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Economic Optimal Control of a U-loop Bioreactor
using Simultaneous Collocation-based Approaches

Tobias K. S. Ritschel, Dimitri Boiroux, Marcus Krogh Nielsen, Jakob Kjøbsted Huusom,
Sten Bay Jørgensen, John Bagterp Jørgensen

Abstract— In this paper, we consider economic optimal con-
trol of single-cell protein (SCP) production in a U-loop reactor.
The model of the U-loop reactor contains both ordinary and
partial differential equations. Consequently, the optimal control
problems are large-scale. The optimal operating profile for the
SCP production is an unstable attractor. Therefore, we consider
two simultaneous collocation-based approaches for solving the
optimal control problems. We implement these two approaches
in C, and we use IPOPT to solve the involved nonlinear
program (NLP). Finally, we present a performance study that
demonstrates the feasibility of solving economic optimal control
problems that involve the U-loop reactor in real-time.

I. INTRODUCTION

The objective of optimal control is to compute an open-
loop control strategy that optimizes a performance measure
which either represents 1) the economics of the dynamic
process or 2) the deviation of the process outputs from pre-
defined setpoints. The solution of optimal control problems
is relevant to model predictive control algorithms which
use the moving horizon optimization principle to compute
a closed-loop feedback control strategy, i.e. they solve a
sequence of open-loop optimal control problems [1]. Such
applications involve strict computational requirements. It is
particularly challenging to meet such requirements if the
process involves a large number of state variables. This is
often the case when the model arises from the discretization
of partial differential equations, e.g. oil reservoir fluid flow in
porous media [2], [3], or from processes that involve several
interconnected units, e.g. distillation columns that consist
of several trays [4]. Furthermore, the solution of optimal
control problems can also be used for offline analysis of
process control strategies for transient operating conditions,
e.g. plant startup. The computational requirements are less
strict in such applications.

A. Numerical solution of optimal control problems
There exist several approaches for numerical solution

of optimal control problems. Direct methods, i.e. single-
shooting, multiple-shooting [5], [6], and collocation-based
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approaches [4], are commonly used for real-life applica-
tions [1]. These methods transcribe the infinite-dimensional
optimal control problem to a finite-dimensional nonlinear
program (NLP) that can be solved using numerical optimiza-
tion algorithms [7]. In single-shooting, the solution of the
dynamical constraints is nested into the solution of the NLP
which leads to a small-scale NLP. In collocation-based ap-
proaches, the discretized dynamical constraints are incorpo-
rated directly into the NLP leading to a large-scale problem.
Multiple-shooting is a hybrid approach that attempts to com-
bine the advantages of both single-shooting and collocation-
based approaches. Two key advantages of multiple-shooting
and collocation-based approaches over single-shooting are
1) that they are applicable to unstable systems and 2) that
it is more straightforward to implement path constraints for
these approaches. However, both of these approaches lead to
large-scale NLPs.

B. Production of single-cell protein in a U-loop reactor

Methanotrophs are bacteria that grow on carbon sources
such as methane or methanol which are cheap. The protein
content of methanotrophs is high, and they can be used to
produce single-cell protein (SCP) which can be used for an-
imal feed. Consequently, SCP produced from methanotrophs
can be used to sustain the growing human population. The U-
loop reactor is a novel technology for producing SCP based
on methanotrophs. However, it is nontrivial to operate the
U-loop reactor, and in particular, the startup is challenging.

The dynamics of SCP production in a U-loop reactor have
previously been modeled as a set of partial and ordinary
differential equations [8]–[12]. Using this model, Olsen et
al. [13] computed optimal operating points for steady-state
operation. However, they did not consider the startup. In this
work, we extend previous work on economic optimal control
of the U-loop reactor [14] that involved the computation of
economically optimal startup profiles. The key contributions
of this work are that 1) we describe the numerical details
of two collocation-based optimal control algorithms, 2) we
provide details on computationally efficient C implementa-
tions of these algorithms which are based on the open-source
software IPOPT 3.12.12, and 3) we present a performance
study that demonstrates the feasibility of using the algorithms
in closed-loop nonlinear model predictive control. A key
aspect of SCP production in the U-loop reactor is that the
optimal operating profile turns out to be an unstable attractor
[14] (the system will diverge from the optimal trajectory if it
is not controlled). This is the reason that we use collocation-
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Fig. 1. A schematic of SCP production in the U-loop reactor.

based approaches. It would also be possible to use multiple-
shooting.

C. Paper organization

This paper is organized as follows. In Section II, we
present the model of SCP production in the U-loop reactor
(using methanol as the feed). In Section III, we describe
the optimal control problem that we consider as well as the
two collocation-based approaches. In Section IV, we discuss
the implementation of these two approaches, and in Section
V, we present two numerical examples together with the
performance study. Finally, we conclude this work in Section
VI.

II. MATHEMATICAL MODEL

Fig. 1 shows a schematic of SCP production in the U-loop
reactor [8], [9], [13], [14]. The feed substrate (methanol),
feed water, feed gas (oxygen), and the recirculated mixture
from the top tank are mixed together in a mixer and supplied
to the inlet of the U-loop pipe. The U-loop pipe is modeled
as a liquid-gas phase plug flow reactor (PFR), and the top
tank is modeled as a liquid continuous stirred tank reactor
(CSTR). At the end of the U-loop pipe, the gas phase
is separated (ideally) from the liquid phase which enters
into the top tank. Liquid (consisting of a mixture of water,
biomass, substrate, and dissolved gas) is harvested from the
top tank.

A. Mixing section

At the inlet of the PFR, the gas flow rate is equal to
the feed gas flow rate, FG, and the liquid flow rate, FL,
is obtained from a total static mass balance:

FL = FR + FS + FW . (1)

FR is the flow rate of recirculated liquid from the top tank
through the mixer to the U-loop pipe, and FS and FW are
the feed flow rates of substrate and water, respectively. The
concentrations of biomass, X , substrate, S, dissolved oxygen
in the liquid phase, O, and oxygen in the gas phase, gO, at

the inlet of the PFR are obtained using component mass
balances:

Cin,X =
FRC̄X

FL
, (2a)

Cin,S =
FSCF,S + FRC̄S

FL
, (2b)

Cin,O =
FRC̄O

FL
, (2c)

Cin,gO = CF,O. (2d)

C̄X , C̄S , and C̄O are the concentrations of biomass (X),
substrate (S), and oxygen (O) in the top tank, respectively.

B. The U-loop modeled as a plug-flow reactor

The phase fluxes at the inlet to the PFR, Ni, are

Ni(t, 0) = vCin,i(t), i ∈ {X,S,O, gO} . (3)

The linear velocity, v, is given by

v =
FL + FG

A
, (4)

where A is the cross-sectional area of the U-loop pipe. The
concentrations, Ci = Ci(t, z), of each of the components
i ∈ {X,S,O, gO} along the U-loop pipe are given by the
mass balances

∂CX

∂t
= −∂NX

∂z
+RX , (5a)

∂CS

∂t
= −∂NS

∂z
+RS , (5b)

∂CO

∂t
= −∂NO

∂z
+RO +

1

1− ε
Jgl,O, (5c)

∂CgO

∂t
= −∂NgO

∂z
− 1

ε
Jgl,O, (5d)

for the time interval t0 ≤ t ≤ tf and for 0 ≤ z ≤ L.
t0 and tf are the initial and final time, and L denotes the
length of the U-loop pipe. Ni = Ni(Ci(t, z)) = Ni(t, z)
for i ∈ {X,S,O, gO} are the fluxes of each component
along the U-loop pipe, and Ri = Ri(t, z) for i ∈ {X,S,O}
are the production rates of the components in the liquid
phase. Jgl,O = Jgl,O(t, z) denotes the rate at which oxygen
is transferred from the gas phase to the liquid phase, and
ε = FG/(FG + FL) is the fraction of gas in each cross
section which is assumed to be constant along the U-loop
pipe.

The outlet boundary conditions of the PFR are described
using Danckwerts’ conditions:

∂Ci

∂z
(t, L) = 0, i ∈ {X,S,O, gO} , t0 ≤ t ≤ tf . (6)

C. Gas-liquid separator

The gas and liquid are assumed to be instantaneously
and perfectly separated at the outlet of the U-loop pipe,
i.e. the gas phase is completely removed and the liquid
phase is supplied directly to the top tank. Consequently, the
concentrations at the inlet to the top tank are

C̄in,i(t) = Ci(t, L), i ∈ {X,S,O} , t0 ≤ t ≤ tf . (7)



D. Model of the top tank

The liquid volume of the top tank, V , is constant, and the
component mass balances for the components in the liquid
phase are

dC̄i

dt
= D̄

(
C̄in,i − C̄i

)
+Ri(C̄X , C̄S , C̄O), i ∈ {X,S,O} ,

(8)
for t0 ≤ t ≤ tf . D̄ = F̄ /V is the dilution rate where F̄ =
FL. The flow rate of the product stream out of the top tank
is

F = F̄ − FR = FL − FR = FS + FW . (9)

E. Convective and diffusive transport

The flux, Ni, contains a term that describes convective
transport, vCi, and one that describes diffusive transport, Ji:

Ni = viCi + Ji, i ∈ {X,S,O, gO} . (10)

Fick’s law is used to model the diffusive transport:

Ji = −Di
∂Ci

∂z
, i ∈ {X,S,O, gO} . (11)

F. Gas-liquid transport

The rate at which oxygen is transferred from the gas phase
to the liquid phase is

Jgl,O = (kLa)O(Csat,O − CO), (12)

where the saturation concentration of oxygen is obtained
using Henry’s law and the ideal gas law:

Csat,O =
PgO

HO
=

RT

MwOHO
CgO. (13)

Here, PgO denotes the partial pressure of oxygen in the gas
phase, and HO is the Henry constant for oxygen. R is the gas
constant, T denotes the temperature, and MwO is the molar
weight of oxygen. CgO is the concentration of oxygen in the
gas phase.

G. Stoichiometry and kinetics

The stoichiometric relation for the conversion of methanol
(S) to biomass (X) is

CH3OH + YSNHNO3 + YSOO2 →
YSXX + YSCCO2 + YSW H2O.

(14)

Alternatively, this relation can be formulated as

YXSCH3OH + YXNHNO3 + YXOO2 →
X + YXCCO2 + YXW H2O.

(15)

The yield coefficients (for both formulations of the stoi-
chiometric relation) are shown in Table I. The production
rates of substrate (methanol), RS , and oxygen dissolved in
the liquid phase, RO, are given in terms of the production
rate of biomass, RX :

RS = −γSRX , γS =
MwS

MwXYSX
, (16a)

RO = −γORX , γO =
MwOYSO

MwXYSX
. (16b)

TABLE I
YIELD COEFFICIENTS

i YSi YXi Mwi WXi

[mol/mol] [mol/mol] [g/mol] [g/g]
CH3OH S 1.000 1.366 32.042 1.778
HNO3 N 0.146 0.199 63.013 0.510
O2 O 0.439 0.600 31.999 0.779
CH1.8O0.5N0.2 X 0.732 1.000 24.626 1.000
CO2 C 0.268 0.366 44.010 0.654
H2O W 1.415 1.933 18.015 1.414

The biomass production rate is

RX = µ(CS , CO)CX , (17)

where µ = µ(CS , CO) is the specific growth rate which, for
Methylococcus Capsulatus, is given by the Monod-Haldane
expression:

µ = µ(CS , CO) = µmaxµS(CS)µO(CO). (18a)

The growth factors are

µS(CS) =
CS

KS + CS + C2
S/KI

, (18b)

µO(CO) =
CO

KO + CO
. (18c)

H. Profit

In this work, we use the expression for the profit of the
SCP production in the U-loop reactor described by Drejer et
al. [14]. The profit is the difference between the value of the
produced SCP (biomass) and the cost of the raw materials,
and we assume that the two most expensive raw materials
are the feed methanol (substrate) and oxygen, i.e. the cost of
other raw materials is not included in the expression for the
profit. Consequently, the profit is

φ =

∫ tf

t0

(
pXF (t)C̄X(t)− pSFS(t)− pOFG(t)

)
dt

+ pX

(
C̄X(tf )V +

∫ L

0

CX(tf , z)Adz

)

− pX

(
C̄X(t0)V +

∫ L

0

CX(t0, z)Adz

)
, (19)

where pX is the unit value of SCP, pS is the unit cost of
methanol (substrate), and pO is the unit cost of oxygen.

III. OPTIMAL CONTROL

We consider optimal control problems in the form

min
[x(t)]

tf
t0

,{uk}N−1
k=0

φ = φ([x(t);u(t); d(t)]
tf
t0 ), (20a)

subject to

x(t0) = x̂0, (20b)
ẋ(t) = f(x(t), u(t), d(t)), t ∈ [t0, tf ], (20c)
u(t) = uk, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (20d)

d(t) = d̂k, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (20e)



where the objective function is in Bolza form (as is the
expression for the profit (19)):

φ = φ([x(t);u(t); d(t)]
tf
t0 )

=

∫ tf

t0

Φ(x(t), u(t), d(t))dt+ Φ̂(x(tf ), u(tf ), d(tf )).

(21)

Φ is the stage-cost, and Φ̂ is the cost-to-go. The optimal
control problem (20) contains dependent decision variables
(the state variables), [x(t)]

tf
t0 , and independent decision

variables (the manipulated inputs), {uk}N−1
k=0 . (20b) is an

initial condition for the differential equations (20c) which
is obtained from the model of the U-loop reactor by dis-
cretizing the involved partial differential equations using a
finite-volume discretization. (20d)-(20e) are zero-order-hold
(ZOH) discretizations of the manipulated inputs, u(t), and
the disturbance variables, d(t).

A. Temporal discretization

The dynamical system in (20c) is stiff. Therefore, we use
an implicit method to temporally discretize the system. In
this work, we use Euler’s implicit method. In the k’th control
interval, we discretize the dynamical system using Nk time
steps, i.e.

xk,n+1 − xk,n = f(xk,n+1, uk, d̂k)∆tk,n, (22)

for n = 0, . . . , Nk − 1. We formulate the discretized differ-
ential equations in residual form:

Rk,n = Rk,n(xk,n+1, xk,n, uk, d̂k)

= xk,n+1 − xk,n − f(xk,n+1, uk, d̂k)∆tk,n

= 0. (23)

At the boundaries of the control intervals, we enforce conti-
nuity through

x0,0 = x̂0, (24a)
xk,0 = xk−1,Nk−1

, k = 1, . . . , N − 1. (24b)

B. The simultaneous approach

We transcribe the infinite-dimensional optimal control
problem (20) to a finite-dimensional NLP using the temporal
discretization based on Euler’s implicit method (23)-(24):

min
{{xk,n}

Nk
n=0}

N−1
k=0 ,{uk}N−1

k=0

Ψ, (25a)

subject to

x0,0 = x̂0, (25b)
xk,0 = xk−1,Nk−1

, k = 1, . . . , N − 1, (25c)

Rk,n(xk,n+1, xk,n, uk, d̂k) = 0,

n = 0, . . . , Nk − 1, k = 0, . . . , N − 1. (25d)

The objective function in (25a) is based on a discretization
of the objective function (21) using the right rectangle rule:

Ψ = Ψ({{xk,n}Nk
n=0}

N−1
k=0 , {uk}

N−1
k=0 , {d̂k}

N−1
k=0 )

=

N−1∑
k=0

Nk−1∑
n=0

Φ(xk,n+1, uk, d̂k)∆tk,n

+ Φ̂(xN−1,NN−1
, uN−1, d̂N−1). (26)

We use the right rectangle rule to be consistent with the dis-
cretization of the differential equations using Euler’s implicit
method.

We consider two approaches for solving the NLP (25).
In the first approach, we directly incorporate the continuity
constraints (25b)-(25c) into the NLP as actual constraints. We
refer to this as the standard approach. In the second approach,
we use the continuity constraints to eliminate the states at the
beginning of every control interval, {xk,0}N−1

k=0 . This leads to
a reduced number of decision variables and constraints in the
NLP. We refer to this as the reduced approach. A possible
advantage of the standard approach is that the constraints are
more loosely coupled which may lead to faster convergence
(i.e. fewer iterations) when solving the NLP, whereas the
advantage of the reduced approach is that the computational
cost per iteration in the numerical solution of the NLP is
lower (due to the lower number of decision variables and
constraints).

In both approaches, we solve an NLP in the form

min
s

Ψ(s, d̂), (27a)

subject to R(s, x̂0, d̂) = 0, (27b)

where d̂ = [d̂0; · · · ; d̂N−1]. In the standard approach, the
decision variables are

s = [s0; · · · ; sN−1], (28a)
sk = [xk,0; · · · ;xk,Nk

;uk], k = 0, . . . , N − 1, (28b)

and the residual equations (27b) include the continuity con-
straints (25b)-(25c). In the reduced approach, the decision
variables are

s = [s0; · · · ; sN−1], (29a)
sk = [xk,1; · · · ;xk,Nk

;uk], (29b)

and the residual equations (27b) do not include the continuity
constraints.

The total number of decision variables in the standard
approach is (Nt+N)nx+Nnu where Nt =

∑N−1
k=0 Nk is the

total number of time steps, nx is the dimension of the state
vector, and nu is the dimension of the manipulated inputs.
The total number of residual equations is (Nt +N)nx. The
total number of decision variables in the reduced approach
is Ntnx +Nnu, and the total number of residual equations
is Ntnx. Consequently, in the reduced approach, the NLP
involves Nnx fewer decision variables and constraints than
in the standard approach. This difference can be considerable
if Nt and N are of comparable size and if nx is significantly
larger than nu.



IV. IMPLEMENTATION DETAILS

We implement the two collocation-based approaches de-
scribed in Section III in C, and we use IPOPT 3.12.12 [15]
to solve the NLP (27). Apart from providing the objective
function, Ψ(s, d̂), and the residual function, R(s, x̂0, d̂),
we provide IPOPT with 1) the gradient of the objective
function, ∂Ψ

∂s , 2) the Jacobian of the residual function, ∂R
∂s ,

and 3) the Hessian of the Lagrangian, ∇2
ssL(s, d̂), where

the Lagrangian is L(s, d̂) = σΨ(s, d̂) + λTR(s, x̂0, d̂) [16,
Sec. 9]. IPOPT provides both the scaling factor σ and the
vector of Lagrange multipliers λ. The Jacobian matrix of
the residual function and the Hessian of the Lagrangian are
large and sparse, and we provide the exact sparsity patterns of
these two matrices (i.e. we do not represent any zero entries
unnecessarily).

IPOPT requires third party software related to the solution
of linear systems of equations. We use the MA57 routine
from HSL [17] as well as METIS 4.0.3 [18]. Further-
more, we compare the computational efficiency of using
the OpenBLAS 0.2.20 linear algebra software and Netlib’s
implementation of BLAS (downloaded using IPOPT). In
both cases, we use LAPACK 3.4.2 (also downloaded using
IPOPT).

We compile the C code (including IPOPT) using gcc 5.4.0,
and we carry out the computations presented in this paper on
a 64-bit workstation which uses the operating system Ubuntu
16.04 LTS. The workstation has 15.6 GB RAM and four
cores, each of which contains two Intel Core i7 3.60 GHz
processors (eight processors in total). The four cores share a
level 3 cache of 8192 KB, and the level 2 and level 1 cache
of each core have 256 KB and 64 KB (32 KB instruction
cache and 32 KB data cache), respectively.

V. NUMERICAL EXAMPLES

In this section, we present a performance study of the
solution of two optimal control problems. The objective in
both examples is to maximize the profit (19) over a control
and prediction horizon of 30 h consisting of N = 600 control
intervals with Nk = 1 time steps per control interval. The
first optimal control problem is the optimal startup problem
considered by Drejer et al. [14]. The second optimal control
problem is the one that would be solved next in a closed-loop
nonlinear model predictive control algorithm. The purpose of
the second problem is to test the computational efficiency of
warm starting.

In the first problem, at the initial time, the U-loop reactor
contains 0.1 kg/m3 biomass in the top tank and in the U-
loop pipe and no substrate or oxygen. We consider two initial
guesses, one that is constant in time, and one in which the
states are obtained from a linear interpolation of the states
in the first initial guess and the initial condition (the manip-
ulated inputs are identical in the two initial guesses). Fig. 2
and Fig. 3 show the optimal states and the manipulated inputs
(together with the corresponding initial guesses and bounds).
The initial guesses and the bounds on the concentrations of
biomass, substrate, and dissolved oxygen in the U-loop pipe
are the same as for the concentrations in the top tank. The

TABLE II
NUMBER OF DECISION VARIABLES AND RESIDUAL EQUATIONS IN THE

STANDARD AND REDUCED COLLOCATION-BASED APPROACHES. THERE

ARE 83 STATE VARIABLES AND 3 MANIPULATED INPUTS.

Approach Standard Reduced
Number of decision variables 102600 52200
Number of residual equations 100800 50400

initial guess of the oxygen in the gas phase of the U-loop pipe
is 2.0 kg/m3, and the upper and lower bounds are 6.0 kg/m3

and 0.0 kg/m3, respectively.
For the second problem, we construct an initial guess,

sws = [sws
0 ; · · · ; sws

N−1], by sws
k = s∗k+1 for k = 0, . . . , N − 2

and sws
N−1 = sws

N−2 where s∗ = [s∗0; · · · ; s∗N−1] is the solu-
tion to the first optimal control problem. We construct initial
guesses of the Lagrange multipliers in a similar manner. The
initial condition in the second problem is the optimal states
at the end of the first control interval (k = 0) in the first
optimal control problem, i.e. x̂0 = x∗0,N0

. The bounds are
identical in the two problems.

Table II shows the number of decision variables and
residual equations in the two approaches, and Table III shows
various key performance indicators for the solution of the
two optimal control problems. For the standard approach, it
is better to use the interpolated initial guess whereas for the
reduced approach, the interpolated initial guess leads to slow
convergence. The use of warm starting leads to a significant
reduction in the number of iterations and the computation
time for both approaches, and we are able to solve the
optimal control problem in 28.5 s which is less than the
length of the control intervals (3 min). This demonstrates
that it is feasible to solve the optimal control problems in
real-time. Finally, the use of OpenBLAS generally improves
the computational performance, and in some cases, it leads to
a significant reduction in the number of iterations in IPOPT.

VI. CONCLUSION

In this work, we consider economic optimal control of
SCP production in a U-loop reactor. The dynamical model
of the U-loop reactor consists of both partial and ordinary
differential equations. We use a finite-volume approach to
discretize the partial differential equations. This leads to a
set of ordinary differential equations with 83 states. Con-
sequently, the optimal control problems are large-scale. We
describe two collocation-based approaches for solving these
large-scale optimal control problems. We implement the
two approaches in C, and we use IPOPT 3.12.12 to solve
the involved NLP (which involves up to around 100,000
decision variables). Furthermore, we present a performance
study which demonstrates that it is feasible to solve optimal
control problems that involve a U-loop reactor in real-time.
Future work involves 1) the use of fully implicit Runge-
Kutta (FIRK) methods instead of Euler’s implicit method
in the collocation-based approaches and 2) implementation
of economic nonlinear model predictive control for SCP
production in a U-loop reactor.
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Fig. 2. Constant initial guesses (blue dashed), interpolated initial guesses (green dashed), and optimal values (black solid) of the concentrations of biomass,
substrate, and dissolved oxygen in the top tank together with their bounds (red dash-dotted). The constant initial guess of the biomass concentration coincides
with the corresponding optimal bound.
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Fig. 3. Initial guesses (green dashed) and optimal values (black solid) of the manipulated inputs (water, substrate, and oxygen feed flow rates) together
with their bounds (red dash-dotted). The manipulated inputs are identical in the constant and the interpolated initial guesses.

TABLE III
KEY PERFORMANCE INDICATORS OF THE STANDARD (STD.) AND

REDUCED (RED.) COLLOCATION-BASED APPROACHES USING DIFFERENT

STARTING GUESSES AND LINEAR ALGEBRA SOFTWARE.

Initial guess Constant Interpolated Warm started
Approach Std. Red. Std. Red. Std. Red.

Netlib BLAS
Iterations 328 317 159 624 60 24
Func. eval. 329 318 232 647 71 25
Con. eval. 329 318 232 647 71 25
Grad. eval. 329 318 88 617 61 25
Jac. eval. 329 318 161 629 61 25
Hess. eval. 328 317 159 624 60 24
CPU time (s) 302.3 268.9 164.4 1113.9 71.9 31.4

OpenBLAS
Iterations 330 299 145 426 29 24
Func. eval. 331 300 152 445 30 25
Con. eval. 331 300 152 445 30 25
Grad. eval. 331 300 126 419 30 25
Jac. eval. 331 300 147 430 30 25
Hess.eval. 330 299 145 426 29 24
CPU time (s) 284.7 238.6 199.9 703.3 36.9 28.5
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