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Abstract— The quality of the data for system identification is 
of utmost of importance. Ideally, the output data should satisfy 
requirements regarding variance, and in the case of multiple-
input multiple-output (MIMO) systems, correlation between 
the outputs. Usually, it is desired to achieve this by input 
perturbations with peak values as small as possible. A related 
measure is the crest factor, which is a measure of the (inverse) 
power of an input perturbation with given peak value. In this 
paper, the effect of minimizing the input peak and the crest 
factor, subject to desired output variances/covariances, is 
studied for various types of perturbation signals. The design 
procedure is completely data based; data are obtained by one 
or more preliminary experiments with the system to be 
identified. A model of an ill-conditioned distillation column is 
used for illustration. 

I. INTRODUCTION 

 A problem in the identification of multiple-input 
multiple-output (MIMO) systems is that the system outputs 
in an identification experiment may be strongly correlated if 
the inputs are perturbed simultaneously with (nearly) 
uncorrelated inputs. Standard practice is to use such inputs, 
as produced by the idinput command in [1]. See also [2]. 
However, the output correlation reduces identifiability. To 
maximize the information content of the outputs, their 
variances should be at some maximum level with sample 
correlations as small as possible (ideally zero). This concept 
is also used in partial least squares (PLS) regression, where 
the latent variables that extract maximum information have 
this property. 

 Some model-based experiment design methods have 
been proposed [3–5]. A drawback of the methods, besides 
numerical complexity, is that the resulting input perturbations 
are of some special type (not the typically used pseudo 
random binary signals, for example). Although the main 
design criteria are not related to the output distribution, the 
methods produce nearly uncorrelated outputs [6]. A model-
based design method that directly addresses the output 
distribution was proposed by Häggblom [7, 8]. The optimi-
zations are much simpler than in the previous methods. 

In this paper, a data-based design method is used to 
obtain outputs with desired sample properties. Obviously, a 
data-based method for input design is preferable from a 
practical point of view. Data are obtained from one or more 
preliminary experiments with the system to be identified. The 
experiment can be a standard MIMO experiment with uncor-
related inputs, but better data for the design can be obtained 
by performing experiments with one input at a time. 
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The proposed method makes it possible to optimize some 
additional property besides output correlation. In this paper, 
minimization of input peak value and crest factor [3, 9, 10] 
subject to desired output variances are considered. Results for 
minimization of output peak, or constrained output peak 
when inputs are optimized, are also provided. Five different 
types of input perturbations are considered, namely, two 
kinds of random binary signals, a pseudo random binary 
signal, and two kinds of multi-sinusoidal signals. Results are 
illustrated by an ill-conditioned distillation column model. 

II. PROBLEM FORMULATION 

Input design for identification of linear MIMO systems is 
considered. The system has n  inputs ( )u k  and n  outputs 

( )y k , sampled at time instants s1, ,k n=  . The variables are 
related by a dynamic relationship 

 ( ) (q) ( )y k G u k= , (1) 

where (q)G  is a matrix of pulse transfer operators defined 
through the shift operator q . This relationship is assumed to 
be initially unknown and it is not implied that a model of this 
form is to be identified. 

The input design uses an n -dimensional perturbation 
signal ( )kξ . In this paper, this signal is one of five different 
types of perturbation signals. The correlation between the 
individual signals ( )i kξ , 1, ,i n=  , should preferably be 
small (ideally zero) because they serve as basis functions in 
the design. In practice, this is achieved by constructing each 

( )i kξ  from a base sequence 0 ( )kξ , of length N , by shifting 
it (approximately) ( 1) /i N n−  positions in a circular way. As 
suggested by Ljung [9, p. 424], more than one period of the 
sequence may be used to give a total sequence length 

s pn n N= , where pn  is the number of periods. 

The input ( )u k  to be applied in the identification experi-
ment is given by a linear transformation 

 ( ) ( )u k T kξ= , (2) 
where T  is a constant matrix determined in the input design. 
The main objective of the input design is to make the output 
samples ( )iy k , s1, ,k n=  , 1, ,i n=  , uncorrelated with 

( )jy k , j i≠ , in the identification experiment. The trans-
formation (2) makes the inputs ( )iu k , 1, ,i n=  , correlated 
with one another, but this is a lesser problem than correlated 
outputs because the inputs are assumed to be exactly known 
(being setpoints, for example), whereas the outputs generally 
are contaminated by noise and disturbances. 
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The output correlation depends on the output covariance 
matrix, which for an n n×  system is defined by ( 1) / 2n n +  
independent parameters. This implies that the same number 
of adjustable elements of T  is sufficient to produce uncorre-
lated outputs. Hence, it is possible to optimize some quantity 
besides output correlation if a full T  matrix with uncon-
strained elements is used. The extra degrees of freedom are 
here used to minimize the input peak value ,max ( )i k iu k  
and the crest factor [3, 9, 10] ,CFmaxi iu , where  

 
s

s

,CF
21,RMS

1

max ( ) max ( )

( )

k i k i
i ni in

u k u k
u

u u k
= =

∑
. (3) 

For reference, results of minimizing the output peak value 
,max ( )i k iy k  are also given. 

III. DESIGN PROCEDURE 

The input design objective is to determine the pertur-
bation signal ( )kξ  and the constant transformation matrix T  
to give the outputs specified properties. When ( )u k , given by 
(2), is applied to the system (1), the obtained outputs ( )y k , 

s1, ,k n=  , can be collected in a matrix Y  of size sn n× .  
In particular, the sampled covariance matrix covP Y=  is de-
sired to be diagonal, which means no correlation between the 
outputs. It is assumed that the desired output variances are 
var 1iy = , 1, ,i n=  . Thus, the objective is to obtain P I= .  

A.  Decision Variables 
In the design optimization, T  is a decision matrix with 

elements ijt . To facilitate the design, the vector 

 vecx T=   (4) 
is introduced. Thus, ijx t=



, ( 1)i n j= + − . The matrix X  
is defined 
 T

nX x I= ⊗  , (5) 

where Tx  is the transpose of x , ⊗  is the Kronecker product, 
and nI   is the n -dimensional identity matrix. 

B. Output Covariance 
Assume the perturbation ( )j kξ , s1, ,k n=  , is applied 

to the input ( )iu k  with ( ) 0mu k = , m i≠ . This produces an 

sn n×  matrix of outputs Y


, ( 1)i n j= + − , where T( )y k  
occupies the kth row. In total, all combinations of ( )j kξ  and 

( )iu k  yield the output matrices Y


, 21, , n=  . If the 
system is linear, the output obtained by applying all inputs 
simultaneously according to (2) is given by 

 
2

T
0

1

n
Y x Y Y X

=
= =∑

 



, (6) 

where 20 1[ , , ]nY Y Y=  . The output covariance matrix is 

 T
0P XP X= , (7) 

where 0 0covP Y= . If 0P  is known, (7) can be solved to yield 
P I= . This solution gives T  through (4) and (5).  

C. Optimization 

Equation (7) contains 2n  unknowns in X  whereas the 
number of independent equations is ( 1) / 2n n +  due to the 
symmetry of P . Thus, (7) is underdetermined and the 
solution is not unique. This can be utilized for optimization. 
It is, for example, possible to minimize the output peak 

,max ( )i k iy k , the input peak ,max ( )i k iu k , or the crest 
factor ,CFmaxi iu , subject to (7) and P I= . 

 The output peak can be minimized by minimizing 
max abs( )Y , where Y  is given by (6). Similarly, the input 
peak can be minimized by minimizing max abs( )U , where 

 TU TΞ= ,   [ ]T
s(1), (2), , ( )nΞ ξ ξ ξ=  . (8) 

The crest factor for iu , i.e. ,CFiu , can be expressed in terms 
of iU , which is the ith column of U . 

 In this work, optimizations are done with the MATLAB 
software [11] and the YALMIP toolbox [12]. In YALMIP, 
minimization of ,max ( )i k ip y k= , subject to the appro-
priate constraints, is easily formulated as 

 min
x

p  s.t. p Y p− ≤ ≤ , P I= , (5), (6), (7).   (9) 

Note that the inequalities in (9) apply to every element of Y . 
Similarly, minimization of ,max ( )i k iq u k=  is formulated 

 min
x

q  s.t. q U q− ≤ ≤ , P I= , (5), (7), (8).   (10) 

The crest factor is minimized by 

  min
x

r  s.t. 
Tdiag cov ( )

, (5), (7), (8)
r U U U
P I

 ≥
 =

 , (11) 

where   is the Hadamard product and 1/2
,CFmaxi iu r= . In 

all optimizations, further constraints can be included (e.g., 
q U q− ≤ ≤  with q  fixed in (9)). 

The main problem in the optimizations is that they are 
non-convex and nonlinear. In practice, the nonlinearity can 
be handled by linearization, as done in [8] in a model-based 
approach to experiment design. An alternative is to solve the 
nonlinear problem by the fmincon function of MATLAB. In 
both methods, an in initial guess 0x x=  is required. As the 
problem is non-convex, different initial guesses often give 
different final (sub)optimal solutions. Because the optimi-
zations are fast, a large set of initial guesses can be tried. In 
this way, both methods tend to give the same best solution, 
which therefore is likely to be the global optimum. 

A third alternative is to use the branch-and-bound 
algorithm bmibnb provided by YALMIP. In addition to 
fmincon, the bmibnb solver uses Gurobi [13]. The method 
has the advantage that an initial guess is not required. Instead, 
some reasonable bounds on the decision variables have to be 
provided. In all comparisons of the three methods to solve 
this problem, the branch-and-bound solution is the same as, 
or only slightly worse than (less than 1 % worse), the best 
solution found by the other methods. The results reported in 
this paper are those obtained by the branch-and-bound 
method.  



  

D. Obtaining Data 
Data for the design is generated by one or more experi-

ments with the system to be identified. The most reliable 
method is to make an experiment with every combination 

( ) ( )i ju k kξ= , 1, ,i n=  , 1, ,j n=  , one at a time. This 
results in n n×  experiments, each one yielding a matrix of 
sampled outputs Y



, ( 1)i j n= + − . The overall covariance 
matrix 0P  can then be calculated and used in (7) for the input 
design. 

For 2n > , this is a lot of experiments, and even for 
2n = , four experiments might be undesirable. An alternative 

is to make n  experiments with ( ) ( )i ju k kξ= , 1, ,i n=   
and j  arbitrary (e.g., j i=  or 1j = ). For each experiment, a 
finite impulse-response (FIR) model can be determined in a 
simple way. This makes it possible to simulate all combi-
nations ( ) ( )i ju k kξ=  to obtain the required output data 
matrices. 

It is possible to take this one step further and make only 
one experiment with ( ) ( )u k kξ= . Then, all inputs are per-
turbed simultaneously. If the components ( )i kξ , 1, ,i n=  , 
are essentially uncorrelated with one another, it is possible to 
determine the required FIR models from this single experi-
ment and proceed as above. This kind of experiment is the 
standard identification experiment for MIMO systems [1, 2], 
but here the data is used to design a better experiment. 

E. Effect of Noise 
It is the presence of noise and disturbances in the data that 

makes system identification challenging [9, 10, 14]. In a 
system with strongly correlated outputs, the outputs contain 
almost the same information. Noise and disturbances may 
then prevent small differences in the system dynamics to be 
observed. The effect of this may be disastrous, especially if 
the identified model is to be used for control design. 

The objective of the proposed input design is to produce 
outputs that are not strongly correlated, ideally not correlated 
at all. In the presence of output noise, it is then much easier to 
catch the differences between the outputs. The transformation 
(2) makes the inputs correlated, but this is a lesser problem if 
the inputs are not contaminated with noise. This is the case if 
the inputs are setpoints of flow rates, for example. 

If noise is present in the data matrices Y


, 21, , n=  , it 
will generally affect the transformation matrix T  in the input 
design. The result of the experiment based on T  may then 
not produce uncorrelated outputs. However, even if they are 
correlated, it is an advantage as long as the output correlation 
is reduced from what it would be in a standard identification 
experiment, for example. 

In a related study, the effect of output noise was explicitly 
studied for some systems with different degrees of ill-
conditioning and n = 2 or 3. It was found that the effect of a 
signal-to-noise (SNR) ratio = 50 was negligible, regardless of 
the system. Even for very ill-conditioned systems, as the one 
in the case study to follow, SNR = 20 could be handled well, 
even when only one initial experiment was used to obtain the 
data via FIR models. With two initial experiments, even 
SNR = 10 gave good results. 

IV. CASE STUDY SETUP 

A. Model of Ill-Conditioned Distillation Column 
The experiment designs with various types of pertur-

bations are illustrated by the use of an ill-conditioned 
distillation column model [15] 

 
( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=



 , (12a) 

  
87.8 1.41
194 15194

1 108.2 1.4
15 194 15

0 1 1
, ,

0 10
A B C

  − −   =   = = −  −      
. (12b) 

The condition number of the static gain matrix is 142. 

B. Perturbation Data 
In this study, data for the experiment designs are obtained 

by four experiments with every combination of iu  and jξ  
for every perturbation type (see below) as described in 
Section IIID. The sampling time is s 1T =  time unit and one 
period of the input sequences consists of 1020N =  samples 
giving the period length s 1020P NT= = . In all cases, the 
signal amplitudes are normalized to 1. In the optimizations, 
input sequences consisting of two sequential periods, with 
opposite signs, are used. This reduces harmful startup effects. 

Next, the types of perturbations are defined. In this study, 
they are selected because they have quite different properties 
regarding input peaks and crest factors. Small values indicate 
that the perturbation is efficient [3, 9, 10]. Signal design 
guidelines, with further references, are given in [6, 16]. 

1) Random Binary Signal 
A random binary signal (RBS) switches between two 

levels ( a  and a− ) in a random way. In this paper, the 
idinput command of MATLAB’s System Identification Tool-
box [1] is used to generate a RBS with the amplitude 1a = . 

A perfect RBS of infinite length has no autocorrelation, 
but a finite-length RBS will contain some autocorrelation. In 
practice, this autocorrelation might be quite significant [7]. In 
this study, 99 sequences were generated and the sequence 
with the median autocorrelation was selected. 

2) Correlated Binary Signal 
A correlated binary signal (CBS) contains autocorrelation 

by design. In this study, a RBS of length 255 was first 
generated as described above. The CBS was constructed by 
holding every sample of the RBS constant for four samples. 
This signal is an intermediate between a RBS and a PRBS. 

3) Pseudo Random Binary Signal 
A pseudo random binary (PRB) signal is a deterministic, 

finite-length, binary signal that mimics the properties of 
white noise. This property is guaranteed, unlike that of a 
RBS. The PRB signal switches between two levels ( a  and 

a− ) with a minimum switching time swT , which is some 
integer multiple of the sampling time sT . In this study, 

sw 4T =  is used in accordance with [9, 10]. The PRB signal 

is a maximum-length sequence of length 82 1 255− = [9]. 
The PRB sequence is generated by the idinput command [1]. 



  

TABLE III. MINIMIZATION OF CREST FACTOR 

 T  Ry  Ru  CFu  

RBS 
2.5015 0.0628
2.5509 0.0689

 
 − 

 3.4267
3.3006

 
 − 

 2.6198
2.6198

 
 − 

 1.0254  

CBS 
3.1364 0.1132
3.0160 0.1026

 
 − 

 3.6451
3.6226

 
 − 

 3.2496
3.2496

 
 − 

 1.0341 

PRB 
1.4709 0.0488
1.4616 0.0449

 
 − 

 2.7364
2.7161

 
 − 

 1.5158
1.5158

 
 − 

 1.0299  

SMS 
2.2353 0.0383
2.2040 0.0910

− 
  

 3.2148
3.1875

 
 − 

 2.2630
2.2630

 
 − 

 1.6708  

RMS 
0.2360 3.1957
0.0654 3.1547

− 
 − 

 3.0541
3.0767

 
 − 

 3.1646
3.1646

 
 − 

 2.4101  

 
TABLE IV. OUTPUT MINIMIZATION WITH INPUT CONSTRAINT 

 T  Ry  Ru  CFu  

RBS 
0.4165 2.4590
0.6182 2.3726

 
  

 2.9856
2.9314

 
 − 

 2.9908
2.9908

 
 − 

 1.2302  

CBS 
0.4832 2.8874
0.7199 2.7801

− 
 − 

 3.3608
3.3557

 
 − 

 3.5000
3.5000

 
 − 

 1.2266  

PRB 
1.4903 0.0578
1.4609 0.1391

 
  

 2.4668
2.4877

 
 − 

 1.6000
1.6000

 
 − 

 1.0904  

SMS 
0.2023 2.1512
0.0590 2.1495

− 
 − 

 2.9827
3.1319

 
 − 

 2.3000
2.3000

 
 − 

 1.7571 

RMS 
0.3621 3.1583
0.5332 3.0961

− 
 − 

 2.9645
2.9340

 
 − 

 3.2000
3.2000

 
 − 

 2.4587  

 

TABLE I. MINIMIZATION OF OUTPUT PEAK 

 T  Ry  Ru  CFu  

RBS 
1.8853 1.8809
1.9125 1.7852

− 
 − 

 2.8329
2.8377

 
 − 

 3.7662
3.7662

 
 − 

 1.3896  

CBS 
1.6500 2.2785
1.8436 2.1012

− 
 − 

 2.6945
2.6853

 
 − 

 3.9447
3.9447

 
 − 

 1.4305  

PRB 
1.4526 0.3649
1.4097 0.4367

 
  

 2.4382
2.4414

 
 − 

 1.8464
1.8464

 
 − 

 1.2522  

SMS 
0.7238 2.1008
0.5783 2.0890

 
  

 3.0325
2.9383

 
 − 

 2.6862
2.6862

 
 − 

 1.9955  

RMS 
1.9163 2.5224
1.7470 2.5909

− 
 − 

 2.7225
2.7474

 
 − 

 3.3947
3.3947

 
 − 

 2.6313  

 
TABLE II. MINIMIZATION OF INPUT PEAK 

 T  Ry  Ru  CFu  

RBS 
0.0753 2.4941
0.0748 2.4946

 
 − 

 3.2562
3.3065

 
 − 

 2.5694
2.5694

 
 − 

 1.0306  

CBS 
0.0868 3.0119
0.1561 2.9426

 
 − 

 3.4829
3.4799

 
 − 

 3.0986
3.0986

 
 − 

 1.0528  

PRB 
1.4709 0.0401
1.4613 0.0496

 
 − 

 2.7370
2.7167

 
 − 

 1.5110
1.5110

 
 − 

 1.0330  

SMS 
0.0385 2.1635
0.1022 2.1515

− 
  

 3.0035
3.1781

 
 − 

 2.1913
2.1913

 
 − 

 1.6793  

RMS 
0.1024 3.1833
0.2769 3.1366

− 
 − 

 3.0278
2.9972

 
 − 

 3.1230
3.1230

 
 − 

 2.4204  

 

4) Multi-Sinusoidal Signal with Schroeder Phase Shift 
A multi-sinusoidal signal is determined as a sum of fn  

sinusoidals with different (equally-spaced) frequencies. To 
prevent excessive cumulation of the amplitudes, which 
increases the crest factor, the phase shifts are selected in 
some special way. One way is to use Schroeder phase-shift 
spacing [9, 10] (SMS). In this study, f 102n =  with frequen-
cies ranging from 2 / Pπ  to f2 /n Pπ  are used.  Essentially, 
the SMS covers the same frequency range as the PRB signal. 

5) Multi-Sinusoidal Signal with Random Phase Shifts 
Although the phase-shift spacing in the SMS is selected 

to restrict the amplitude cumulation, it is still a problem. An 
alternative is to use random phase shifts (RMS). With the 
same design parameters as for the SMS, the idinput 
command was used to generate 99 RMS signals, and the one 
with the smallest amplitude build-up was selected. 

V. RESULTS 
The results of the case study for the noise-free case are 

presented in this section. After presenting the result of a 
standard identification experiment, the results of optimi-
zations according to various criteria with different kinds of 
input perturbations are given. The results include the 
obtained transformation matrix T , the output range Ry  de-

fined as T
R , ,[max ( ) min ( )]i k i i k iy y k y k= , the input range 

Ru  defined similarly, and the crest factor CF ,CFmaxi iu u= . 
In all cases, the desired sample output variance P I=  was 
obtained. 

A. Standard Identification Experiment 
A standard identification experiment using (almost) un-

correlated PRB inputs is illustrated in Fig. 1. As can be seen, 
the outputs are very strongly correlated. This is also shown 
by the scatter plot of 1y  vs. 2y  in Fig. 2.  

B. Minimization of Output Peak 
Table I summarizes the results for output peak mini-

mization. As can be seen, the maximum/minimum output and 
input values are symmetrically distributed. The input peak 
values and the crest factor are smallest for the PRB signal. 
Scatter plots are shown in Fig. 3. 

C. Minimization of Input Peak 
Table II summarizes the results for input peak mini-

mization. The results concerning Ru  and CFu  are clearly 
improved for RBS and CBS perturbations. However, the 
output range Ry  is increased. For SMS and RMS, there is no 
significant difference from output peak minimization. Scatter 
plots are shown in Fig. 4. 

D. Minimization of Crest Factor 
Table III summarizes the results for crest factor mini-

mization. The results are very similar to input peak 
minimization. A reason for this is that the outputs are 
constrained to satisfy P I= . Since input peak minimization 
is an easier optimization problem than crest factor mini-
mization, the latter can be dispensed with. Scatter plots are 
shown in Fig. 5. 
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Figure 6. Scatter plots for minimized output peak with constraint on input peak. 
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Figure 5. Scatter plots for minimized crest factor. 
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Figure 4. Scatter plots for minimized input peak. 
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Figure 3. Scatter plots for minimized output peak. 

Figure 1. Uncorrelated PRB inputs (upper two panels) and correlated                             Figure 2. Scatter plot of outputs in standard 
outputs (lower panel) of standard identification experiment.                                            identification experiment. 



  

E.  Minimization of Output Peak with Input Peak Constraint 
Minimization of the output peak results in large input 

peaks, and vice versa. As a compromise, one can minimize 
one signal peak with a constraint on the other signal peak. 
Table IV gives results of output peak minimization subject to 
the input peak constraints indicated by Ru . Scatter plots are 
shown in Fig. 6. 

VI. CONCLUSION 
A data-based method for design of experiments for 

identification of MIMO systems was described.  Previous 
methods have (mostly) been model-based. Obviously, a 
model-free method for experiment design is preferable from 
a practical viewpoint. 

The required data can be obtained from one or more 
preliminary experiments with the system. The input design 
yields uncorrelated outputs, which is good for identifiability. 
In addition, input and output peak values as well as the crest 
factor can be minimized subject to desired output variances 
with no output correlation. Minimizing these quantities is an 
advantage in process operation. 

Five types of perturbation signals were considered, 
namely, random binary signals (RBS), correlated binary 
signals (CBS), pseudo random binary (PRB) signals, multi-
sinusoidal signals with Schroeder phase shift (SMS), and 
multi-sinusoidal signals with random phase shifts (RMS). In 
this study, no advantage concerning peak values and the 
crest factor was found with the multi-sinusoidal signals. 
When the crest factor was minimized, the RBS and CBS was 
close to the PRB signal, but with larger peak values. In all 
respects, the PRB signal was the superior type of pertur-
bation in this study. 

The optimization problems are straightforward to 
formulate and can be solved easily using standard MATLAB 
software. In this work, the YALMIP toolbox was also used. 
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