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Distributed Automatic Load-Frequency Control with
Optimality in Power Systems

Xin Chen, Changhong Zhao, Na Li

Abstract—With the increasing penetration of renewable energy
resources, power systems face new challenges in maintaining
power balance and the nominal frequency. This paper studies
load control to handle these challenges. In particular, a fully
distributed automatic load control (ALC) algorithm, which only
needs local measurement and local communication, is proposed.
We prove that the load control algorithm globally converges to
an optimal operating point which minimizes the total disutility
of users, restores the nominal frequency and the scheduled tie-
line power flows, and respects the load capacity limits and the
thermal constraints of transmission lines. It is further shown
that the asymptotic convergence still holds even when inaccurate
system parameters are used in the control algorithm. In addition,
the global exponential convergence of the reduced ALC algorithm
without considering the capacity limits is proved and leveraged to
study the dynamical tracking performance and robustness of the
algorithm. Lastly, the effectiveness, optimality, and robustness
of the proposed algorithm are demonstrated via numerical
simulations.

Index Terms—Distributed algorithm, frequency regulation,
automatic load control, power networks.

I. INTRODUCTION

IN power systems, generation and load are required to be
balanced all the time. Once a mismatch between generation

and load occurs, the system frequency will deviate from the
nominal value, e.g., 50 Hz or 60 Hz, which may undermine
the electric facilities and even cause system collapse. Hence, it
is crucial to maintain the frequency closely around its nominal
value. Traditionally, the generator-side control [1] plays a
dominant role in frequency regulation, where the generation
is managed to follow the time-varying load. However, with
the rapid proliferation of renewable energy resources, such as
wind power and solar energy, it becomes more challenging to
maintain power balance and the nominal frequency due to the
increasing volatility in renewable generation.

To address these challenges, as a promising complement
to generation control, load control has received considerable
attention in the recent decade. Because controllable loads are
ubiquitously distributed in power systems and can respond fast
to regulation signals or frequency deviation [2]. There has been
a large amount of research effort devoted to frequency regula-
tion provided by controllable loads, including electric vehicles
[3], [4], heating, ventilation and air-conditioning systems [5],
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energy storage systems [6], [7], and thermostatically controlled
loads [8]. Several demonstration projects [9]–[11] verified the
viability of load-side participation in frequency regulation.
The literature above focuses on modeling and operating the
loads for frequency regulation, and leaves the development of
system-wide optimal load control techniques as an unresolved
task.

For load-side frequency control, centralized methods [12],
[13] need to exchange information over remotely connected
control areas, which imposes a heavy communication burden
with expanded computational and capacity complexities [14].
This concern motivates a number of studies on distributed
control methods. In [15]–[17], load control is implemented
by solving a centralized optimization problem using appro-
priate decomposition methods. The decomposition methods
generate optimal control schemes that respect the operational
constraints, but their convergence relies on network param-
eters. In [18], a distributed proportional-integral (PI) load
controller is designed to attenuate constant disturbances and
improve the dynamic performance of the system, whereas
operational constraints, such as load power limits and line ther-
mal constraints, are not taken into account. References [19]–
[21] reversely engineer power system dynamics as primal-
dual algorithms to solve optimization problems for frequency
regulation, and prove global asymptotic stability of the closed-
loop system independently of control parameters. Specifically,
reference [20] studies the economic automatic generation
control (AGC) mechanism and develops a distributed generator
control scheme for frequency regulation. In [21], a distributed
load control method is proposed for primary frequency regula-
tion, which can only stabilize the frequency but not restore the
nominal value. Reference [19] is the most related work, which
inspires this paper, while the key differences between the load
control algorithms in this paper and in [19] are elaborated as
Remark 3.

In this paper, we develop a fully distributed automatic load
control (ALC) method for secondary frequency regulation.
It can eliminate power imbalance, restore nominal system
frequency, and maintain scheduled tie-line power flows in a
manner that minimizes the total disutility of load adjustment.
The development of the proposed ALC method is based on the
interpretation of the closed-loop system dynamics as a primal-
dual algorithm to solve a well-designed optimal load control
problem. The main contributions of this paper are twofold:

1) The sensing requirement and communication requirement
are greatly alleviated with the proposed ALC method.
Precisely, the information of instant power imbalance is
completely circumvented in the control process, and only

ar
X

iv
:1

81
1.

00
89

2v
3 

 [
m

at
h.

O
C

] 
 1

5 
A

pr
 2

02
0



2

local measurement and local communication are required,
which warrants a fully distributed operation mode. The
key for achieving these properties is a new reformulation
(ref. model (4)) of the optimal load control problem,
whose partial primal-dual gradient flow with the variable
substitution technique leads to the design of the proposed
ALC algorithm.

2) In addition to establishing the global asymptotic conver-
gence of the ALC algorithm, we further prove the global
exponential convergence of the reduced ALC algorithm
without considering the capacity limits. Then this fast
convergence property is leveraged to provide theoretic
guarantees on the algorithm’s dynamical tracking per-
formance and robustness. The crux to prove the global
exponential convergence is the novel design of a quadratic
Lyapunov function (20) with non-zero off-diagonal terms.

These contributions overcome the main limitations in the
existing approaches reviewed above and facilitate practical
implementations of the proposed ALC algorithm. Lastly, the
effectiveness, optimality, and robustness of the proposed ALC
algorithm are demonstrated via numerical simulations on the
39-bus New England power system using Power System
Toolbox (PST) [32].

The remainder of this paper is organized as follows: Section
II introduces the power network dynamic model and formu-
lates the optimal load control problem. Section III presents
the proposed ALC algorithm and its global asymptotic conver-
gence. Section IV analyzes the global exponential convergence
of the reduced ALC algorithm and its dynamical tracking error.
Numerical tests are carried out in Section V, and conclusions
are drawn in Section VI.

Notations. Boldface letters are used for column vectors. | · |
takes entry-wise absolute value of a vector (scalar) or denotes
the cardinality of a set. || · || denotes the 2-norm of a vector
or the induced 2-norm for matrices, and ||x||Q :=

√
x>Qx

with Q � 0. We use (·)> for matrix transposition and (·)−1 for
matrix inverse. For any two vectors x,y, [x;y] := [x>,y>]>

denotes their column merge.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Dynamic Network Model

Consider a power network delineated by a graph G(N , E),
where N := {1, · · · , |N |} denotes the set of buses and E ⊂
N × N denotes the set of transmission lines connecting the
buses. Suppose that G(N , E) is connected and directed with
arbitrary directions assigned to the transmission lines. Note
that if ij ∈ E , then ji 6∈ E . The buses i ∈ N are divided
into two types: generator buses and load buses, which are
denoted respectively by the sets G and L with N = G ∪L. A
generator bus is connected to generators and may also have
loads attached, while a load bus is only connected to loads.

For notational simplicity, all the variables in this paper
represent the deviations from their nominal values that are
determined by the previous solution of economic dispatch. We
consider the direct current (DC) power flow model [22], [23]:

Pij = Bij (θi − θj) ∀ij ∈ E (1)

where Pij is the active power flow on line ij, and θi denotes
the voltage phase angle of bus i. Bij is a network constant
defined by

Bij :=
|Vi||Vj |
xij

cos
(
θ0
i − θ0

j

)
where |Vi|, |Vj | are the voltage magnitudes at buses i and j
(which are assumed to be constant in the DC model) and xij
is the reactance of line ij (which is assumed to be purely
inductive in the DC model). θ0

i is the nominal voltage phase
angle of bus i. See [21] for a detailed description.

The dynamical model of the power network is

Miω̇i = −

Diωi + di − P ini +
∑
j:ij∈E

Pij −
∑
k:ki∈E

Pki


∀i ∈ G (2a)

0 = Diωi + di − P ini +
∑
j:ij∈E

Pij −
∑
k:ki∈E

Pki

∀i ∈ L (2b)

Ṗij = Bij (ωi − ωj) ∀ij ∈ E (2c)

where ωi denotes the frequency, Mi is the generator inertia
constant, and Di is the damping coefficient, at bus i. The
controllable load at bus i is denoted by di, and the other uncon-
trollable power injection (the generation minus uncontrollable
frequency-insensitive load) at bus i is denoted by P ini .

Equations (2a) and (2b) describe the frequency dynamics
at generator buses and load buses, respectively. Actually,
they both indicate power balance at every time instant of
the dynamics, as illustrated in Figure 1. The damping term
Diωi = (Dg

i +Dl
i)ωi characterizes the total effect of generator

friction and frequency-sensitive loads. The line flow dynamics
is delineated by (2c). The model (2) essentially assumes that
the frequency deviation is small at every bus. See [21] for a
justification of the model (2).

Fig. 1. Frequency dynamics at bus i, where P g
i and P l

i denote generator
mechanical power and uncontrollable frequency-insensitive load, respectively;
Dg

i and Dl
i denote the damping coefficients of generators and loads, respec-

tively.

Remark 1. The simplified linear model (2) is employed for
the purpose of algorithm design and stability analysis. The
ALC algorithm that will be developed later can be applied to
power systems with more complex and nonlinear dynamics. In
Section V, a high-fidelity power system simulator is used to
test the ALC algorithm on a realistic dynamical model.

B. Optimal Load Control Problem
Given a step change of uncontrollable power injection, i.e.

P in :=
(
P ini

)
i∈N , we adjust controllable loads d := (di)i∈N
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for frequency regulation and the control goals are listed as
follows:

1) Restore the system frequency to its nominal value.
2) Rebalance the system power while making each control

area absorb its own power change, so that the scheduled
tie-line power transfers are restored.

3) Modulate the controllable loads in an economically effi-
cient way that minimizes the total disutility of load ad-
justment, while satisfying critical operational constraints
including load power limits and line thermal limits.

The second and third control goals can be formulated as the
following optimal load control (OLC) problem:

Obj. min
d,θ

∑
i∈N

ci (di) (3a)

s.t. di = P ini −
∑

j:ij∈Ein

Bij (θi − θj)

+
∑

k:ki∈Ein

Bki (θk − θj) ∀i ∈ N
(3b)

di ≤ di ≤ di ∀i ∈ N (3c)

P ij ≤ Bij (θi − θj) ≤ P ij ∀ij ∈ E (3d)

where Ein denotes the subset of lines that connect buses within
the same control area. Constants di and di are the upper and
lower load power limits at bus i, respectively; and P ij and
P ij specify the thermal limits of line ij. The function ci(di)
quantifies the cost or disutility for load adjustment.

The objective (3a) is to minimize the total cost of load
adjustment. Equation (3b) guarantees that the power imbalance
is eliminated within each control area; this can be shown by
summing (3b) over the buses in the same area A, which leads
to
∑
i∈A di =

∑
i∈A P

in
i . Equations (3c) and (3d) impose

the load power constraints and the line thermal constraints,
respectively. A load control scheme is considered to be optimal
if it leads to a steady-state operating point which is a solution
to the OLC problem (3).

To facilitate the subsequent proof of convergence, we make
the following assumptions:

Assumption 1. For i ∈ N , the cost function ci(·) is strictly
convex and continuously differentiable.

Assumption 2. The OLC problem (3) is feasible.

III. OPTIMAL AUTOMATIC LOAD CONTROL

In this section, a fully distributed ALC scheme (see Al-
gorithm 1) is developed for secondary frequency regulation.
The basic approach of controller design is reverse and forward
engineering [19]–[21], which interprets the system dynamics
as a primal-dual gradient algorithm to solve a reformulated
OLC problem.

A. Reformulated Optimal Load Control Problem

To explicitly take into account the first control goal in Sec-
tion II-B, i.e., restoring nominal frequency, the OLC problem
(3) is reformulated as follows:

Obj. min
d,ω,P ,ψ

∑
i∈N

ci (di) +
∑
i∈N

1

2
Diω

2
i (4a)

s.t. di = P ini −Diωi −
∑
j:ij∈E

Pij +
∑
k:ki∈E

Pki

∀i ∈ N
(4b)

di ≤ di ≤ di ∀i ∈ N (4c)

di = P ini −
∑

j:ij∈Ein

Bij (ψi − ψj)

+
∑

k:ki∈Ein

Bki (ψk − ψi) ∀i ∈ N
(4d)

P ij ≤ Bij (ψi − ψj) ≤ P ij ∀ij ∈ E (4e)

where ψi is an auxiliary variable interpreted as the virtual
phase angle of bus i, and Bij (ψi − ψj) is the virtual power
flow on line ij. Define vectors ω := (ωi)i∈N , d := (di)i∈N ,
P := (Pij)ij∈E , and ψ := (ψi)i∈N .

In the reformulated OLC problem (4), the virtual phase an-
gles ψ is introduced to constrain the real power flow. See [19]
for detailed explanations, where the concepts of virtual phase
angle and virtual power flow are first proposed. Constraints
(4b) and (4d) are introduced so that the primal-dual gradient
algorithm solving (4) is exactly the power network dynamics
under proper control. The equivalence between problems (3)
and (4) is established as follows.

Lemma 1. Let (ω∗,d∗,P ∗,ψ∗) be an optimal solution of
problem (4). Then ω∗i = 0 for all i ∈ N , and d∗ is optimal
for problem (3).

Proof. Let (ω∗,d∗,P ∗,ψ∗) be an optimal solution of (4), and
assume that ω∗i 6= 0 for some i ∈ N . The optimal objective
value of (4) is therefore:

f∗ =
∑
i∈N

ci (d∗i ) +
∑
i∈N

1

2
Di (ω∗i )

2
.

Then consider another solution {ωo,d∗,P o,ψ∗} with ωoi = 0
for i ∈ N , P oij = Bij

(
ψ∗i − ψ∗j

)
for ij ∈ Ein, and P oij = 0

for ij ∈ E\Ein. It can be checked that this solution is feasible
for problem (4), and its corresponding objective value is

fo =
∑
i∈N

ci (d∗i ) < f∗

which contradicts the optimality of (ω∗,d∗,P ∗,ψ∗). Hence
ω∗i = 0 for all i ∈ N .

Since constraints (3b) and (4d) take the same form, when
ωi = 0 and given (d,ψ), one can always find P that satisfies
(4b) by taking Pij = Bij (ψi − ψj) for ij ∈ Ein and Pij = 0
for ij ∈ E\Ein. Therefore the feasible set of (4) restricted to
ωi = 0 and projected onto the (d,ψ)-space is the same as
the feasible set of (3) on the (d,θ)-space. As a result, for any
(ω∗,d∗,P ∗,ψ∗) that is an optimal solution of (4), d∗ is also
optimal for (3).

B. Automatic Load Control Algorithm

We design a partial primal-dual gradient method to solve the
reformulated OLC problem (4), so that the solution dynamics
can be exactly interpreted as the power network dynamics
with load frequency control. Based on this interpretation, the
optimal ALC algorithm is developed.
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The Lagrangian function of problem (4) is

L =
∑
i∈N

ci (di) +
∑
i∈N

1

2
Diω

2
i

+
∑
i∈N

λi

−di+P ini −Diωi−
∑
j:ij∈E

Pij+
∑
k:ki∈E

Pki


+
∑
i∈N

µi

−di + P ini −
∑

j:ij∈Ein

Bij (ψi − ψj)

+
∑

k:ki∈Ein

Bki (ψk − ψi)

)
+
∑
ij∈Ein

σ+
ij

(
Bij (ψi − ψj)− P ij

)
+
∑
ij∈Ein

σ−ij
(
−Bij (ψi − ψj) + P ij

)
+
∑
i∈N

γ+
i

(
di − di

)
+
∑
i∈N

γ−i (−di + di) (5)

where λi, µi are the dual variables associated with the equality
constraints (4b) and (4d), and γ+

i , γ
−
i , σ

+
ij , σ

−
ij ≥ 0 are the dual

variables associated with the inequality constraints (4c) and
(4e). Define ωG := (ωi)i∈G , ωL := (ωi)i∈L, µ := (µi)i∈N ,
σ :=

(
σ+
ij , σ

−
ij

)
ij∈Ein

, and γ :=
(
γ+
i , γ

−
i

)
i∈N .

Then the partial primal-dual gradient method is given by
the following three steps:

Step 1): Solve minω L by taking ∂L
∂ωi

= 0 for i ∈ N , which
results in

ωi =λi ∀i ∈ N (6)

and we obtain

L̂(d,P ,ψ,λ,µ,σ,γ) := min
ω
L(ω,d,P ,ψ,λ,µ,σ,γ)

Equation (6) exhibits the equivalence between ωi and λi, hence
we substitute ω for λ in L̂ and other equations for algorithm
design.

Step 2): Solve maxωL L̂ by taking ∂L̂
∂ωi

= 0 for i ∈ L,
which results in

0 =di−P ini +Diωi+
∑
j:ij∈E

Pij−
∑
k:ki∈E

Pki ∀i ∈ L (7)

and we obtain

L(d,P ,ψ,ωG ,µ,σ,γ) := max
ωL

L̂(d,P ,ψ,ω,µ,σ,γ)

Step 3): Apply the the standard primal-dual gradient algo-
rithm on the remaining variables to find the saddle point of
L, and the solution dynamics is formulated as follows:

ω̇i = εωi

P ini − di −Diωi −
∑
j:ij∈E

Pij +
∑
k:ki∈E

Pki


(8a)

Ṗij = εPij (ωi − ωj) (8b)

ḋi = εdi
(
−c′i (di) + ωi + µi − γ+

i + γ−i
)

(8c)

ψ̇i = εψi

 ∑
j:ij∈Ein

(
µi − µj − σ+

ij + σ−ij
)
Bij

+
∑

k:ki∈Ein

(
µi − µk + σ+

ki − σ
−
ki

)
Bki

] (8d)

γ̇+
i = εγ+

i

[
di − di

]+
γ+
i

(8e)

γ̇−i = εγ−i
[−di + di]

+

γ−i
(8f)

µ̇i = εµi

P ini − di − ∑
j:ij∈Ein

Bij (ψi − ψj)

+
∑

k:ki∈Ein

Bki (ψk − ψi)

) (8g)

σ̇+
ij = εσ+

ij

[
Bij (ψi − ψj)− P ij

]+
σ+
ij

(8h)

σ̇−ij = εσ−ij

[
−Bij (ψi − ψj) + P ij

]+
σ−ij

(8i)

where (8a) is for i ∈ G, (8b) is for ij ∈ E , (8c)–(8g) are
for i ∈ N , and (8h)–(8i) are for ij ∈ Ein. The notations
containing ε represent appropriately selected positive constant
step sizes. The operator [x]+y means positive projection [24],
which equals x if either x > 0 or y > 0, and 0 otherwise;
thus it ensures σ+

ij , σ
−
ij , γ

+
i , γ

−
i ≥ 0.

Since the instant value of P ini is usually unknown and hard
to procure in practice, a new variable ri defined as follows is
introduced to substitute µi:

ri =


Ki

εµi
µi −

Ki

εωi
ωi ∀i ∈ G

Ki

εµi
µi ∀i ∈ L

(9)

where Ki is a positive constant. In this way, the necessity to
know P ini is circumvented. Define r := (ri)i∈N .

Let εωi = 1/Mi and εPij = Bij , then equations (7) (8a)
(8b) are exactly the same as the network dynamics (2). Thus
after the variable substitution, the solution dynamics (7)-(8)
is equivalent to the ALC algorithm (10) together with the
network dynamics (2). This key property attributes to the
deliberate design of the reformulated OLC problem (4) and
the partial primal-dual gradient method. As a result, the local
load controller only needs to execute the ALC algorithm (10),
while the network dynamics (2) is the natural evolution of the
physical power system in response to the load adjustment. In
this way, a portion of the solution dynamics, i.e., equations (7)
(8a) (8b), or (2), is outsourced to the power network physics,
and the ALC algorithm just needs to take measurement of the
local frequency and power flow from the physical system. The
whole design procedure for the distributed load controller is
illustrated in Figure 2.

In (10a), ηi is set as (εωi + εµi)/εωi for i ∈ G and 1 for
i ∈ L respectively. In (10b), µi is the abbreviation of the
expression (11)

µi =


εµi
εωi

ωi +
εµi
Ki

ri ∀i ∈ G
εµi
Ki

ri ∀i ∈ L
(11)
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Fig. 2. The design procedure for distributed automatic load controller.

Algorithm 1 Automatic Load Control Algorithm.

ḋi = εdi

(
−c′i (di) + ηiωi +

εµi
Ki

ri − γ+
i + γ−i

)
(10a)

ψ̇i = εψi

 ∑
j:ij∈Ein

(
µi − µj − σ+

ij + σ−ij
)
Bij

+
∑

k:ki∈Ein

(
µi − µk + σ+

ki − σ
−
ki

)
Bki

]
(10b)

γ̇+
i = εγ+

i

[
di − di

]+
γ+
i

(10c)

γ̇−i = εγ+
i

[−di + di]
+

γ+
i

(10d)

ṙi = Ki

Diωi +
∑
j:ij∈E

Pij −
∑
k:ki∈E

Pki

−
∑

j:ij∈Ein

Bij (ψi − ψj) +
∑

k:ki∈Ein

Bki (ψk − ψi)


(10e)

σ̇+
ij = εσ+

ij

[
Bij (ψi − ψj)− P ij

]+
σ+
ij

(10f)

σ̇−ij = εσ−ij

[
−Bij (ψi − ψj) + P ij

]+
σ−ij

(10g)

The implementation of algorithm (10) is illustrated in Figure
3. In the physical (lower) layer, each bus i measures its own
frequency deviation ωi and the power flows (Pki, Pij) on its
adjacent lines. In the cyber (upper) layer, each bus i exchanges
the information (µi, ψi) with its neighboring buses in the same
control area. Then following algorithm (10), each bus i updates
the variables (ψi, γi, σij , ri) and computes its load adjustment
di. Next, the control command di is sent back to the physical
layer and executed by the load modulation device. Afterwards,
the system frequency and power flows respond to the load
adjustment according to the physical law (2). In this manner,
the combination of network dynamics (2) and the proposed
control algorithm (10) forms a closed loop. Since only local
measurement and local communication are required in this
process, the proposed ALC algorithm (10) is performed in a
fully distributed manner.

Remark 2. Although the ALC algorithm (10) is developed
based on step power changes, it is capable of handling contin-
uous power disturbance. Because in practical implementation,
the real-time measurements of frequency deviation and power

Fig. 3. The automatic load control (ALC) mechanism.

flow are utilized to generate the load adjustment decisions,
which renders the immediate response to the time-varying
power disturbance. The dynamical tracking performance of the
ALC algorithm is analyzed in Section IV-B, and case studies
on continuous power change are provided in Section V-C.

C. Asymptotic Convergence and Main Advantages

In this part, we show that the proposed algorithm (10) will
converge to a steady-state operating point that is an optimal
solution of the reformulated OLC problem (4). This claim is
restated formally as the following theorem.

Theorem 1. Under Assumption 1 and 2, the ALC algorithm
(10) together with the network dynamics (2) globally asymp-
totically converges to a point (d∗,ω∗,P ∗,ψ∗,γ∗, r∗,σ∗),
where (d∗,ω∗,P ∗,ψ∗) is an optimal solution of problem (4).

Proof. Since the closed-loop system dynamics (2), (10) are
equivalent to the solution dynamics (7), (8), we prove the
convergence of dynamics (7), (8) to an optimal solution of
problem (4) instead.

Define y := [d;P ;ψ;ωG ;µ;σ;γ] and let y∗ be any
equilibrium point of dynamics (8), which makes the right-
hand-side of (8) zero. Let ω∗L be the solution of (7) given y∗.
By Assumptions 1 and 2, strong duality holds for the problem
(4). Thus, according to [20, Proposition 9], (y∗,ω∗L,λ

∗) with
λ∗ = ω∗ (6) is a saddle point of the Lagrangian L (5) and is
primal-dual optimal for (4) [25].

Then we just need to prove that dynamics (8) asymptotically
converges to its equilibrium point y∗. Since dynamics (8)
is obtained by applying the standard primal-dual gradient
algorithm to solve the saddle point problem (12), i.e., Step
3) in Section III-B,

min
d,P ,ψ

max
ωG ,µ,σ≥0,γ≥0

L(d,P ,ψ,ωG ,µ,σ,γ) (12)

the asymptotic convergence proof of dynamics (8) directly fol-
lows the results in [24], [26]. Thus Theorem 1 is proved.

One challenge in implementing the ALC algorithm (10) is
that the damping coefficient Di is in general hard to know
exactly. For this issue, we provide Theorem 4 in Appendix
D to show that the proposed load controller is robust to the
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inaccuracy in Di, in the sense that the ALC dynamics still
converge to an optimal solution of the OLC problem, if the
inaccuracy in Di is small and some additional conditions are
satisfied.

Remark 3. Comparing with the load control scheme in
reference [19] (most related work to this paper), the key
advantages of the proposed ALC algorithm (10) are

1) (Sensing Requirement) To implement the load control
scheme in [19], each bus requires the value of the instant
power change P ini or the estimation of the angular acceler-
ation ẇi, while their accurate values are hard to obtain in
real-time application, especially for the aggregate bus with
many generators and loads attached. In contrast, using a
different design procedure, the proposed ALC algorithm (10)
completely circumvents the information of P ini , and only the
local measurements of (ωi, Pki, Pij) are required for each bus.

2) (Communication Requirement) With the load control
scheme in [19], each boundary bus needs to communicate
with all the other boundary buses within the same control
area, which may carry heavy remote communication burden,
especially when two boundary buses are far away from each
other; in addition, each boundary bus has to exchange infor-
mation with its adjacent buses located in other control areas,
which may violate the information privacy. In contrast, using
the ALC algorithm (10), each bus (no matter on boundary or
not) only needs to communicate with its adjacent buses within
the same control area, i.e., no information exchange among
different control areas.

Therefore, the sensing and communication requirements are
greatly alleviated with the proposed ALC algorithm (10),
which renders a fully distributed control mechanism, while the
global asymptotical convergence can still be achieved.

D. Further Discussion
In this paper, renewable generations are modelled as non-

dispatchable power injection and captured by P in. Actually,
the proposed control algorithm that determines local load
adjustment in real time can be applied to controlling the dis-
patchable renewable generation as well, without considering
the inverter dynamics. This setting is generally acceptable
for practical application since the inverter dynamics is much
faster than the timescale of secondary frequency regulation.
However, as the penetration of renewable generation deepens,
the impacts of inverter dynamics and harmonics become more
and more significant, therefore it is necessary to model the
internal dynamics of renewable sources in a realistic way. One
of the future work is to design distributed inverter controller
for renewable energy sources to provide frequency regulation
and mitigate harmonics.

Besides, we make Assumption 2 to assume that each control
area has sufficient controllable load/generation resources to
absorb its own power change. Once a control area does not
have enough controllable resources to eliminate the power
imbalance, the OLC problem (3) becomes infeasible. In this
situation, the proposed load controller (10) can still work to
exploit the limited resources to alleviate the frequency devi-
ation, but the nominal frequency can not be restored. Hence,

when the system operators suspect that a control area can
not absorb the power change, they need to either 1) dispatch
available load/generation resources from the neighbor control
areas (i.e., relax the tie-line requirement), or 2) call upon more
controllable resources, e.g., renewable generation or energy
storage, for frequency regulation. For scheme 1), our proposed
algorithm is easy to adjust to this situation by just modifying
the set Ein, then two or more control areas can be combined
and share all the controllable resources. For scheme 2), as
mentioned before, the proposed load control mechanism can
be adapted to control the inverter-based renewable generations.

IV. EXPONENTIAL CONVERGENCE, DYNAMICAL
TRACKING AND ROBUSTNESS ANALYSIS

This section studies the global exponential convergence
of the ALC algorithm and analyzes its dynamical tracking
performance and robustness.

To facilitate theoretical analysis, we consider a system with
sufficient capacities so that inequality constraints (3c, 3d) in
the OLC problem (3) can be ignored, i.e., (4c, 4e) in problem
(4). Then the reformulated OLC problem (4) reduces to

Obj. min
d,ω,P ,ψ

c (d) +
1

2
ω>Dω (13a)

s.t. d = P in −Dω −AP (13b)

d = P in − ĀB̄Ā>ψ (13c)

where c(d) :=
∑
i∈N ci (di) and D := diag(Di)i∈N . A is the

node-branch incidence matrix with respect to the buses i ∈ N
and the lines ij ∈ E . Ā is a sub-matrix of A, which is obtained
by removing the columns associated with the boundary lines
(ij ∈ E\Ein) in A, and B̄ := diag(Bij)ij∈Ein .

Without loss of generality, we arrange the sequence of buses
in vectors (matrices) so that P in = [P in

G ;P in
L ] , d = [dG ;dL],

ω = [ωG ;ωL], A = [AG ;AL], and D = blockdiag(DG , DL).
Following the same solution procedure in Section III-B, the
ALC dynamics (8) become

0 =dL−P in
L +DLωL+ALP (14a)

ḋ = Ξd · (−∇c(d) + ω + µ) (14b)

Ṗ = ΞP ·A>ω (14c)

ψ̇ = Ξψ · Sµ (14d)

ω̇G = Ξω ·
(
−dG −DGωG −AGP + P in

G
)

(14e)

µ̇ = Ξµ ·
(
−d− Sψ + P in

)
(14f)

where S := ĀB̄Ā> and ∇c(d) := (c′i(di))i∈N . Since the cost
function c(d) is a general convex function, it is noted that (14)
is a nonlinear dynamical system.

A. Global Exponential Convergence Analysis

The asymptotic convergence of the ALC algorithm has been
exhibited in Theorem 1, while this part focuses on a stronger
and highly desired property: global exponential convergence.
To establish this, we firstly make Assumption 3 for the cost
function c(d).
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Assumption 3. For i ∈ N , the cost function ci(·) is twice
differentiable, u-strongly convex and `-smooth with 0 < u ≤ `,
i.e., u ≤ c′′i (di) ≤ ` for any di.

Let z := [d;P ;ψ;ωG ;µ] and x := [z;ωL] be the system
state. Let x∗ := [z∗;ω∗L] be one of the equilibrium points of
the ALC dynamics (14). Define the equilibrium set S as (15):

S :=
{
x |d = d∗,ωG = ω∗G ,ωL = ω∗L,

µ = µ∗, AP = AP ∗, Sψ = Sψ∗} .
(15)

It can be checked that any point x̂ ∈ S is an equilibrium
point of the ALC dynamics (14), and thus the corresponding
(d̂, ω̂, P̂ , ψ̂) is an optimal solution of problem (13) [20]. Let

dist(x,S) := inf
x̂∈S
||x− x̂||

denote the distance between a point x and the set S. Then we
have the following theorem:

Theorem 2. Under Assumption 2 and 3, the ALC dynamics
(14) globally exponentially converge to the equilibrium set S
(15), in the sense that there exist constants C0 ≥ 0 and ρ0 > 0
such that the distance between x(t) and S satisfies

dist(x(t),S) ≤ C0 · e−ρ0t, ∀t ≥ 0. (16)

Proof. To facilitate the proof, we make the following two
equivalent transformations for the ALC dynamics (14):

1) By equation (14a), we formulate ωL as

ωL = D−1
L
(
−dL −ALP + P in

L
)

(17)

and substitute it in equations (14b) and (14c).
2) By Lagrange’s Mean Value Theorem, we have

∇c(d)−∇c(d∗) = C(d)(d− d∗) (18)

where C(d) := diag(c′′i (d̂i))i∈N with some d̂i depending
on the value of d. Due to Assumption 3, we further have
uI � C(d) � `I .

As a consequence, the ALC dynamics (14) can be equiva-
lently reformulated as the following matrix form

ż = Ξ


−C(d)− F1 −F>2 0 I>o I
−F2 −F3 0 A>G 0
0 0 0 0 S
−Io −AG 0 −DG 0
−I 0 −S 0 0


︸ ︷︷ ︸

:=W (d)


d− d∗
P − P ∗
ψ −ψ∗
ωG − ω∗G
µ− µ∗


(19)

where I and 0 denote the identity matrix and zero matrix with
appropriate dimensions, Ξ := blockdiag(Ξd,ΞP ,Ξψ,Ξω,Ξµ),
and F3 := A>LD

−1
L AL. Besides, we have

Io :=
[
I 0

]
, F1 :=

[
0 0
0 D−1

L

]
, F2 :=

[
0 A>LD

−1
L
]

where the first component and second component correspond
to generator buses i ∈ G and load buses i ∈ L, respectively.

To prove the global exponential stability of the ALC dynam-
ics (14), we design the quadratic Lyapunov function V (z) as

V (z) = (z − z∗)>Q(z − z∗) (20)

where Q is defined by

Q :=


αI 0 0 0 I
0 αUAU

>
A 0 A>G 0

0 0 αUSU
>
S 0 −βS

0 AG 0 αI 0
I 0 −βS 0 αI

 . (21)

Here, α is a sufficiently large positive number and β is a suffi-
ciently small positive number. UA is the right-singular matrix
of matrix A with the compact singular value decomposition

A = VAΣAU
>
A (22)

and ΣA � 0. US is the normalized matrix corresponding to
the compact eigen-decomposition of matrix S with

S = USΣSU
>
S (23)

and ΣS � 0. Thus we have

AGUAU
>
A = AG , ALUAU

>
A = AL, SUSU

>
S = S. (24)

Then we obtain the following two key lemmas, whose
proofs are provided in Appendix A and B, respectively.

Lemma 2. Matrix Q is positive semi-definite, i.e., V (z) ≥ 0
for any z, and the set

M := {ẑ |V (ẑ) ≡ 0} ∆
=
{
ẑ | d̂ = d∗, ω̂G = ω∗G ,

µ̂ = µ∗, AP̂ = AP ∗, Sψ̂ = Sψ∗
}
.

(25)

Lemma 3. Under Assumption 3, the time derivative of V (z)

along the ALC dynamics (14) satisfies that for ρ = β2

α > 0,

dV (z)

dt
≤ −ρV (z), ∀t ≥ 0. (26)

By Lemma 3, V (z(t)) ≤ V (z(0)) · e−ρt for all t ≥ 0. De-
compose z(t)− z∗ = δ1(t) + δ2(t) such that δ1(t) ∈ row(Q)
and δ2(t) ∈ ker(Q). Thus V (z) = δ1(t)>Qδ1(t) and

dist(x(t),S) = inf
x̂(t)∈S

|| [z(t);ωL(t)]− [ẑ(t); ω̂L(t)] ||

≤ inf
ẑ(t)∈M

√
||T ||2 + 1 · ||z(t)− ẑ(t)||

≤
√
||T ||2 + 1 · ||z(t)− (z∗ + δ2(t))||

≤

√
||T ||2 + 1

λmin(Q)
· ||δ1(t)||Q

≤

√
(||T ||2 + 1) · V (z(0))

λmin(Q)
· exp(−1

2
ρt)

(27)

where the first inequality is due to (17) and let ωL − ω̂L =
T (z− ẑ) with corresponding matrix T . The second inequality
is because z∗+ δ2(t) ∈M. For the third inequality, λmin(Q)
is the smallest positive eigenvalue of Q.

By taking C0 :=
√

(||T ||2+1)V (z(0))
λmin(Q) and ρ0 := ρ/2,

Theorem 2 is proved.

Remark 4. (Uniqueness of Equilibrium Point) Lemma 2
indicates that the optimal P ∗ and ψ∗ to the OLC problem
(13) are not unique. The former is because the node-branch
incidence matrix A may not be of full column rank for a
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meshed network. The latter is caused because the (virtual)
phase angle ψ is defined in a relative reference frame in
the power system without a slack bus, thus A (or Ā) is not
of full row rank. Nevertheless, according to Theorem 1, the
ALC dynamics (14) eventually asymptotically converge to an
equilibrium point which depends on the initial condition.

Remark 5. (Inequality Constraints) One natural question to
ask about Theorem 2 is whether the ALC dynamics can still
achieve global exponential convergence when considering the
inequality capacity constraints (3c, 3d), or (4c, 4e). The key
challenge is that the complete ALC algorithm (10) involves
a discontinuous projection step, which creates difficulty in
theoretical analysis. Actually, this question can be generalized
as the problem whether the standard projected primal-dual
gradient dynamics (PDGD) is exponentially stable. In [29,
Remark 2], it is conjectured that the PDGD with projection
may not be exponentially stable due to the norm issue. Instead,
reference [29] proposes a new PDGD using an augmented
Lagrangian to deal with the inequality constraints and proves
it to be exponentially stable. Therefore, one of the future
work is to leverage the augmented Lagrangian to design
a distributed load frequency control algorithm with global
exponential convergence.

B. Dynamical Tracking Performance and Robustness

In practice, the uncontrollable power injection P in is not
a fixed value (i.e., step change) but time-varying due to the
intrinsic volatility of renewable generation and load demand.
Besides, the real implementation of the ALC algorithm suffers
from 1) the measurement and communication noises, 2) the
model errors due to the use of DC power flow (1) and linear
network dynamics (2). Hence, we study the dynamical tracking
performance of the ALC dynamics (14) in practical application
by leveraging its global exponential convergence.

Let P in(t) be the uncontrollable power injection at time
t. Substituting it to the reduced ALC dynamics (14), we can
formulate the ALC dynamics under time-varying P in(t) as

ż = f(z) +HP in(t) (28)

with corresponding constant matrix H and function f . Let
z∗(t) be an associated equilibrium point of dynamics (28)
given P in(t). Moreover, z∗(t) is also a saddle point for the
Lagrangian function of problem (13) under the uncontrollable
power injection P in(t).

Taking time-varying power change, measurement noise and
model error into consideration, the actual load control dynam-
ics can be formulated as

ż = f(z) +HP in(t) + g(z, t) (29)

where g(z, t) captures the real-time measurement and commu-
nication noise, model error and other potential mismatches.

We make the following standard assumption on bounded
system mismatch and drift rate [27], [28].

Assumption 4. The time-varying equilibrium point z∗(t) is
differentiable and has a bounded drift rate in the sense that
there exists a positive constant bz such that

||dz
∗(t)

dt
||Q ≤ bz, ∀t ≥ 0. (30)

In addition, the mismatch term g(z, t) in (29) is bounded, i.e.,
there exists a positive constant bg such that

||g(z, t)||Q ≤ bg, ∀t ≥ 0. (31)

Then the dynamical tracking properties under the actual
load control dynamics (29) are established as the following
theorem.

Theorem 3. Under Assumption 2, 3 and 4, the tracking error
of the actual load control dynamics (29) is bounded in the
sense that, for any time t ≥ 0,

||z(t)− z∗(t)||Q ≤ exp(−ρ
2
t) · ||z(0)− z∗(0)||Q

+
(

1− exp(−ρ
2
t)
) 2(bz + bg)

ρ

(32)

where Q and ρ are given in (21) and (26) respectively.

Proof. By constraint (13c), we have P in(t) = d∗(t)+Sψ∗(t)
for all t. According to the expansion in (39), we obtain

||Ṗ in(t)|| ≤ ||ḋ∗(t)||+ ||Sψ̇∗(t)||

≤
√

2
(
||ḋ∗(t)||2 + ||USΣS ||2 · ||U>S ψ̇∗(t)||2

)
≤
√

2

α̂
·
√

(α− 1)||ḋ∗(t)||2 + (α− β2||ΣS ||2)||U>S ψ̇∗(t)||2

≤
√

2

α̂
·
√
V (ż∗(t)) =

√
2

α̂
· ||ż∗(t)||Q ≤

√
2

α̂
· bz (33)

where α̂ := min{α− 1, (α− β2||ΣS ||2)/||USΣS ||2}.
Given an infinitesimal time step ∆ > 0, we consider the

time period [m∆, (m + 1)∆] where m is a non-negative
integer. Let z(t) be the state variable following the real system
dynamics (29), while we denote ẑ(t) for t ∈ [m∆, (m+ 1)∆]
as the state following the ALC dynamics (28) with fixed power
injection P in(m∆), and ẑ(m∆) = z(m∆). For notational
simplicity, denote zm := z(m∆), which is similar for ẑm.

For any t ∈ [m∆, (m+ 1)∆],

||z(t)− ẑ(t)||Q

≤
∫ t

m∆

[
sup

τ∈[m∆,(m+1)∆]

||f(z(τ))− f(ẑ(τ))||Q

]
ds

+

∫ t

m∆

||H(P in(s)− P in(m∆)) + g(z, s)||Q ds

≤

[
sup

τ∈[m∆,(m+1)∆]

||z(τ)− ẑ(τ)||Q

]
· `f ·∆

+

∫ (m+1)∆

m∆

||H
∫ s

m∆

(
dP in(τ)

dτ
) dτ ||Q ds

+

∫ (m+1)∆

m∆

||g(z, s)||Q ds
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≤

[
sup

τ∈[m∆,(m+1)∆]

||z(τ)− ẑ(τ)||Q

]
· `f ·∆

+ (bP∆ + bg) ·∆ (34)

where bP := 1
2

√
2
α̂bz · ||Q

1/2H||, and `f is the Lipschitz
constant for function f(z) (it can be checked that f(z) is
Lipschitz continuous with bounded `f ). Since (34) holds for
any t ∈ [m∆, (m+ 1)∆], we obtain

sup
t∈[m∆,(m+1)∆]

||z(t)− ẑ(t)||Q ≤
(bP∆ + bg) ·∆

1− `f ·∆
(35)

For the tracking error at time (m+ 1)∆, we have

||zm+1 − z∗m+1||Q
≤ ||z∗m+1 − z∗m||Q + ||zm+1 − z∗m||Q

≤ ||
∫ (m+1)∆

m∆

(
dz∗(t)

dt
)dt||Q

+ ||ẑm+1 − z∗m||Q + ||zm+1 − ẑm+1||Q

≤ bz ·∆ + e−
ρ∆
2 · ||zm − z∗m||Q +

(bP∆ + bg)∆

1− `f∆
(36)

where the third inequality results from Lemma 3 and (35).
Let t = m∆. Using inequality (36) recursively, we obtain

||z(t)− z∗(t)||Q ≤ (e−
ρ∆
2 )m · ||z(0)− z∗(0)||Q

+
1− (e−

ρ∆
2 )m

1− e− ρ∆2
(bz +

bP∆ + bg
1− `f∆

) ·∆

= e−
ρ
2 t · ||z(0)− z∗(0)||Q

+
(1− e−

ρt
2 ) ·∆

1− e− ρ∆2
(bz +

bP∆ + bg
1− `f∆

).

(37)

Note that inequality (37) holds for any ∆ ≥ 0 and non-
negative integer m. Hence, let ∆→ 0, using L’Hôpital’s rule
and standard arguments of Calculus, we obtain inequality (32).

Theorem 3 shows that the dynamical tracking errors of the
system frequency and the load control schemes, i.e., ||ω(t)−
ω∗|| and ||d(t) − d∗(t)||, are bounded. It is straightforward
to see that as t → ∞, the steady-state tracking error of the
actual ALC dynamics (29) is bounded by

lim sup
t→+∞

||z(t)− z∗(t)||Q ≤
2(bz + bg)

ρ
. (38)

Essentially, the drift of the equilibrium points z∗(t) is
caused by the time-varying uncontrollable power injection
P in(t). It can be proved that the drift rate of the equilibrium
points z∗(t) is bounded with a bounded drift rate of P in(t),
which is restated as the following proposition.

Proposition 1. Under Assumption 2 and 3, if the time-varying
uncontrollable power injection P in(t) and the equilibrium
points z∗(t) are time differentiable, there exists a positive
constant η such that

||dz
∗(t)

dt
||Q ≤ η · sup

t≥0
||dP

in(t)

dt
||, ∀t ≥ 0.

The proof of Proposition 1 is provided in Appendix C.

Fig. 4. The 39-bus New England power network.

V. CASE STUDIES

The effectiveness and robustness of the proposed ALC
algorithm are demonstrated in numerical simulations. In par-
ticular, the performance of the ALC algorithm under step
and continuous power changes is tested, and the cases with
inaccurate damping coefficients are demonstrated. The impact
of noises in measurements is also studied numerically.

A. Simulation Setup
The 39-bus New England power network in Figure 4 is

used as the test system. The simulations were run on Power
System Toolbox (PST) [32], and we embedded the proposed
ALC algorithm (10) through modifying the dynamic model
functions of PST. Compared to the analytic model (2), the
PST simulation models are more complicated and realistic,
which involve the classic two-axis subtransient generator
model, the IEEE Type DC1 excitation system model, the
alternating current (AC) power flow model, and different types
of load models. Detailed configuration and parameters of the
simulation model are available online [33].

There are 11 generators located at bus-29 to bus-39, which
are the generator buses. To simulate continuous changes in
power supply, four photovoltaic (PV) units are added to bus-
1, bus-6, bus-9, and bus-16. Since PV units are integrated with
power electronic interfaces, we regard them as negative loads
rather than swing generators. Consequently, bus-1 to bus-28
are load buses with a total active power demand of 6.2 GW.
Every load bus has an aggregate controllable load, and the
disutility function for load control is

ci (di) = ϑi · d2
i

where the cost coefficients ϑi are set to 1 per unit (p.u.) for
bus-1 to bus-5, and 5 p.u. for other load buses. The adjustable
load limits are set as di = −di = 0.4 p.u. with the base power
being 100 MVA. In addition, the loads are controlled every 250
ms, which is a realistic estimate of the time-resolution for load
control [34]. The damping coefficient Di of each bus is set to
1 p.u. For the load controller, the step sizes ε and the constants
Ki are all set to 0.5 p.u.
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B. Step Power Change

At time t = 1 s, step load increases of 1 p.u. occurred at
bus-1, bus-6, bus-9, and bus-16. With or without ALC, the
system frequency is illustrated in Figure 5. It is observed that
the power network itself is not capable of restoring the nominal
system frequency without ALC. In contrast, the proposed
ALC scheme can bring the system frequency back to the
nominal value. Figures 6 presents the load adjustments and
the total cost of load control under ALC, respectively. It is
seen that the loads with lower cost coefficients ϑi tend to
make larger adjustments, which are bounded by the capacity
limits. This observation indicates that the load adjustments
are computed to achieve system-wide efficiency although the
control decisions are made locally. As a result, the total cost
of the ALC scheme converges to the optimal cost of the OLC
problem (3) or (4) in the steady state.

Fig. 5. The frequency dynamics under step power changes.

Fig. 6. The load adjustment scheme and the total ALC cost.

C. Continuous Power Change

We next study the performance of ALC under continuous
power changes. To this end, the PV generation profiles of
a real power system located within the territory of Southern

California Edison are utilized as the power outputs of the four
PV units. The original 6-second data of PV outputs are linearly
interpolated to generate power outputs every 0.01 second,
which is consistent with the resolution of PST dynamical
simulation. The PV power outputs over 10 minutes are shown
in Figure 7. Figures 8 and 9 illustrate the dynamics of system
frequency and voltage magnitudes, respectively.

Fig. 7. The PV power outputs.

Fig. 8. The frequency dynamics under continuous power changes.

Fig. 9. The dynamics of voltage magnitudes at the PV buses.

From Figure 8, it is seen that ALC can effectively maintain
the system frequency around the nominal value under time-
varying power imbalance. Although the proposed ALC algo-
rithm is designed for step power changes, it can handle the
case with continuous power disturbance due to the utilization
of real-time frequency and power flow information. Besides,
from Figure 9, it is observed that the voltage rise caused by
increased PV generation is alleviated with the ALC scheme.



11

The reason is that the power imbalance is eliminated by the
coordinated adjustment of many ubiquitously distributed loads
when using the ALC scheme, instead of the generation control
of few generators, thus the voltage rise (or descent) along with
the power flow is mitigated. From the simulation results, the
ALC scheme not only can maintain system frequency, but also
may improve the dynamics of voltage magnitudes.

D. Impact of Inaccurate Damping Coefficients

This part is devoted to understanding the impact of inaccu-
rate damping coefficients on the performance of ALC. Let the
damping coefficient D̃ used by the controller be k times of
the accurate value D with D̃i = k · Di for each bus i ∈ N .
Then we tuned the factor k to test the performance of ALC
under step power changes. Figure 10 compares the frequency
dynamics using the ALC scheme with different k.

Fig. 10. The frequency dynamics under inaccurate damping coefficients.

As shown in Figure 10, the convergence of system fre-
quency becomes slower when smaller damping coefficients
are used. As the utilized damping coefficients approach zero,
ALC can still stabilize the system frequency but can not restore
the nominal value. That is because when D = 0, the OLC
problem (4) imposes no restriction on the system frequency.
As a result, only the power imbalance is eliminated, but the
nominal frequency cannot be restored. In contrast, when larger
damping coefficients are utilized, the convergence of frequency
dynamics becomes faster, at the cost of increased oscillations.
Generally, the ALC scheme can work well under moderate
inaccuracies in the damping coefficients D.

E. Impact of Measurement Noise

Recall that the implementation of ALC requires the local
measurement of frequency deviation ωi and adjacent power
flows (Pki, Pij) at each bus i ∈ N . Therefore this part studies
how the measurement noises affect the performance of ALC.

First, consider the noise ξωi in the measurement of ωi and
let the measured frequency deviation be ω̃i = ωi+ξ

ω
i . Assume

that the noise ξωi follows Gaussian distribution N (0, σ2
ω), then

the standard deviation σω is tuned to test the performance of
ALC under step power changes. In each simulation, the noise
ξωi is generated independently over time and across buses. The
resultant frequency dynamics and load adjustment scheme are
shown as Figure 11.

Fig. 11. The frequency dynamics and load adjustment with different noises
in frequency measurement.

Then, we inject noise ξPij to the measurement of power
flow with P̃ij = Pij + ξPij and assume that ξPi ∼ N (0, σ2

P ).
The frequency dynamics and load adjustment scheme under
different levels of power flow noises are shown in Figure 12.

Fig. 12. The frequency dynamics and load adjustment with different noises
in power flow measurement.

From Figures 11 and 12, it is observed that the system
frequency can be restored to the nominal value under the mea-
surement noise, while the loads are continuously modulated in
response to the measurement errors. Moreover, in both cases,
higher level of noise leads to larger oscillations in the system
frequency and greater fluctuations of the load adjustment.

VI. CONCLUSION

Based on the reverse engineering approach, we developed a
fully distributed ALC mechanism for frequency regulation in
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power systems. The combination of ALC and power network
dynamics was interpreted as a partial primal-dual gradient al-
gorithm to solve an optimal load control problem. As a result,
relying purely on local measurement and local communication,
ALC can eliminate power imbalance and restore the nominal
frequency with minimum total cost of load adjustment, while
respecting operational constraints such as load power limits
and line thermal limits. Numerical simulations of the 39-
bus New England system showed that ALC can maintain
system frequency under step or continuous power changes,
and is robust to inaccuracy in damping coefficients as well as
measurement noises.

APPENDIX A
PROOF OF LEMMA 2

Define ∆z := z − z∗ = [∆d; ∆P ; ∆ψ,∆ωG ,∆µ]. Split
the matrix VA in (22) as VA = [V GA ;V LA ] where V GA and V LA
respectively collect the rows w.r.t. the generator buses and the
load buses. Then we have AG = V GAΣAU

>
A by (22).

For any ∆z, we have

V (z) =∆z>Q∆z = α||∆d||2 + α||U>A∆P ||2

+ α||U>S ∆ψ||2 + α||∆ωG ||2 + α||∆µ||2

+ 2∆d>∆µ+ 2∆ω>G AG∆P − 2β∆ψ>S∆µ

=||∆d+ ∆µ||2 + ||∆ωG +AG∆P ||2

+ ||∆µ− βS∆ψ||2 + (α− 1)||∆d||2

+ (α− 2)||∆µ||2 + (α− 1)||∆ωG ||2

+ (U>S ∆ψ)> (αI − β2Σ2
S)︸ ︷︷ ︸

:=Z1

U>S ∆ψ

+ (U>A∆P )> (αI − ΣAV
G
A

>
V GAΣA)︸ ︷︷ ︸

:=Z2

U>A∆P

(39)

Since parameter α is sufficiently large and parameter β is
sufficiently positively small, we have

Z1 � (α− β2||ΣS ||2) · I � 0 (40a)

Z2 � (α− ||V GAΣA||2) · I � 0 (40b)

Therefore, V (z) ≥ 0 for any ∆z, i.e., Q � 0. In addition,
V (z) = 0 if and only if

∆d = 0,∆ωG = 0,∆µ = 0, U>A∆P = 0, U>S ∆ψ = 0

It can be further checked that by equations (22) and (23),{
(∆P ,∆ψ) |U>A∆P = 0, U>S ∆ψ = 0

}
∆
= {(∆P ,∆ψ) |A∆P = 0, S∆ψ = 0}

APPENDIX B
PROOF OF LEMMA 3

Without loss of generality, let the step size matrix Ξ be the
identity matrix I for simplicity. Then the time derivative of
V (z) can be formulated as

dV (z)

dt
= ż>Q(z − z∗) + (z − z∗)>Qż

= (z − z∗)>[W (d)>Q+QW (d)](z − z∗)
(41)

Hence, it is sufficient to prove Lemma 3 by showing

R(d) := −W (d)>Q−QW (d)− ρQ � 0 (42)

for any d.
Plugging the definition of Q (21) and ρ = β2

α , we obtain

R(d) =


Ld L>Pd (β − 1)S F>2 A

>
G Ldµ

LPd LP 0 L>ωP −F2

(β − 1)S 0 Lψ 0 −β
3

α S
AGF2 LωP 0 Lω Io

Ldµ −F>2 −β
3

α S I>o Lµ


(43)

where

Ld := 2αC(d) + 2αF1 − 2I − β2I (44a)

LP := 2αF3 + 2A>GAG − β2UAU
>
A (44b)

Lψ := 2βSS − β2USU
>
S (44c)

Lω := 2αDG − 2AGA
>
G − β2I (44d)

Lµ := 2I − 2βSS − β2I (44e)

LPd := 2αF2 +A>G Io (44f)

Ldµ := −C(d)− F1 + β2/α · I (44g)

LωP := DGAG +AGF
>
3 − β2/α ·AG

=
[
DG − β2

α I AGA
>
LD
−1
L

]
︸ ︷︷ ︸

:=H1

[
AG
AL

]
= H1A (44h)

Some terms are cancelled out by using (24) when deriving
the formulation of R(d) (43). The key observation to show
R(d) � 0 is that R(d) is almost diagonally dominant with
positive (semi-)definite diagonal blocks when α is sufficiently
large and β is positively small enough.

For any vector e := [ed; eP ; eψ; eω; eµ] corresponding to
the components of R(d) (43), the quadratic term e>R(d)e is
formulated as follows:

e>R(d)e = e>d Lded + e>PLPeP + e>ψLψeψ + e>wLwew

+ e>µLµeµ + 2e>PLPded + 2e>ωAGF2ed

+ 2e>ωLωPeP + 2(β − 1)e>ψSed + 2e>µLdµed

− 2e>PF2eµ − 2β3/α · e>µ Seψ + 2e>wIoeµ

= e>ψTψeψ + e>wTwew + e>µ Tµeµ + ||ed + F>2 A
>
G eω||2

+ ||βU>A eP +
1

β
ΣAV

>
A H

>
1 eω||2 + ||β − 1

β
ed + βSeψ||2

+ ||1
2
eµ + 2Ldµed||2 + ||1

2
eµ − 2F>2 eP ||2

+ ||1
2
eµ − 2

β3

α
Seψ||2 + ||1

2
eµ + 2I>o eω||2

+ 2α
[
e>d e>P

] [ Td F>2 + 1
2αI
>
o AG

F2 + 1
2αA

>
G Io TP

]
︸ ︷︷ ︸

:=H2(d)

[
ed
eP

]

(45)

where

Td :=
1

2α
Ld −

(β − 1)2

2αβ2
I − 1

2α
I − 2

α
LdµLdµ (46a)
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TP :=
1

2α
LP −

β2

2α
UAU

>
A −

2

α
F2F

>
2 (46b)

Tψ := Lψ − β2SS − 4β6

α2
SS (46c)

Tω := Lω −
1

β2
H1VAΣ2

AV
>
A H

>
1 −AGF2F

>
2 A
>
G − 4IoI

>
o︸ ︷︷ ︸

:=H3

(46d)
Tµ := Lµ − I (46e)

For equation (45), when parameter α is sufficiently large
and parameter β is positively sufficiently small, we have
1) Tψ � 0 because

Tψ = β

[
(2− β − 4β5

α2
)SS − βUSU>S

]
� βUS

[
(2− β − 4β5

α2
)(σmin

S )2 − β
]
U>S � 0

where σmin
S is the smallest positive eigenvalue of S.

2) Tω � 0 because ||H3|| is bounded when β > 0 is small
and fixed, and thus

Tω �
(

2α ·min
i∈G
{Di} − 2||AGA>G || − β2 − ||H3||

)
· I

� 0 (when α is sufficiently large)

3) Tµ �
(
1− 2β||S||2 − β2

)
· I � 0.

4) We further claim that H2(d) � 0 for any d ∈ R|N |. This
can be shown by using the Schur Complement Theorem. By
Assumption 3, we have

Td �
(
u− 3 + β2

2α
− (β − 1)2

2αβ2
− 2

α
||Ldµ||2

)
I + F1

� 1

2
uI + F1 � 0

Then consider the Schur complement of the block TP in
H2(d), which is

TP − (F2 +
1

2α
A>G Io)T

−1
d (F>2 +

1

2α
I>o AG)

�A>LD−1
L AL +

1

α
A>GAG −

β2

α
UAU

>
A −

2

α
F2F

>
2

− (F2 +
1

2α
A>G Io)(

u

2
I + F1)−1(F>2 +

1

2α
I>o AG)

=A>LD
−1
L AL +

1

α
A>GAG −

β2

α
UAU

>
A −

2

α
A>LD

−2
L AL

− 1

2α2u
A>GAG −A>LD−1

L (
u

2
I +D−1

L )−1D−1
L AL

�A>L
[
(1− Dmax

2α
− 2

αDmin
)I − (

u

2
DL + I)−1

]
D−1
L AL

+
1

2α

(
A>LAL +A>GAG − 2β2UAU

>
A

)
�
[
(1− Dmax

2α
− 2

αDmin
)− 1

1 + u/2 ·Dmin

]
A>LD

−1
L AL

+
1

2α
UA
(
ΣAΣA − 2β2I

)
U>A � 0

where Dmin = mini∈LDi and Dmax = maxi∈LDi. Thus
H2 � 0.

By the arguments 1) - 4) above and equation (45), we have
e>R(d) e ≥ 0 for any e, which shows that R(d) � 0. Thus
Lemma 3 is proved.

APPENDIX C
PROOF OF PROPOSITION 1

Consider the following Lagrangian function of the reduced
OLC problem (13) with the dual variables π and ν:

L(d,ω,P ,ψ,π,ν) = c(d) +
1

2
ω>Dω

+ π>(d− P in +Dω +AP )

+ ν>(d− P in + Sψ)

(47)

To deal with the non-uniqueness of the saddle points, define
P̃ := U>AP and ψ̃ := U>S ψ based on the compact singular
value decomposition (22) (23), thus we have

AP = VAΣAP̃ , Sψ = USΣSψ̃

and the corresponding optimal P̃∗ and ψ̃∗ are unique. Substi-
tute VAΣAP̃ and USΣSψ̃ for AP and Sψ in the Lagrangian
function (47), respectively. Then the KKT conditions of the
reduced OLC problem (13) are given by

∂L

∂d
= ∇c(d∗) + π∗ + ν∗ = 0 (48a)

∂L

∂ω
= Dω∗ +Dπ∗ = 0 (48b)

∂L

∂P̃
= ΣAV

>
A π∗ = 0 (48c)

∂L

∂ψ̃
= ΣSU

>
S ν∗ = 0 (48d)

∂L

∂π
= d∗ +Dω∗ + VAΣAP̃∗ − P in = 0 (48e)

∂L

∂ν
= d∗ + USΣSψ̃∗ − P in = 0. (48f)

Define y∗ := [d∗;ω∗; P̃∗; ψ̃∗;π∗;ν∗] as the optimal so-
lution satisfying the KKT conditions (48). Then the KKT
conditions (48) can be equivalently rewritten as the compact
form:

h(y∗(t)) = EP in(t)

where E := [0,0,0,0, I, I]>. Thus we have

∇y∗h ·
dy∗(t)

dt
= E

dP in(t)

dt

where

∇y∗h =


∇2c(d∗) 0 0 0 I I

0 D 0 0 D 0
0 0 0 0 ΣSV

>
A 0

0 0 0 0 0 ΣSU
>
S

I D VAΣA 0 0 0
I 0 0 USΣS 0 0

 .

Since uI � ∇2c(d∗) � `I for any d∗ due to Assumption 3,
matrix ∇y∗h is nonsingular according to [37, Theorem 3.2].
Thus we have

||dy∗(t)
dt
|| ≤ ||E||

σmin(∇y∗h)
· ||dP

in(t)

dt
|| ≤

√
2

γh
· ||dP

in(t)

dt
||
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where σmin(∇y∗h) is the smallest singular value of ∇y∗h, and
the second inequality is due to [38, Proposition 2.2], which
shows that σmin(∇y∗h) ≥ γh for some positive constant γh
that depends on D,u, `, UAΣA, USΣS .

The rest of the proof is to bound ||dz
∗(t)
dt ||Q by ||dy∗(t)dt ||.

Since the primal variables of the equilibrium points are optimal
solutions to the reduced OLC problem (13), we have the
following relation between z∗ :=

[
d∗;P ∗;ψ∗;ω∗G ;µ∗

]
and

y∗ := [d∗;ω∗; P̃∗; ψ̃∗;π∗;ν∗]:

d∗ = d∗, U
>
AP

∗ = P̃∗, U
>
S ψ
∗ = ψ̃∗,

ω∗G = [I, 0]ω∗, µ
∗ = ∇c(d∗)− ω∗

where the last equality is due to equation (14b). Therefore, for
the time derivatives, we have

˙̃z∗ : =


ḋ∗

U>A Ṗ
∗

U>S ψ̇
∗

ω̇∗G
µ̇∗



=


ḋ∗
˙̃P∗
˙̃
ψ∗

[I, 0] ω̇∗
∇2c(d∗)ḋ∗ − ω̇∗

 =


Ed
EP
Eψ

[I, 0]Ew
∇2c(d∗)Ed − Ew


︸ ︷︷ ︸

:=Ey(d∗)

ẏ∗

where Ed, EP , Eψ, Ew are corresponding constant matrices,
e.g., Ed := [I,0,0,0,0,0].

For any ż∗, we have

||ż∗||2Q = ż∗>Qż∗

= ˙̃z∗>


αI 0 0 0 I
0 αI 0 U>AA

>
G 0

0 0 αI 0 −βΣSU
>
S

0 AGUA 0 αI 0
I 0 −βUSΣS 0 αI


︸ ︷︷ ︸

:=Q̂

˙̃z∗

=(Ey(d∗)ẏ∗)
>Q̂Ey(d∗)ẏ∗ = ẏ>∗

(
Ey(d∗)

>Q̂Ey(d∗)
)
ẏ∗.

Since uI � ∇2c(d∗) � `I for any d∗ due to Assumption 3,
it can show that matrix Ey(d∗)

>Q̂Ey(d∗) is positive semi-
definite and its norm is upper bounded for any d∗, i.e., there
exists a positive constant γy such that

||Ey(d∗)
>Q̂Ey(d∗)|| ≤ γy.

As a result, we obtain

||dz
∗

dt
||Q ≤

√
γy · ||

dy∗
dt
|| ≤

√
2γy

γh
· ||dP

in(t)

dt
||.

Let η :=

√
2γy

γh
, then Proposition 1 is proved.

APPENDIX D
THEOREM ON INACCURATE DAMPING

Theorem 4. Under Assumption 2 and 3, and the following
conditions are met:

i) Infinitely large step sizes εdi are used for (10a), which is
then reduced to the following algebraic equation:

−c′i (di) + ηiωi +
εµi
Ki

ri − γ+
i + γ−i = 0.

ii) An inaccurate D̃i = Di + δai is used instead of Di in
(10e), and the inaccuracy δai satisfies:

δai ∈ 2

(
d′ −

√
d′2 + d′Dmin, d

′ +

√
d′2 + d′Dmin

)
(49)

where d′ := 1/` and Dmin := mini∈N Di.
iii) Every node i ∈ N has adequate load control capacity such
that its control action di(t) never hits the limit of [di, di] at
any time t.

Then the closed-loop system (2) and (10) globally asymp-
totically converges to a point (d∗,ω∗,P ∗,ψ∗,γ∗, r∗,σ∗),
where (d∗,ω∗,P ∗,ψ∗) is an optimal solution of problem (4).

Proof. For i ∈ N , an inaccurate damping coefficient D̃i =
Di+δai is used instead of Di in (10e). The closed-loop system
(2), (10) is then equivalent to (7), (8) except that (8g) becomes

µ̇i = εµi

P ini − di + δaiωi −
∑

j:ij∈Ein

Bij (ψi − ψj)

+
∑

k:ki∈Ein

Bki (ψk − ψi)

) (50)

with the additional term δaiωi.
By condition iii) of Theorem 4, we have di(t) ∈ (di, di)

and γ+
i (t) ≡ γ−i (t) ≡ 0, for all t ≥ 0, given that their initial

values satisfy di(0) ∈ (di, di) and γ+
i (0) = γ−i (0) = 0. Thus

the dynamics of γ+ and γ− can be ignored from (8). Further
by condition i), the control law (8c) is modified as (51)

di = (c′i)
−1

(ωi + µi) ∀i ∈ N (51)

Define ζ := [P ;ψ;ωG ;µ;σ] and L̃(ζ) := mind L(d, ζ),
where the minimizer d is given by (51) and ∂L

∂d (d, ζ) = 0.
The modified closed-loop system with inaccurate Di, de-

scribed by (7), (8a), (8b), (8d), (8h), (8i), (50), (51), can be
written as:

Ṗ = −ΞP
∂L̃

∂P
, ψ̇ = −Ξψ

∂L̃

∂ψ
, ω̇G = ΞωG

∂L̃

∂ωG

µ̇ = Ξµ

[
∂L̃

∂µ
+ δAω

]
, σ̇ = Ξσ

[
∂L̃

∂σ

]+

σ

(52)

where δA := diag(δai)i∈N . The system (52) can be written
more compactly as:

ζ̇ = Ξζ [f(ζ)]
+
σ (53)

where Ξζ := blockdiag(ΞP ,Ξψ,ΞωG ,Ξµ,Ξσ) and

f(ζ) :=

− ∂L̃
∂P

>

,− ∂L̃
∂ψ

>

,
∂L̃

∂ωG

>

,

(
∂L̃

∂µ
+ δAω

)>
,
∂L̃

∂σ

>
> .
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Note that in the vector ω = [ωG ;ωL], only ωG is a variable
of the system (52) or (53), whereas ωL is the abbreviation of
a vector-valued function ωL(ζ) defined by the equation:

P ini −di(ωi+µi)−Diωi−
∑
j:ij∈E

Pij+
∑
k:ki∈E

Pki = 0, ∀i ∈ L

where di(ωi + µi) is defined by (51).
The rest of the proof follows the same technique as the

proof of [19, Theorem 15], and therefore we only provide a
sketch for it. Consider a Lyapunov function candidate:

U(ζ) =
1

2
(ζ − ζ∗)> Ξ−1

ζ (ζ − ζ∗) .

We first show that under the dynamics (53), the time derivative
of U(ζ) is upper-bounded by:

U̇(ζ) ≤
∫ 1

0

(ζ − ζ∗)>[H(ζ(s))](ζ − ζ∗)ds

where ζ(s) = ζ∗ + s(ζ − ζ∗), and H(ζ) is a matrix which is
zero everywhere except:
i) a block submatrix corresponding to variables (P ,µL),
which is the same as HP,ωL(z) in [19];
ii) a block submatrix corresponding to variables (µG ,ωG),
which is the same as HωG ,νG (z) in [19].

It is shown in [19] that under condition (49), the matrix
H(ζ) is negative semi-definite. Applying the invariance prin-
ciple, the convergence result in Theorem 4 can be proved.

Discussions. 1)Why are γ+ and γ− ignored? If (8e)–
(8f) are considered, then instead of proving negative semi-
definiteness of the block submatrices corresponding to
(P ,µL) and (µG ,ωG), we have to prove negative semi-
definiteness of the block submatrices corresponding to
(P ,µL,γ

+
L ,γ

−
L ) and (µG ,ωG ,γ

+
G ,γ

−
G ). However, one can

show that the latter two larger block submatrices have strictly
positive eigenvalues for arbitrarily small δA, which makes the
proof technique fail.

2) Why is the control law modified from the derivative form
(8c) to the stationary form (51)? With the derivative form
(8c), one can show that in H(ζ), the block at the diagonal
position corresponding to µ is zero, and hence it is impossible
to make H(ζ) negative semi-definite when the off-diagonal
blocks containing δA are non-zero.
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