the wind frame, qn,w ∈ H̄ is the quaternion
expressing the orientation of the wind frame with respect to
Fn, ωwn,w ∈ R3 is the angular velocity of Fw relative to Fn
expressed in Fw, ωwc ∈ R3 is the commanded angular velocity
to be defined later and kω ∈ R+ is some constant gain used
in (13) to mimic the behaviour of a low-level auto-pilot. It is

assumed that there is no wind and the air-relative velocity in
the wind frame is defined as

vw =
[
V 0 0

]T
.

It is further assumed that the velocity of the UAV is held
constant while in flight, 0 < βV ≤ V . The wind frame angular
velocity is defined as

ωwn,w =
[
pw qw rw

]T
.

This kinematic model describes a fixed-wing UAV in 6-
DOF motion with four actuators making it underactuated.
This implies that there are constraints on the motion of
the UAV and it cannot be made to follow arbitrary paths.
However, although the UAV is underactuated when viewed in
6-DOF it can be seen as fully actuated if only the rotational
motion is considered which is part of the motivation for using
quaternions.

IV. GUIDANCE

The guidance objective can be separated into two tasks
where the first task is to converge to the path by minimizing the
cross-track error. The second task is to follow the path when
the UAV is on it. The desired path which a UAV should follow
is often a combination of straight lines which are smoothed
using piecewise polynomial functions such as hermite splines.
Therefore in this section we derive the guidance algorithm to
solve the problem of following a spline smoothed path.

A. Converging to path

To ensure that the UAV converges to the path a quaternion
representing the cross-track error needs to be defined. The
difference between the closest point to the UAV on the
path and the UAV position defines a direction which always
points towards the path. This direction can be expressed as a
quaternion qn,c such that when q∗n,w ⊗ qn,c = qI the UAV
is flying towards the path. The closest point on a path to the
UAV can be found through the optimization problem

min
θ∈[0,1]

‖pn(θ)− pn‖2 (14)

where pn(θ) is the path and pn is the position of the UAV
in Fn. The θ0 which minimizes (14) can be found by using
optimization methods such as Newton’s method. The initial
θ0 for the optimization algorithm is found by sampling the
path and choosing the θ that yields the smallest distance. The
cross-track is then defined as the difference between the closest
point and the UAV position, i.e.

pwe = q∗n,w ⊗ (pn(θ0)− pn)⊗ qn,w.

The cross-track quaternion should be defined such that

pwe = qn,c ⊗ pcc ⊗ q∗n,c (15)

where pcc =
[
‖pwe ‖ 0 0

]
. This is done by defining the

rotation angle

θc = arccos
pcTc pwe
‖pwe ‖‖pcc‖

(16)



and rotation axis
kc =

pcc × pwe
‖pcc × pwe ‖

. (17)

The cross-track quaternion qw,c can then be calculated as

qw,c =
[
cos θc2 kc sin θc

2

]
(18)

where the cross-track quaternion represents the relation be-
tween Fc and Fw. The quaternion qn,c is then found by

qn,c = qn,w ⊗ qw,c. (19)

B. Following path

When the UAV is on the path a quaternion needs to be
defined that enables the UAV to follow the path. Since space
curves inherently have the Serret-Frenet frame defined at each
point on the curve it is a natural choice to use this as a basis for
the path quaternion. There are however possible other choices
such as rotation minimizing frames [24] and parallel transport
frames [25], but in this work Serret-Frenet frames are used
because of their simplicity. Only the tangent vector will be
used to construct the quaternion since the UAV should be
allowed to freely rotate around the tangent vector to generate
necessary accelerations. The rotation angle is defined as

θp = arccos
(
iT tw

)
(20)

and the rotation axis is defined as

kp =
i× tw

‖i× tw‖
. (21)

where i =
[
1 0 0

]
and tw is the tangent vector of the

path at point pn(θ0) expressed in the wind frame. The path
quaternion qn,p can then be calculated as

qw,p =
[
cos

θp
2 kp sin

θp
2

]
(22)

which represents the relation between Fp and Fw. The quater-
nion qn,c is then found by

qn,p = qn,w ⊗ qw,p. (23)

C. Combining goals

The two quaternions qn,p and qn,c should be blended in
such a way that they ensure that the UAV converges to path and
then follows it. To blend the quaternions a blending function
as specified in (4) of the form

qn,d = (qn,p − qn,c)(1− tanh (k1‖pne ‖)) + qn,c (24)

is used, where k1 ∈ R+. The function behaves in the way that
when ‖pne ‖ → ∞ then tanh (k1‖pne ‖) → 1 which implies
that qn,d → qn,c which will guide the UAV towards the
path. When the UAV approaches the path ‖pne ‖ → 0 such
that tanh (k1‖pne ‖) → 0 which implies that qn,d → qn,p so
that the UAV follows the path. The gain k1 can be tuned to
give a satisfactory blending between the two quaternions. The
error quaternion which represents the rotation from the desired
orientation to the UAV orientation is defined as

qe = q∗n,w ⊗ qn,d. (25)

V. STABILITY ANALYSIS

Let the error be defined as

en = pnd − pn (26)

with corresponding error kinematics

ėn = ṗnd − ṗn (27)

where the desired velocity is the projection of ṗn along the
path tangent at point pn(θ0). Consider the Lyapunov function
candidate

V (en) =
1

2
(en)

T
en (28)

which is positive definite and radially unbounded. The deriva-
tive of (28) along the system trajectories is

V̇ = (en)
T

(ṗnd − ṗn). (29)

Assume that there is an ideal rotational autopilot that ensures
that qn,w = qn,d where the desired quaternion is defined
by (24). Inserting (11) into (29) and using qn,w = qn,d the
derivative becomes

V̇ =enT
(
V cos θunp − (hqn,p+

(1− h)qn,c)⊗ vd ⊗ (hqn,p + (1− h)qn,c)
−1
)

(30)

with h = 1 − tanh (k1‖pne ‖). Since en represents the vector
from the UAV to the closest point on the path it will always be
perpendicular to the tangent unp at that poiny and it is therefore
obtained

V̇ =− enT (hqn,p + (1− h)qn,c)⊗ vd ⊗ (hqn,p+

(1− h)qn,c)
−1
. (31)

When h → 0 it implies that ‖en‖ → ∞ and subsequently
the blending yields qn,c ⊗ vc ⊗ q−1n,c which is anti-parallel to
en which implies that V̇ is negative definite. When h→ 1 it
implies that ‖en‖ → 0 and the blending yields qn,p⊗vp⊗q−1n,p
which in perpendicular to en and the scalar product would give
0, but that implies en =

[
0 0 0

]
and the UAV is therefore

on the path. Whenever h ∈ (0, 1) the quaternion qn,d lies
between qn,c and qn,p so that vn can always be decomposed
into an anti-parallel part and an perpendicular part to en which
implies that V̇ is negative.

VI. KINEMATIC CONTROL

To ensure that the UAV aligns itself with the desired
orientation an appropriate ωwc should be defined. As this is
not the main topic of the paper the following commanded
angular velocity is chosen

ωwc = kcsign(q0)qv (32)

where qe =
[
q0 qv

]T
is the error quaternion defined in (25)

while kc ∈ R+. The control law avoids quaternion unwinding,
but it is discontinuous at q0 = 0.



Fig. 1. Top view of the UAV following an hermite spline interpolated path.

Fig. 2. The waypoints differ in height up to 250 meters.

Fig. 3. Cross-track error between the UAV and the interpolated path.

Fig. 4. UAV following path with k1 = 0.02.

Fig. 5. Cross-track error between the UAV and the path.

Fig. 6. The guidance method is being used to also provide collision avoidance
functionality.

VII. SIMULATION

A. Scenario 1: Hermite spline interpolated waypoints

In this scenario the UAV is set to follow a hermite intepo-
lated path. The initial conditions of the UAV are set to

pn =
[
−50 −10 100

]T
, vw =

[
20 0 0

]T
qn,w =

[
1 0 0 0

]T
, ww

n,w =
[
0 0 0

]T
.

while the autopilot gain is set to kω = 2, the controller gain is
set to kc = 2 and the blending factor is set to k1 = 0.01. As
can be seen in Figure 1 and Figure 2, the UAV converges to the
path and then follows it. In Figure 3 the norm of the position
error is shown and it can be seen that the error increases
near the waypoints of the path which can also be observed
in Figure 1. This is mainly because the UAV is only acting
on information provided at the current closest point on the
path and to reduce the error some sort of feedforward term is
needed in the kinematic controller. There are several ways to
add a feedforward term to the kinematic controller for instance
by including information about the path in from of the UAV
or by formulating an angular velocity of the path that the UAV
follows when there is no orientation error.

B. Scenario 2: Comparison with [20]

In [20] several guidance methods such as Lookahead,
NLGL, PLOS and Vector Field Guidance were extended to
three dimensions and compared. The guidance method in this
paper is applied to the comparison scenario of [20] with
kc = 20. The kinematics in (13) is omitted and ωwn,w is set
to be equal to ωwc . The angular velocity is also saturated with
|qw| < 0.19 rad/s and |rw| < 0.33 rad/sec. The result is seen
in Figure 4 with the cross-track error seen in Figure 5. When
k1 = 0.02 the root mean squared value is 18.98 while standard
deviation is 14.04 which is lower than the methods presented
in [20] except for the standard deviation of the Vector Field
guidance method being lower. However by lowering k1 = 0.01
the proposed method outperforms Vector Field guidance with
an root mean squared value of 20.06 and standard deviation
of 12.41. The results however should be taken with some care
since the kinematic model used in [20] might not be equivalent
to 11-12 in all cases and further studies should be done.



C. Scenario 3: Collision avoidance

In this scenario the UAV is set to follow a desired path in
the form of a line which cuts through an obstacle where a keep
away circle of radius Ro is centered. To avoid the obstacle an
avoidance quaternion qcol is constructed and blended with the
quaternion from (24)

qn,d = (qcol − qn,d)(1− tanh (k2‖pn − pno‖)) + qn,d (33)

where pno is the closest point on the keep away circle to the
UAV. The result is shown in Figure 6 and it is seen that the
UAV overshoots the path when it has avoided the obstacle.
This is because the UAV is still being influenced by the
collision avoidance quaternion as long as it’s close to the keep
away circle. There are several ways to avoid such behaviours
by designing the collosion avoidance quaternion to take this
into consideration.

VIII. CONCLUSION

A guidance algorithm for three dimensional path-following
for fixed-wing UAVs using quaternions has been derived for
parametric paths. The path-following problem is solved using
two quaternions that are blended together such that the UAV
converges to and follows a pre-defined path. As seen in VII-C
the method can be used for more than just path following
and can be classified as a behavioural control method similar
to methods such as Null-Spaced Based Behavioral Control
[26] and subsumption architecture [27] and as a future work
comparisons could be made of the methods. The assumption
of no wind in this paper is an unrealistic assumption and future
work should include windy conditions.
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