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Abstract— This paper studies the problem of enforcing safety
of a stochastic dynamical system over a finite time horizon.
We use stochastic barrier functions as a means to quantify
the probability that a system exits a given safe region of the
state space in finite time. A barrier certificate condition that
bounds the infinitesimal generator of the system, and hence
bounds the expected value of the barrier function over the time
horizon, is recast as a sum-of-squares optimization problem
for efficient numerical computation. Unlike prior works, the
proposed certificate condition includes a state-dependent bound
on the infinitesimal generator, allowing for tighter probability
bounds. Moreover, for stochastic systems for which the drift
dynamics are affine-in-control, we propose a method for syn-
thesizing polynomial state feedback controllers that achieve a
specified probability of safety. Two case studies are presented
that benchmark and illustrate the performance of our method.

I. INTRODUCTION

Reliance on complex, safety-critical systems is increasing,
which has made safety verification of such systems of utmost
importance. For example, environments populated by both
humans and autonomous systems (e.g. fulfillment centers,
autonomous vehicles, and healthcare) require rigorous safety
verification to ensure desired behavior is achieved. From a
practical standpoint, safety verification can translate directly
to ensuring qualitative guidelines such as collision avoidance
are maintained. Safety-critical systems are often analyzed in
a purely deterministic framework, however, many real-world
applications are subject to stochastic disturbances and are
better modeled as stochastic systems.

A common approach to safety verification in deterministic
systems is via barrier functions which provide Lyapunov-
like guarantees regarding system behavior. The existence of
a barrier function which satisfies a barrier certificate can
often be enough to certify the safe operation of a system [1].
Recent work has modified and improved the deterministic
form of barrier functions and expanded their application.
In particular, control barrier functions have been introduced
to guaranteed safety in control affine systems [2], [3]. This
is demonstrated in applications for cruise control [3], [4],
collision avoidance in robotic swarms [5], and walking robots
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[6], and has recently been extended to allow for input-to-state
safe control barrier functions [7] and to guarantee finite-time
convergence to a safe region [8].

In the stochastic setting, safety verification via barrier
certificates for infinite time horizons was introduced in [1]
alongside the deterministic counterpart. The work presented
in [1] provides a framework for bounding the probability a
system will exit a safe region based on a non-negative barrier
function defined on the system state space. In this approach,
the probability is directly correlated with the set of initial
conditions. However, this approach can be overly restrictive
because it requires the infinitesimal generator, which dictates
the expected value evolution of a stochastic process, to be
non-positive; i.e., the barrier function is restricted to be a
supermartingale.

The paper [9] relaxes this condition and instead pro-
vides a barrier certificate that only requires the infinitesimal
generator of the barrier process to be upper-bounded by a
constant. Such processes are called c-martingales and allow
the expected value of the barrier function to increase over
time. This approach results in a safety probability bound
for finite time horizons. Recent work in [10] leverages c-
martingales for temporal logic verification of discrete-time
systems.

The present paper also studies the problem of verify-
ing safety of stochastic systems on finite time horizons,
and the contributions are as follows. First, we build on
the approaches proposed in [1], [9] and propose a barrier
certificate constraint that imposes a state-dependent bound
on the infinitesimal generator. This bound was originally
proposed and studied by Kushner in [11], [12]. The proposed
barrier certificate allows the expected value of the barrier
to increase and covers the c-martingale condition of [9] as
a special case. However, our formulation also accounts for
the system dynamics in the infinitesimal generator constraint.
This allows for probability bounds that are no worse than the
c-martingale condition, and in many cases, especially with
high noise levels, provides better probability bounds.

Second, as in [1], [9], we compute barrier functions using
sum-of-squares (SOS) optimization. Like in [1], but unlike
[9], we utilize polynomial barrier functions. This provides a
simpler formulation of the probability of failure on a finite
time horizon when compared to the approach in [9] which
uses exponential barrier functions and, empirically, provides
tighter probability bounds.

Third, we extend our formulation to allow for control
inputs and provide a method for synthesizing a safe con-
troller. In particular, we consider affine-in-control systems
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and the proposed approach searches for a polynomial state
feedback controller which ensures a system’s failure prob-
ability achieves a predetermined criterion via a stochastic
control barrier function.

This paper is organized as follows: Section II covers the
background information of stochastic differential equations,
barrier functions and SOS optimization. Section III covers
the problem which we are solving in detail. Section IV
highlights the methodology we utilize to solve the SOS
optimization and stochastic control problem. Section V and
Section VI present numerical case studies which illustrate
our results and conclusions, respectively.

II. PRELIMINARIES

In this section we first introduce our state space defini-
tions as well as background information regarding stochastic
processes, barrier functions, and SOS polynomials.

A. Stochastic Process

Consider a complete probability space (Ω,F , P ) and a
standard Wiener process, w(t) in Rm. We consider stochastic
processes x(t) satisfying a stochastic differential equation of
the form

dx = F (x)dt+ σ(x)dw. (1)

The compact set X ⊂ Rn is the system state space, F :
X → Rn is the drift rate and σ : X → Rn×m is the
diffusion term. We assume the functions F (x) and σ(x)
are Lipschitz continuous. The stochastic process x is a right
continuous strong Markov process [13]. We now introduce
the infinitesimal generator, which extends the usual definition
of a time derivative to instead consider the expectation of a
function of a random process.

Definition 1. Let x be a stochastic process in Rn. The
infinitesimal generator A of x acts on functions of the state
space and is defined as

AB(x) = lim
t↓0

E[B(x)|x0]−B(x0)

t

where B : X → R such that the limit exists for all x0.

In particular, the infinitesimal generator for any process as
in (1) is of the form shown in Fact 1.

Fact 1 (Ch. 7, Theorem 7.3.3 of [13]). Let x be a stochastic
process satisfying (1), then the infinitesimal generator A of
some twice differentiable function B(x) is given by

AB(x) =

n∑
i=1

Fi(x)
∂B

∂xi
+

1

2

n∑
i=1

n∑
j=1

(
σ(x)σT (x)

)
i,j

∂2B

∂xi∂xj
.

The stochastic process x is not guaranteed to lie in X at
all times which leads us to define the stopped process x̃.

Definition 2. Suppose that τ is the first time of exit of x from
the open set Int(X ). Then the stopped process x̃ is defined
by [1]

x̃(t) =

{
x(t) for t ≤ τ
x(τ) for t ≥ τ.

It is worth noting that the stopped process inherits the
same strong Markovian property of x and shares the same
infinitesimal generator [11].

B. Barrier Functions

Consider an unsafe region of the state space Xu ⊆ X and
a set of initial conditions X0 ⊆ X \ Xu. In a similar spirit
to Lyapunov functions, barrier functions are utilized as a
means of guaranteeing a desired behavior on some region of
a system’s domain defined as a sub-level set (or super-level
set) of the barriers. In that regard, stochastic barrier functions
have been introduced to upper bound the probability of
exiting a safe region over an infinite time-horizon.

Proposition 1 (Theorem 15 from [1]). Given a stochastic
differential equation of the form of (1) and the sets X , X0,
and Xu with f(x) and σ(x) locally Lipschitz continuous,
consider the stopped process x̃. Suppose there exists a twice
differentiable function B such that

B(x) ≤ γ ∀x ∈ X0 (2)

B(x) ≥ 1 ∀x ∈ Xu (3)

B(x) ≥ 0 ∀x ∈ X (4)

∂B

∂x
f(x) +

1

2
Trace

(
σT (x)

∂2B

∂x2
σ(x)

)
≤ 0 ∀x ∈ X . (5)

Then, the probability of the system entering the unsafe region
of the state space is bounded by

P{x̃(t) ∈ Xu for some t ≥ 0} ≤ B(x0) ≤ γ (6)

where x0 ∈ X0 is the initial state of the system.

This theorem provides a powerful means of bounding the
probability of failure of a stochastic process on an infinite
time horizon. However, we note that the inequality condition
(5), also referred to as the barrier certificate, imposes that
B(x) is a supermartingale. This inequality enforces that the
expectation of the barrier function decreases at all points
of X . In practice, this is often overly restrictive on the
system dynamics. For example, it has been shown that no
supermartingale exists on a bounded set where the system’s
noise does not vanish [11]. In Section III, we present a
relaxed version of this theorem with its respective probability
bounds for finite-time horizons.

C. Sum-of-Squares

Definition 3. Define R[x] as the set of all polynomials in
x ∈ Rn. Then

Σ[x] ,

{
s(x) ∈ R[x] : s(x) =

m∑
i=1

gi(x)2, gi(x) ∈ R[x]

}
is the set of SOS polynomials. It is noted that if s(x) ∈ Σ[x]
then s(x) ≥ 0 ∀ x.

Definition 4. Given pi(x) ∈ R[x] for i = 0, . . . ,m, the
problem of finding qi(x) ∈ Σ[x] for i = 1, . . . , m̂ and



qi(x) ∈ R[x] for i = m̂+ 1, . . . ,m such that

p0(x) +

m∑
i=1

pi(x)qi(x) ∈ Σ[x]

is a sum-of-squares program (SOSP). SOSPs can be effi-
ciently converted to semidefinite programs using tools such
as SOSTOOLS [14].

III. PROBLEM FORMULATION

The problem we address is: how do we create a bound on
the probability a stochastic system of form (1) exits a safe
region during a finite-time horizon?

Objectives: First, our goal in this paper is to relax the
supermartingale condition on the barrier certificate in (5)
similar to what is shown in [9]. Second, based on that
relaxation, we aim to derive a state-feedback controller
ensuring a user-specified upper bound on the probability of
exiting a safe region in the state space.

Consider the stochastic process x which satisfies the
stochastic differential equation

dx = (f(x) + g(x)u(x))dt+ σ(x)dw (7)

where f : X → Rn, g : X → Rn×k, σ : X → Rn×m and w
is a m-dimensional Wiener process. Additionally, u : X →
Rk where u is a state dependent control input. We define
F (x) = f(x) + g(x)u(x).

Now, we relax the supermartingale condition shown in (5).
The following theorem is an immediate corollary of Chapter
3, Theorem 1 in [11].

Theorem 1. Given the stochastic differential equation shown
in (7) and the sets X ⊂ Rn, Xu ⊆ X ,X0 ⊆ X \ Xu
with F (x) = f(x) + g(x)u(x) and σ(x) locally Lipschitz
continuous, where u(x) is some feedback control strategy.
Consider the stopped process x̃. Suppose there exists a twice
differentiable function B such that

B(x) ≤ γ ∀x ∈ X0 (8)

B(x) ≥ 1 ∀x ∈ Xu (9)

B(x) ≥ 0 ∀x ∈ X (10)

∂B

∂x
F (x)+

1

2
Trace

(
σT (x)

∂2B

∂x2
σ(x)

)
≤ −αB(x)+β ∀x ∈ X\Xu

(11)
for some α ≥ 0, β ≥ 0 and γ ∈ [0, 1). Define

ρu := P{x̃(t) ∈ Xu for some 0 ≤ t ≤ T}. (12)

Then
• If α > 0 and β

α ≤ 1,

ρu ≤ P
{

sup
0≤t≤T

B(x̃) ≥ 1

}
≤ 1−

(
1−B(x0)

)
e−βT .

(13)
• If α > 0 and β

α ≥ 1,

ρu ≤ P
{

sup
0≤t≤T

B(x̃) ≥ 1

}
≤
B(x0) + (eβT − 1)βα

eβT
.

(14)

• If α = 0,

ρu ≤ P
{

sup
0≤t≤T

B(x̃) ≥ 1

}
≤ B(x0) + βT. (15)

The bound shown in (15) is characterized in [10] and [9]
as the upper bound on the probability of being unsafe for a
c-martingale.

If B(x) satisfies the conditions of Theorem 1, then B(x)
is called a stochastic control barrier function for a given
control policy u(x). Relaxing the supermartingale condition
on the infinitesimal generator in the fashion of Theorem 1
gives three case-dependent finite time probability bounds on
a system’s likelihood of entering an unsafe region in the form
of (13), (14), and (15).

Remark 1. If the initial state x0 is not known exactly but
only known to lie within X0, then γ can be substituted for
B(x0) in the probability bounds in Theorem 1. This provides
an upper bound on the probability of failure over the entire
set of initial conditions rather than on a particular initial
point in X0.

IV. METHODOLOGY

In this section we present our approach to construct the
stochastic control barrier functions based on the problem
formulation of Section II. First, we adapt the constraints
given in Theorem 1 to be formulated as an SOSP. Second,
we cover the algorithms which construct barrier functions
and present our method for computing a low-energy control
policy u(x).

A. SOS Formulation for Safety Verification
Theorem 2. Consider a system of the form of (7) and the sets
X , X0, and Xu and assume these sets can be described as
X = {x ∈ Rn : sX (x) ≥ 0}, X0 = {x ∈ Rn : sXo

(x) ≥ 0},
and Xu = {x ∈ Rn : sXu(x) ≥ 0} for some polynomials
sX , sXo , and sXu . Suppose there exists a polynomial B(x),
a polynomial u(x), and SOS polynomials λX (x), λXo

(x),
and λXu

(x) that satisfy the following

B(x)− λX (x)sX (x) ∈ Σ[x]

B(x)− λXu
(x)sXu

(x)− 1 ∈ Σ[x]

−B(x)− λXo
(x)sXo

(x) + γ ∈ Σ[x]

−∂B(x)

∂x
F (x)− αB(x) + β + λXu(x)sXu(x)

−λX (x)sX (x) ∈ Σ[x]

where F (x) = f(x) + g(x)u(x). Then, the probability of
failure, depending on the values of α and β, is defined by
(13), (14) or (15).

We omit the proof due to space constraints, but the proof
follows the general approach for relaxing set constraints to
SOS programs using the Positivstellensatz condition; see the
documentation of [14] for details.



Algorithm 1 Compute B(x)

1: procedure COMPUTE-B(lα, uα, σ, u(x), nB)
2: α← Range(lα, uα, d) . Assign α values d apart
3: P ∗ ← 1
4: P ← ∅
5: for α0 ∈ α do
6: min B(x0) + β
7: subject to B(x)− λX sX (x) ≥ 0
8: −AB(x) + α0B(x)− β
9: +λXusXu (x)− λX (x)sX (x) ≥ 0

10: −B(x)− λXosXo (x) + γ ≥ 0
11: B(x)− 1− λXusXu (x) ≥ 0
12:
13: Compute P , using (13), (14) or (15)
14: if P < P ∗ then
15: α∗ = α0

16: β∗ = β
17: P ∗ = P
18: end if
19: end for
20: return α∗, β∗, P ∗
21: end procedure

B. Barrier Function Numerical Procedure

Next, we present an algorithmic solution to this problem.
Algorithm 1 computes the barrier function B(x) used to
quantify an upper bound on the failure probability. The input
values lα, uα, σ, u(x), nB are the lower α range value, upper
α range value, diffusion term, control polynomial, and the
order of the B(x) polynomial, respectively. Our algorithm
performs a grid search over a range of scalar α with value
spacing d,which are design parameters. Next, the SOSP is
encoded using the constraints shown in Theorem 2. Lastly,
as the SOSP is run, the algorithm returns a function, B(x),
that is evaluated at any x0 ∈ X0 and utilized to compute the
probability, P , using (13), (14) or (15). The degree of B(x) is
a design parameter; however, higher order polynomials tend
to produce tighter bounds. Well refined bounds (i.e. higher
order polynomials) present themselves with the trade-off
of longer computational times versus probability of failure
refinement.

The objective of the SOSP in Algorithm 1 is set to
minimize the value, B(x0) + β. Minimizing B(x0) + β is
a consensus objective which may not be the best one but
provides a means of avoiding bi-linear programs.

C. Controller Synthesis Procedure

In general, when searching for a control policy, we are
aiming for a polynomial of the same or lower order of
B(x) such that the upper bound on the probability of failure
reduces to a designer specified value. First, we write the
polynomial u(x) in quadratic form as

u(x) = zTQz (16)

where z is a vector of monomials in x of a specified order and
Q is a coefficient matrix of appropriate dimensions. Because
there likely exist many feasible controllers ensuring the
desired probability of failure, we introduce a cost criterion
to choose among them. We approximate the energy of a
particular control policy via a proxy measure. In this case, the
proxy is the non-negative scalar, c, such that the following

Algorithm 2 Initialize u(x)

1: procedure COMPUTE-u(B(x), α, β, nu)
2: u(x) = zTQz . u(x) is an nu power polynomial
3: . z is a vector of state monomials
4: min c
5: subject to c1− vec(Q) ≥ 0
6: vec(Q) + c1 ≥ 0
7: −AB(x) + αB(x)− β
8: +λXu (x)sXu (x)− λX (x)sX (x) ≥ 0
9: return u(x), c, Q

10: end procedure

vector element-wise constraints

c1− vec(Q) ≥ 0

vec(Q) + c1 ≥ 0

hold where vec(Q) is the vector form of matrix Q and 1

is the vector of ones of appropriate dimension. We choose
the cost min c to minimize the coefficients appearing in the
polynomial controller to encourage lower control effort. This
objective and procedure are highlighted in Algorithm 2.

Algorithm 3 takes Pgoal, σ, α, nB , nu and ε as arguments.
These variables are the goal probability, diffusion term,
α multiplier on B(x), barrier polynomial order, control
polynomial order and a small offset, respectively. Once the
procedure begins, it runs until the probability of failure is
within ε of the predefined goal probability. It is possible
to use other conditions to determine whether the algorithm
should continue to run such as computing the change in
optimal scalar c value, c∗, between iterations. Additionally,
the algorithm may be sped up by using a floor value for
c. Initially, a polynomial barrier of a specified polynomial
power is computed given no control policy (i.e. u(x) = 0).
Generally speaking, as in our case studies, we are interested
in systems where the probability of failure with no control
action is above the goal probability.

Next, if the probability of failure is greater than Pgoal then
we compute a scaled down β value multiplied by adec. If the
failure probability is less than Pgoal then we scale up the β
by ainc. The intuition behind this comes from analyzing the
probability bounds (13), (14) or (15). In general, a lower β
reduces our failure probability, thus when searching for u(x)
a scaled version of β can be used. The values of ainc and
adec are also design parameters.

V. CASE STUDIES

In this section, we first present a simple academic example
to illustrate the our technique. Second, we present a nonlinear
example to demonstrate the versatility of our approach. Both
case studies are compared to a Monte Carlo simulation which
is considered ground truth. We utilize SOSTOOLS [14]
which converts our SOSP into semidefinite programs. Our
choice of solver is the semidefinite program solver SDPT3
[15], [16]. These case studies were conducted on a 2.3 GHz
Intel Core i5 computer with 8GB of memory.1

1The MATLAB source code for the two case studies
is contained at https://github.com/gtfactslab/
stochasticbarrierfunctions

https://github.com/gtfactslab/stochasticbarrierfunctions
https://github.com/gtfactslab/stochasticbarrierfunctions


Algorithm 3 Search for control polynomial u(x)

1: procedure COMPUTE-umin(Pgoal, σ, α, nB , nu, ε)
2: icount = 1 . Initialize counting variable
3: while |P ∗ − Pgoal | > ε do
4: if icount = 1 then
5: β, P ← COMPUTE-B(lα, uα, σ, u(x), nB)
6: . Since α fixed, lα = uα
7: . u(x) = 0
8: icount = icount + 1
9: else

10: u(x), c, Q← COMPUTE-u(B(x), α, β, nu)
11: β, P ← COMPUTE-B(lα, uα, σ, u(x), nB)
12: end if
13:
14: if P < Pgoal and c < c∗ then
15: β∗ = β
16: P ∗ = P
17: c∗ = c
18: end if
19: . c∗ is initialized as a large number
20: if P > Pgoal then
21: β = adecβ
22: else
23: β = aincβ
24: end if
25: . ainc and adec are scaling factors
26:
27: end while
28: return u∗(x), c∗, Q
29: end procedure

A. 1-D Stochastic System

Consider a 1-D stochastic control affine system of the form

dx =
(
− x+ u(x)

)
dt+ σdw. (17)

This is of the same form as (7) where f(x) = −x and g(x) =
1. We define our state space as X = {x : −2 ≤ x ≤ 2},
Xu = {x : x2 ≥ 1}, and X0 = {x : x2 ≤ .22}. First, we
benchmark the probability of failure without a control input
(i.e. u(x) = 0) for a finite time horizon of T = 1 s. Thus, to
do so, we follow the procedure outlined in Algorithm 1. We
grid search over a defined range of values for the constant
α. In this particular example, our α ∈ [0, 5] with d = .05 in
Algorithm 1.

We choose to search for B(x) of the 16th degree. Ad-
ditionally, we reproduce the c-martingale bound presented
in [9, Algorithm 3]. Lastly, we benchmark against the true
probability of failure created via a 5000 draw Monte Carlo
simulation. The results are presented in Fig. The 1.

In Fig. 1, we see that our polynomial bound on the
probability of failure performs better than the bound from [9]
generated using the c-martingale condition that is not state
dependent. The difference is particularly notable at higher
noise levels where the exponential bound from [9] becomes
trivial, i.e., greater than or equal to one.

Next, we address the control problem of achieving a par-
ticular bound on the probability of failure of this system. We
choose a desired failure probability Pgoal = .30. We restrict
our attention to a linear controller of the form u(x) = −kx.
Our search for a low-energy controller which successfully
fulfills the design requirement follows a modified binary
search version of Algorithm 3. Fig. 2 plots k∗ achieving

Fig. 1: The probability of failure bounds for the 1-D system are presented
here. The polynomial barrier function, B(x) considered here was of the 16th

degree. The Monte Carlo simulation results illustrate the true probability of
failure for this system.

Fig. 2: An illustration of the trade-off between required control gain and the
degree of the barrier function, B(x) needed to successfully attain the desired
probability of failure threshold. Using higher order polynomials allows us
to guarantee that the desired probability bound is satisfied for a smaller
control gain up until some point.
the desired failure probability bound for σ ∈ [1, 2]. Here,
we note that the degree of barrier function for which we
search greatly affects the control gain needed to achieve the
control objective. In some sense, searching for a higher-order
polynomial refines the probability of failure bound requiring
lower control effort; however, these high order polynomials
require more computation time. Eventually, the degree of
the polynomial reaches a saturation point where it does not
further decrease the k∗ required.

B. Nonlinear Dynamics

Consider the stochastic non-linear dynamics

dx1 = x2dt (18)

dx2 =

(
− x1 − x2 − 0.5x31 + u(x)

)
dt+ σdw. (19)

This system is studied in [17] without the input term u(x).
We define our state space as X = {(x1, x2) | − 3 ≤ x1 ≤

2,−2 ≤ x2 ≤ 3}, Xu = {x2 | x2 ≥ 2.25}, and X0 =
{(x1, x2)|(x1 + 2)2 + x22 ≤ 0.12}. A sample trajectory of
(18)–(19) is illustrated in Fig. 3. Additionally, level sets of
B(x) are projected onto the state space. In this illustration,
B(x) is computed with u(x) = 0 solely using Algorithm 1.
Here, we see that the values for the barrier function abide
by the definitions of Theorem 1. In this particular trajectory
illustration, the evolution of system noise is enough for the
system to enter the predefined unsafe set; however, this is not
always the case. To illustrate this, we compute a Monte Carlo



Fig. 3: Given the initial conditions x0 = [−2, 0], the single trajectory
dynamics for time horizon of T = 2 and a σ = 1.0 is illustrated. We
define the unsafe region as Xu = {x2 | x2 ≥ 2.25}. Additionally, the
level sets of B(x) and their respective values are labeled and given as
dashed blue lines.

Fig. 4: Computing a 14th order polynomial barrier function for the nonlinear
dynamics we are able to bound the probability of failure of the 5000 draw
Monte Carlo dynamics for constant noise levels σ ∈ [.5, 1.5].

simulation of the system dynamics shown. Additionally, an
upper bound is computed on the probability of becoming
unsafe given our initial condition and illustrated in Fig. 4.
While we encode a set of initial conditions into the SOSP,
we evaluate the probability bound at the same initial point,
x0 ∈ X0, as the Monte Carlo simulation.

The design specification for this example is to reduce the
probability of failure bound to Pgoal = .10 for specified
noise levels. For this example we create a 2nd order poly-
nomial controller of the form of (16). We look to minimize
the constant, c, highlighted in Algorithm 2. We run the u(x)
search algorithm for select noise levels, specified α values,
and present the results in Table 1. The α values in this table
originate from the initial (i.e. u(x) = 0) probability bound
computation.

Noise Level, σ Pu(x)=0 α min c

0.6 0.860 1.4 2.1821

0.9 0.919 1.3 0.5251

1.0 0.912 1.3 0.6396

1.3 0.949 1.5 1.1488

TABLE 1: The results from the search for a control polynomial u(x) which
reduces the probability of failure to Pgoal = .10. The probability of failure
without a given control input is presented here for comparison.

VI. CONCLUSION

We consider control barrier functions whose existence
gives a means of quantifying an upper bound on a system’s

probability of failure. Additionally, we present a novel, state
dependent approach to the problem of finite-time verification
which further relaxes the constraint on the evolution of the
expected value. Lastly, we synthesize a feedback control
strategy u(x) such that a certain probability of failure criteria
is met. We illustrate our methods with two case studies which
demonstrate our ability to quantify system failure probabili-
ties. In these case studies, we solve for the barrier function
polynomials using SOS optimization and demonstrate our
proposed approach outperforms existing methods.
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