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Model-based closed-loop wind farm control for power maximization
using Bayesian Optimization: a large eddy simulation study

Bart M. Doekemeijer†, Daan C. van der Hoek† and Jan-Willem van Wingerden†

Abstract— Modern wind farm control (WFC) methods in
the literature typically rely on a surrogate model of the farm
dynamics that is computationally inexpensive to enable real-
time computations. As it is very difficult to model all the
relevant wind farm dynamics accurately, a closed-loop approach
is a prerequisite for reliable WFC. As one of the few in its
field, this paper showcases a closed-loop wind farm control
solution, which leverages a steady-state surrogate model and
Bayesian Optimization to maximize the wind-farm-wide power
production. The estimated quantities are the time-averaged
ambient wind direction, wind speed and turbulence intensity.
This solution is evaluated for a wind farm with nine 10
MW wind turbines in large-eddy simulation, showing a time-
averaged power gain of 4.4%. This is the first WFC algorithm
that is tested for wind turbines of such scale in high fidelity.

I. INTRODUCTION

As wind turbines extract energy from the wind, they shed
a slower, more turbulent pocket of air behind them, called
the “wake”. The number of wind turbines placed close to
one another continues to increase for financial reasons, and
the resulting wake effects play a prominent role in the
performance of such wind farms [1]. Specifically, a wind
turbine operating in another turbine’s wake extracts less
energy from the air flow (e.g., Barthelmie et al. [2] estimated
the power losses due to wake interaction to be between
10% and 23% for a number of operational offshore wind
farms) and typically experiences more structural degradation
due to the increased turbulence in the air [3]. Clearly, wake
interaction has a negative impact on the financial feasibility
of energy from wind.

The field of wind farm control attempts to address this
issue by the coordinated control of (a subset of) the wind
turbines inside a farm. One solution proposed in the literature
is by derating upstream turbines (purposely extracting less
energy than possible) to reduce wake formation downstream.
This methodology has led to mixed results in the literature
[1]. A more promising method is the steering of the wake by
purposely misaligning the rotor plane with the inflow. While
this leads to a loss in power capture of the misaligned turbine,
significant gains can be achieved downstream, leading to
improvements of up to 15% in power capture situationally
(e.g., [4], [5]).

Typically, wind farm control algorithms proposed in the
literature rely on a simplified surrogate model of the wind
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turbines and wake interactions [1]. While model-free meth-
ods exist, their long convergence times and the relatively
high-frequent changes in ambient conditions significantly
complicate such methods. Model-free methods are not fur-
ther explored in this paper. The success of model-based
methods heavily relies on the accuracy of the surrogate
model used. Due to the complicated dynamics of the air
flow and the turbine structure on a large range of spatial
and temporal scales, the development of an accurate and
computationally efficient surrogate model is a nontrivial
research topic. At the time of writing, no model exists
which is consistently accurate over the various operating
conditions that a wind farm experiences annually [1]. This
problem therefore requires a closed-loop approach, in which
the surrogate model is calibrated in real time. The framework
is depicted in Fig. 1.

The literature on closed-loop model-based wind farm
control is scarce, and there is only a handful of solutions
that have been tested in high-fidelity simulation or through
experiments (e.g., [6]). Furthermore, existing literature is
limited to wind farms with 5 MW turbines or smaller. Hence,
this paper may provide some insight into the effect of wind
farm control on larger-scale wind turbines.

In this work, a novel closed-loop model-based wind farm
control solution will be synthesized and demonstrated on
a 3 by 3 wind farm through high-fidelity simulations. The
contributions of this work specifically are:

• With respect to previous work [6], a more sophisticated
optimization methodology is used for model adaptation
and control setpoint optimization, leveraging Gaussian
Process (GP) techniques. This should demand fewer
function evaluations to approach the global optimum.1

• Furthermore, the evaluated wind farm consists of nine
future-scale 10 MW turbines developed by the Technical
University of Denmark (DTU) [7]. This is the first paper
in its field to showcase wind farm control for such large-
scale turbines in a high-fidelity environment. This will
provide insight into the scalability of wind farm control
algorithms with respect to turbine size.

• Finally, compared to previous work [6], the high-fidelity
simulations now involve higher spatial and temporal
resolutions and an actuator line approach to approximate
the turbine rotors, leading to more reliable simulation
results.

1Furthermore, GP techniques provide insight into the probability distri-
bution of the optimal arguments of the to-be-optimized function, which is
planned to be used to increase robustness of the controller in future work.
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Fig. 1. Closed-loop model-based wind farm control framework

The structure of the paper is as follows. The surrogate
model used for controller synthesis is described in Section II.
The high-fidelity model used for simulation is described in
Section III. Then, the closed-loop controller is synthesized
in Section IV. Simulation results are shown and analyzed in
Section V. Finally, the paper is concluded in Section VI.

II. SURROGATE MODEL
As mentioned previously, a simplified yet accurate surro-

gate model of the wind farm is an invaluable component of
the closed-loop model-based wind farm control solution. The
mathematical model used in this work is largely similar to
that described in Annoni et al. [8], referred to interchange-
ably as the “FLOw Redirection and Induction in Steady-
state” (FLORIS) model in this paper. Specifically, FLORIS
consists of four components:

1) a wake model for a single turbine capturing the effects
of turbine derating and yaw misalignment,

2) a wake summation model that combines the effect of
multiple wakes,

3) a submodel that captures the turbine-induced turbu-
lence in the flow, and

4) a submodel that determines the power captured by a
turbine under a certain inflow.

Recently, FLORIS has evolved into a modular software
package containing various submodel definitions from the
literature [9], [10].

Firstly, in this work, the single wake submodel is largely
derived from Bastankhah et al. [11], displayed in Fig. 2.
In this figure, U∞ is the freestream wind speed, γ is the
turbine misalignment (yaw) angle, and δ f is the lateral wake
deflection angle due to the rotation of the rotor and due
to the yaw misalignment. The model consists of two parts:
a near-wake region called the “potential core” with length
x0 in which the wind speed is uniform, and a far-wake
region in which the wind speed deficit is shaped as a two-
dimensional Gaussian with standard deviations σy and σz.
The mathematical derivation of this model is beyond the
scope of this work. The reader is refered to the article by
Bastankhah et al. [11] for more information.

Fig. 2. A schematic top-view drawing of the single wake submodel, taken
and modified from [11].

Secondly, the wake summation model of Katic et al. [12]
is followed to combine wakes. Thirdly, turbine-induced tur-
bulence is modeled according to Crespo and Hernandez [13].
Fourthly, the submodel that captures the turbine power pro-
duction under a certain inflow relies on an abstraction from
an aero-elastic turbine simulation code from the National
Renewable Energy Laboratory (NREL) called OpenFAST
[14]. OpenFAST was used to generate a database of power
and thrust coefficients for various inflow wind speeds, yaw
misalignment angles and turbine derating settings for the
DTU 10 MW wind turbine. Within FLORIS, the wind speed
on the rotor plane is spatially averaged and then used for
interpolation in this three-dimensional database.

Finally, these submodels come with their set of tuning
parameters that are used to calculate, e.g., δ f , σy and σz.
In this work, the model parameters are taken from Table
I of Doekemeijer et al. [6]. In that publication, the model
parameters were tuned for the NREL 5 MW turbine and
should theoretically be independent of turbine size.

III. HIGH-FIDELITY MODEL

The synthesized wind farm control solution in this work
will be validated through high-fidelity simulation using the
Simulator fOr Wind Farm Applications (SOWFA), a large-
eddy simulation model for wind farms from NREL [15], [16].

In this work, the turbine rotors are parametrized using
the actuator line model [17]. SOWFA then solves the three-



dimensional, unfiltered, unsteady Navier-Stokes equations
over a discretized domain, including Coriolis effects and
geostrophic forcing terms. SOWFA has been used on
multiple occasions for surrogate model calibration, model
validation, and wind farm controller verification [1].

IV. CLOSED-LOOP CONTROLLER SYNTHESIS

The surrogate model described in Section II is adapted
to the actual conditions inside the wind farm periodically,
after which the turbine control setpoints are optimized for a
prescribed objective. Each step is described next.

A. Real-time model adaptation

As the optimal control settings are highly sensitive to the
ambient conditions, most importantly the wind direction, it
is important to estimate the actual conditions inside the farm.
This is done in two steps.

Firstly, the wind direction is estimated following the
approach described in Bertele et al. [18]. Specifically, they
use blade load sensors to reconstruct the inflow profile at the
wind turbine. For example, for an inflow wind speed of 8 m/s,
the wind direction can be estimated with a standard deviation
of 6◦. For simplicity, the algorithm is not implemented, but
rather an estimate for the wind direction is assumed to be
available under the specified uncertainty.

Secondly, the wind speed and turbulence intensity are
estimated through a model-inversion approach, in which
the error between the power predicted by FLORIS and the
time-averaged measured power is minimized. Such power
measurements are already available in modern wind turbines.
The to-be-minimized cost function is:

Ξopt = argmin
Ξ

Nt

∑
i

(
Pi

SOWFA−Pi
FLORIS(Ξ)

)
, (1)

with Nt the number of turbines, Ξ= [I∞,U∞] a vector with the
to-be-estimated variables, and I∞ the freestream turbulence
intensity.

B. Control setpoint optimization

In this work, the aim is to maximize the collective power
production of the wind farm. After model adaptation, the
surrogate model is assumed to accurately capture the current
conditions inside the farm. A robust optimization approach
is then followed based on the work from Rott et al. [19],
in which the yaw angles are optimized for a probability
distribution of wind directions, rather than one deterministic
wind direction. The to-be-maximized cost function is:

~γopt = argmax
~γ

∫
π

−π

ρ(φ)
Nt

∑
i

Pi
FLORIS(φ ,γi) dφ , (2)

with ~γ =
[
γ1 γ2 · · · γNt

]
, and ρ a probability distribution

of the wind direction φ . Further, in the optimization, γi is
bounded to [−30, 30] degrees to manage the increase in
structural loads compared to greedy operation. To mitigate
computational cost, ρ is discretized at 5 points, as exempli-
fied in Fig. 3. A more refined discretization of ρ would result
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Fig. 3. An example of the probability distribution of the wind direction.
The red circles show a possible discretization of the distribution.

in a proportional increase in computational cost and a more
accurate posterior probability distribution of the farm’s power
production. However, this is not guaranteed to improve the
algorithm due to model mismatches.

C. Optimization methodology

The optimization methodology adopted in this paper for
both model adaptation and control setpoint optimization con-
sists of Bayesian Optimization (BO) leveraging a Gaussian
Process (GP) as a surrogate model of the cost function [20].
Using a GP to model the model adaptation cost function
provides a straightforward extension of the robust control
setting approach, as it is able to estimate the wind direction
in a probabilistic manner. For simplicity, the focus in this
section is on the estimation part, but xxx can correspond to
either the to-be-estimated ambient conditions or the to-be-
optimized yaw angles.

1) Gaussian processes: The cost function given in Eq. 1
(resp. Eq. 2 for the control optimization) can be modelled
as a GP by assuming that the noisy observations of a cost
function JJJ =

[
J1 J2 · · · Jn

]
belong to a multivariate

Gaussian distribution:[
JJJ
JJJ∗

]
∼N

(
000,
[

K(xxx,xxx)+σ2
n III K(xxx,xxx∗)

K(xxx∗,xxx) K(xxx∗,xxx∗)

])
, (3)

where xxx =
[
x1 x2 · · · xn

]
is a matrix containing sets of

ambient conditions (resp. yaw angles) that we previously
evaluated in FLORIS. Furthermore, JJJ∗ indicates the esti-
mation error at the trial inputs xxx∗ (i.e., sets of possible
ambient conditions), K refers to the covariance function and
the variance of the measurement noise is given by σ2

n .
In this paper, the squared exponential covariance function,

which is useful for smooth functions in general, is used to
quantify the similarity between two input vectors xxx and xxx∗,
i.e.:

K(xxx,xxx∗) = λ
2
f · exp

(
−1

2
(xxx− xxx∗)T

ΛΛΛ
−1
x (xxx− xxx∗)

)
. (4)

The variables λ f , ΛΛΛx and σn are the so-called hyperpa-
rameters and they are updated during each iteration of the
optimization algorithm [20].

Once we have tested a new set of ambient conditions in
FLORIS, a prediction can be made of the cost function at
the trial points xxx∗ by conditioning the prior distribution from



Eq. 3 to obtain the posterior distribution according to:

µµµ
∗ = K(xxx∗,xxx)

(
K(xxx,xxx)+σ

2
n III
)−1

JJJ, (5)

ΣΣΣ
∗ = K(xxx∗,xxx∗)−K(xxx∗,xxx)

(
K(xxx,xxx)+σ

2
n III
)−1

K(xxx,xxx∗), (6)

where µµµ∗ and ΣΣΣ
∗ are the mean and variance of the cost

function at the trial points xxx∗, respectively.
2) Bayesian optimization: Using the GP framework, a

statistical model of the cost function is obtained, which in
turn can be used to find the optimally estimated ambient
conditions. The next ambient conditions to be tested in the
estimation algorithm is found by optimizing an acquisition
function. In this paper, the Upper Confidence Bound (UCB)
is selected as acquisition function and is optimized accord-
ingly [21]:

xn+1 = argmax
xxx

(
µµµ
∗+κ

√
ΣΣΣ
∗
)
, (7)

where κ is a user-defined variable and is set to κ = 2 in order
to allow for some exploration of the cost function. Using al-
ternative acquisition functions might lead to improved results
or faster convergence, but such a comparison is outside the
scope of this paper.

The BO algorithm can be run for a specified number
of iterations or until a stopping criterion is reached. In
this paper, n depicts the current iteration number and was
set to a maximum of N = 50 and N = 200 in order to
converge to the optimal settings for the model adaptation
and control setpoint optimization, respectively. The optimal
input variables were those that resulted in the optimal value
for each cost function.

V. SIMULATION RESULTS

Theoretical proofs of wind farm control algorithms are
extremely difficult due to the uncertainties and hard-to-model
temporal and spatial dynamics involved. Rather, high-fidelity
simulations are performed in pursuit of empirical validation.

A. Simulation setup

The proposed wind farm control solution is tested in a
high-fidelity simulation for a farm with nine DTU 10 MW
turbines. The simulation settings are displayed in Table I.
First, a simulation in which the turbines are operated under

TABLE I
SIMULATION SETTINGS FOR SOWFA

Variable Value
Timestep 0.20 s
Rotor model Actuator line model [17]
Cell size (near rotor) 2.5 m × 2.5 m × 2.5 m
Cell size (outer region) 10.0 m × 10.0 m × 10.0 m
Blade epsilon, ε 5.0 m
Turbine layout 3×3 turbines at 5D × 3D spacing
Freestream wind speed, U∞ 8.0 m/s
Freestream turbulence intensity, I∞ 5.0 %
Freestream wind direction, φ 0.0 rad

traditional “greedy” control is performed, where all turbines

are aligned with the wind. Secondly, the closed-loop con-
troller is employed to periodically optimize the yaw angles
of the turbines inside the wind farm. A top view of one wind
farm simulation showing the flow at turbine hub height is
displayed in Fig. 5.

B. Simulation results and analysis

First, the effect of the synthesized wind farm control so-
lution on the farm-wide power production is investigated. A
timeseries of the collective power capture is shown in Fig. 4,
and time-averaged quantities for various time windows are
shown in Table II.

Fig. 4. Comparison of timeseries for the power capture of the wind farm
for greedy operation and for optimized operation

TABLE II
COMPARISON OF GREEDY AND THE CLOSED-LOOP CONTROLLER CASES

Time window Pfarm(γ =~γgreedy) Pfarm(γ =~γ rob.
opt, CL)

0-600 s 26.1 MW 26.1 MW
600-900 s 21.5 MW 21.2 MW
900-1200 s 21.4 MW 22.1 MW
1200-1500 s 21.3 MW 22.3 MW
1500-1800 s 21.4 MW 25.0 MW
0-2000 s 22.9 MW 23.9 MW

During the first 600 s, the power production is identical
between the greedy and the controller case, as both simula-
tions operate under greedy control. At t = 600 s, the control
setpoints are optimized, resulting in a yaw misalignment
in the order of −20◦ for the upstream turbines, and of
−5◦ to −10◦ for the second row of turbines. This wake
deflection initially leads to a loss in power of 0.3 MW at
the yawed turbines at t = 600−900 s (Table II), but as the
reduced wakes propagate downstream, leads to a wind-farm-
wide gain of 0.7 MW at t = 900− 1200 s. A second and
third control setpoint optimization occur at t = 1200 s and
t = 1800 s, respectively, in which the optimization leads the
turbines to be yawed in the other direction. Table III shows
the optimized control setpoints. The horizontal flowfield at
hub height is shown in Fig. 5. This sign change in yaw
angles can be explained by inspecting the real-time model
adaption results, shown in Table IV.

In this table, it can be seen that the estimation is generally
consistent and accurate, only slightly deviating from the true
I∞ = 5.0% and U∞ = 8.0 m/s. The change in the yaw angles is
due to the change in sign of the estimated wind direction, and
the robust optimization approach appears to be insufficient



TABLE III
CONTROL SETPOINTS OF THE CLOSED-LOOP CONTROLLER FOR

TURBINES 1-6. TURBINES 7-9 FOLLOW GREEDY CONTROL; γ7..9 = 0◦ .

Time window Yaw angles of turbines 1 to 6, ~γopt, CL
1..6 (◦)

0-600 s
[
0.0, 0.0, 0.0, 0.0, 0.0, 0.0

]
(greedy)

600-1200 s
[
−17.2, −18.1, −17.9, −9.2 −4.4, −8.9

]
1200-1800 s

[
18.2, 17.1, 18.1, 8.1, 7.1, 10.6

]
1800-2000 s

[
19.0, 18.5, 19.2, 16.1, 17.0, 16.1

]

Fig. 5. Top-view at hub-height in m/s at t = 1750 s

to deal with such variations. However, the total wind-farm-
wide power capture increases with 4.4% over the 2000 s of
simulation, and situationally increases with 16.8% for the
1500−1800 s timeslot.

The Bayesian optimization algorithm used in this paper
takes 7 · 101 s on a single Intel i7-6600U core for a single
estimation of the ambient conditions, in comparison to
2 · 102 s for the optimization algorithm in previous work [6],
at a negligible loss of performance. A stronger CPU would
further reduce the computational cost, as the problem can be
parallelized. However, it is uncertain how fast this estimation
has to be, as the optimal frequency of yaw setpoint updates
is still an open question in the literature.

Furthermore, note that the optimized yaw angles shown in
Table III are relatively conservative, never exceeding a mis-
alignment of 20 degrees. This can be explained by comparing
the impact of yaw misalignment on a turbine’s power produc-
tion as modeled in SOWFA, and as modeled in FLORIS. See
Fig. 6. Here, it is seen that FLORIS overestimates the loss
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Fig. 6. Normalized power as a function of the yaw misalignment for a
single turbine in freestream flow

TABLE IV
ESTIMATION PERFORMANCE OF CLOSED-LOOP CONTROLLER

Time window Estimated ambient conditions
300-600 s Ξopt =

[
6.5% 8.0 m/s

]
, φ = 2.3◦

900-1200 s Ξopt =
[
7.0% 8.1 m/s

]
, φ =−0.7◦

1500-1800 s Ξopt =
[
4.0% 7.9 m/s

]
, φ −2.4◦

in power production due to a yaw misalignment. Therefore,
the yaw angles at t = 600 s may be lower than what is truly
optimal. While good results are achieved, these observations
stress the importance of appropriate surrogate model tuning
prior to controller synthesis [6].

In comparison to a near-identical simulation with 5MW
turbines [6], several things can be noted. Firstly, the optimal
yaw angles for the upstream turbines are close to 20◦ for both
simulations. Secondly, the initial loss in power production
due to a yaw misalignment is compensated by an increase
at downstream turbines (under the assumption of negligible
changes in φ ).

C. Discussion

While the results appear promising, there are a number
of important limitations to this work. Firstly, the inflow in
SOWFA is quasi-static, with one mean wind direction, speed,
and turbulence intensity. In reality, these conditions change
continuously. Secondly, the measurements and yaw settings
are idealized. Thirdly, the low-frequent changes in inflow
also gives rise to the question on how often to go through
the model adaptation and control setpoint optimization cycle
– whether it is every 20 seconds, every minute, or every 10
minutes. This remains an open question in the literature.

In addition, in this work, a comparison was made between
a wind farm control (WFC) algorithm and traditional wind
farm operation, rather than comparing this algorithm with
other WFC algorithms in the literature. This is particularly
difficult, as such algorithms must be compared under iden-
tical situations (e.g., wind turbine, wind farm layout, test
environment). This is out of the scope of this paper.

Also, wind turbines are currently not designed to pur-
posely operate under a yaw misalignment. The effect of the
WFC algorithm proposed in this work on the fatigue loads
of the turbine structure will be investigated in future work.

Furthermore, an advantage of the GP framework is
that it can be extended to obtain an approximation of the
confidence bounds [22] on the estimated wind direction.
This can directly be translated into the control setpoint
optimization, as ρ in Eq. 2, to further promote robustness.
This will be investigated in future work.

VI. CONCLUSIONS

This paper is the first of its field to demonstrate a
closed-loop model-based wind farm control solution on
wind farm with future-scale, 10 MW wind turbines. This
control solution leverages Gaussian Process techniques
for computational efficiency, and a robust optimization
technique to deal with uncertainties in the estimated wind



direction. Without a priori tuning of the surrogate wind farm
model, a time-averaged power increase of 4.4% was noted
in high-fidelity simulation when compared to traditional,
greedy operation. While results are positive, the mismatch
between the simulation model and the surrogate model leads
one to suspect that even higher gains can be achieved.
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