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Model Predictive Control using linearized Radial Basis Function Neural
Models for Water Distribution Networks

Krisztian Mark Balla1,2, Tom Nørgaard Jensen3, Jan Dimon Bendtsen1 and Carsten Skovmose Kallesøe1,2

Abstract— It is often the case that the main operation cost of
Water Distribution Networks (WDN) is due to pump actuation.
Although advanced control schemes are widely available, most
water utilities still use on/off control. In this study, water
networks with multiple flow inlets, storage tanks and several
consumers are considered. Under mild assumptions on the
consumption and hydraulic resistance of pipes, a reduced model
is proposed with the aim of building its mathematical structure
into a data-driven control design. For identification purposes we
use Radial Basis Function Neural Networks (RBFNN). We show
that linearization of the identified RBFNN model in the two
peak points of the daily flow demand results in a control model
with good prediction accuracy. Subsequently, this time-varying
model is utilized in a standard economic Model Predictive
Control (MPC) scheme, considering pump flows as inputs. A
numerical case study on an EPANET4 model and experimental
results on a test setup demonstrate the proposed method.

I. INTRODUCTION

Water Distribution Networks (WDN) are among the most
vital infrastructures of modern societies. They consist of a
large number of hydraulic elements, such as elevated reser-
voirs, pressurized pipelines, pumping stations and valves.
Although elevated reservoirs are often an integrated part
of these networks, water utilities rarely use their storage
capability for optimization. This paper deals with opti-
mization of reservoir filling via flow set-point control for
multiple pumping stations. Optimality here is measured as
the minimum economic cost for pump operation.

Model Predictive Control (MPC) is a well-suited approach
for cost-efficient WDN management when operational con-
straints are considered. In particular, MPC has been in-
vestigated and successfully implemented in many research
papers. In [2] and [3], optimal flow-set points for pumps are
computed by solving a finite-horizon optimization problem
including economic costs with operational constraints, while
considering only the pipe flows as the system variables. In
[4] and [5], distributed and decentralized MPC is considered,
respectively. The paper [6] considers the non-linearity of
WDNs using a constraint satisfaction formulation. MPC has
shown good results in large-scale water applications, given
that a model of the WDN dynamics was available. However,
such models lead to high costs of maintenance. Therefore,
detailed models are typically economically out of reach at
small water utilities.
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The main contribution of this paper comprises an exten-
sion of the work in [7] and [8], where reduced network
models have been proposed for networks without elevated
reservoirs. Additionally, [9] focuses on Plug&Play MPC
where a heuristic model of a WDN with one pumping
station and one elevated reservoir is considered. In particular,
here we consider networks with multiple inlets and multiple
storage tanks and seek to establish a control-oriented model,
relying only on the reduced model structure and on measure-
ment data. The outcome is an MPC scheme which utilizes
such a model.

The paper is organized as follows. In Section II, the pre-
liminary study of reduced network modelling, network parti-
tioning and the inclusion of reservoir dynamics is presented.
In Section III, the developed model is used for system
identification by using Neural Networks (NN). Moreover, an
internal MPC model is obtained by linearizing the NN in
different Operating Points (OP). In Section IV, the linearized
models are used in a MPC scheme. Section V presents
numerical and experimental results regarding modelling and
control. The paper ends with some remarks and conclusions.

a) Nomenclature: Let 〈x, y〉 denote the scalar product
between two vectors x, y ∈ Rn. We say a map f : Rn → Rn
is (strictly) monotonic increasing if 〈x−y, f(x)−f(y)〉 ≥ (>
)0 ∀x, y ∈ Rn such that x 6= y. With M(n,m;X) we denote
the set of n-by-m matrices whose entries belong to the set
X . By 1n we denote the n-dimensional vector consisting of
ones. || · || is the Euclidean norm.

II. NETWORK MODEL

A. Preliminaries

WDNs can be described by a directed and connected graph
G = {V, E}. The elements of the set V = {v1, ..., vn}
are denoted vertices and represent pipe connections with
possible end-user water consumption or storage elements.
The elements of the set E = {e1, ..., em} are denoted edges
and represent pipes. The demand at vertex i is denoted di,
and the pressure drop due to elevation by hi. The pressure
drop due to friction over edge j is denoted by fj , and this
pressure drop is a function of the flow qj through the pipe
j. To the graph G, we associate the incidence matrix H

Hi,j =


−1 , if the jth edge is entering ith vertex.

0 , if the jth edge is not connected to
the ith vertex.

1 , if the jth edge is leaving ith vertex.

We see that H ∈ M(n,m; {−1, 0, 1}), where m is the
number of edges and n is the number of vertices.
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The network must fulfill Kirchhoff’s vertex law, which
corresponds to conservation of mass in each vertex:

Hq = d, (1)

where q ∈ Rm is the vector of flows and d ∈ Rn is the
vector of nodal demands. Reservoir flows with di > 0 when
flow is into vertex i.

Let pi denote the absolute pressure at vertex i. Then, the
infinitesimal pressure increase in elevated reservoirs is:

ṗi = −ρg
Ai
di, (2)

where Ai is the constant cross section of the reservoir, ρ is
water density and g is the gravitational constant.

Let p be the vector of absolute pressures at vertices and
∆p the vector of differential pressures across the connecting
edges. Then, the ”Ohm law” for water networks gives

∆p = HT p = f(q)− (HTh), (3)

where p ∈ Rn, f : Rm → Rm, f(q) = (f1(q1), ..., fm(qm))
with fi strictly increasing. The last term in (3) is the
pressure drop due to elevation differences at the pipe ends.

Assumption 1 The hydraulic resistance fi : R → R
takes the form fi(qi) = ρi|q|q with ρi > 0 a constant pipe
parameter. This form is motivated by turbulent flow, which
is typical in WDNs [10].

B. Network partitioning

As an addition to the results in [8], we seek to derive
a reduced network model which captures the dynamics of
elevated reservoirs. To this end, we consider the partitioning
of the network graph such that we let the set V̂ = {v̂1, ..., v̂l}
with l ≥ 1 represent vertices corresponding to elevated
reservoirs. The set V̄ = {v̄1, ..., v̄n−l} represents the remain-
ing vertices in the graph. Furthermore, E = {ET , EC} is a
partitioning of edges such that the incidence matrix is

H =

[
H̄T H̄C

ĤT ĤC

]
, (4)

where H̄T is square and invertible, which is always possible
since G is a connected graph [11]. With the chosen partition-
ing, we can rewrite (1) and (3) to the following

d̄ = H̄T qT + H̄CqC , (5a)
d̂ = ĤT qT + ĤCqC , (5b)

fT (qT ) = H̄T
T (p̄+ h̄) + ĤT

T (p̂+ ĥ), (5c)
fC(qC) = H̄T

C (p̄+ h̄) + ĤT
C (p̂+ ĥ), (5d)

where d̂, p̂ ∈ Rl represent the vector of tank flows and
tank pressures, respectively. From (5a) we can derive an
expression for the vector qT of flows

qT = −H̄−1
T H̄CqC + H̄−1

T d̄. (6)

Using (5c), (5d) and (6), the following is derived

fC(qC)− H̄T
C H̄

−T
T fT (−H̄−1

T H̄CqC + H̄−1
T d̄) =

(ĤT
C − H̄T

C H̄
−T
T ĤT

T )(p̂+ ĥ). (7)

Next, using (5c) and (6), we obtain the vector of pressures
at vertices not associated to elevated reservoirs

p̄ = H̄−TT fT (−H̄−1
T H̄CqC + H̄−1

T d̄)− H̄−TT ĤT
T (p̂+ ĥ)− h̄.

(8)

In order to distinguish between inlet and non-inlet points,
the vertices in set V̄ are further partitioned such that

p̄ = Kp̄K +Dp̄D , d̄ = Kd̄K +Dd̄D, (9)

where d̄K, p̄K ∈ Rc are inlet flows and pressures.
d̄D, p̄D ∈ Rn−l−c are non-inlet flows and pressures,
respectively. Furthermore, p̄K = KT p̄ and p̄D = DT p̄. The
distribution of flow demands is formulated in Assumption 2.

Assumption 2 It is assumed that the distribution between
the n − l − c free nodal demands in d̄D(t) is fixed, that is
d̄D(t) = vDσ(t), where vD ∈ Rn−l−c with vD,i ∈ (0; 1) is
a vector with the property

∑n−l−c
i=1 vD,i = 1 and σ(t) < 0 is

the total consumption.

C. Inclusion of elevated reservoirs

In contrast to the model in [8], elevated reservoirs add
integrator-type dynamics to the pipe grid as shown in Fig.
1. In the following, we consider l ≥ 1 number of tanks,
where p̂ pressure is measured. Additionally, d̄K and p̄K inlet
flow and pressure are measured and certain critical pressure
measurements yi ∈ {p̄D,1, ..., p̄D,n−l−c} are also available,
where n− l − c is the number of elements in p̄D.

Pipe
network

Elevated
reservoirs

p̂d̂

p̄K
d̄K

y

Fig. 1. Block structure of the extended network.

We express the tank flows by inserting the unknown qT flows
in (6) into Kirchhoff’s law in (5b)

d̂ = (ĤC − ĤT H̄−1
T H̄C)qC + ĤT H̄

−1
T d̄. (10)

Recalling the model of elevated reservoirs in (2) and inserting
the corresponding vector of tank flows yields

Λ ˙̂p =− (ĤC − ĤT H̄−1
T H̄C)qC − ĤT H̄−1

T d̄

=− (ĤC − ĤT H̄−1
T H̄C)qC − ĤT H̄−1

T Kd̄K

− ĤT H̄−1
T DvDσ, (11)

where Λ = diag(A1

ρg , ...,
Al

ρg ). In the second line of (11), the
inlet and non-inlet flows are partitioned and the non-inlet
demand flows are expressed regarding Assumption 2.

Recalling the implicit expression in (7) for qC flows, the
partitioned inlet and non-inlet flows are substituted

fC(qC)−M1(p̂+ĥ)−MT
2 fT (M2qC+M3Kd̄K−M3DvDσ)=0,

(12)
where M1 = (ĤT

C − H̄T
C H̄

−T
T ĤT

T ), M2 = H̄−1
T H̄C and

M3 = H̄−1
T . By solving (12) for qC , the tank dynamics can

be expressed in terms of flow inlets and flow consumption.
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Although an analytical solution has not been found, the
solution is known to be unique. It can be shown that the left
hand side of (7) is a homeomorphism in qC , using similar
arguments as in [7].

Using (9) and applying Assumption 2, the inlet and non-
inlet pressures are given by (13) and (14), respectively

p̄K = KT H̄−TT fT (−M2qC +M3Kd̄K −M3DvDσ)

−KT H̄−TT ĤT
T (p̂+ ĥ)−KT h̄, (13)

p̄D = DT H̄−TT fT (−M2qC +M3Kd̄K −M3DvDσ)

−DT H̄−TT ĤT
T (p̂+ ĥ)−DT h̄. (14)

It is shown in (11), (13) and (14), that the proposed model
is subject to the algebraic constraint on qC flows in (12).

III. SYSTEM IDENTIFICATION

A. Radial Basis Function Approximation

The implicit expression in (12) sets constraints on qC
flows. The existence of a unique solution is known but not
its structure. Thus, we write (12) explicitly

qC = α(p̂, d̄K, σ), (15)

By inserting (15) into the tank model in (11) and into the
pressure models in (13) and (14), we obtain the mapping

p̄j = g̃j(p̂, d̄K, σ) + ãj p̂+ b̃j h̄, j ∈ {K,D}, (16)

where the non-linear parts are governed by g̃j with unknown
structure and the affine model parameters are collected in ãj
and b̃j h̄. Then the tank model yields

˙̂p = g̃W(p̂, d̄K, σ) + ãW d̂K + b̃Wσ, (17)

where g̃W captures the non-linearities and ãW , b̃W the linear
parameters. The mappings in (16) and (17) are abstractions of
the reduced model based on the partitioning and the physical
features of the grid. For g̃j and g̃W , we consider a ”linear in
parameters” structure, thus standard recursive methods can
be used for system identification.

We use Radial Basis Function Neural Networks
(RBFNNs) due to the simple structure and fast training
process [12]. In addition, RBFNNs can approximate any
multivariate continuous function on a compact domain to
an arbitrary accuracy, given a sufficient number of neurons
[13]. Therefore, given that the resistance terms fi(qi) are
continuous maps, approximation with RBFNNs is suitable
to represent the non-linearities. The input data set we use is
u = {p̂, d̄K, σ}. Then the the pressure approximation at inlet
point Kr, with r ∈ {1, 2, ..., c} is

p̄Kr(tk)=

M∑
i=1

wKr,iφi
(
u(tk)

)
︸ ︷︷ ︸
≈ g̃Kr(p̂, d̄K, σ)

+

l∑
j=1

ãKr,j p̂j(tk)+b̃Kr, (18)

where M is the number of RBF neurons, w is the weight
parameter and φ(u) = exp

(
− ||u−µ||

2

2ψ2

)
with µ center points

and ψ spread parameters. The center of the basis functions
are determined according to the distribution of the input

data u, using k-means clustering algorithm, while the spread
parameters ψ are fixed. The weights and the bias of the
RBFNN are found with Least Squares(LS) method.

For the approximate of water pressure derivative in storage
tank W , we assume that samples at tk k ∈ {1, ..., N} are
available for parameter identification and let tk+1−tk = δtk.
Then the gradient is given by forward Euler method

p̂Ws(tk+1)−p̂Ws(tk)

δtk
=

P∑
i=1

wWs,iφi
(
u(tk)

)
+

c∑
j=1

ãWs,j d̄K,j(tk)+b̃Wsσ(tk), (19)

where s ∈ {1, 2, ..., l} and P is the number of RBF neurons.
The model is identified by calculating parameters w, ã and
b̃. p̄K and p̄D are identified with the same model structure.

B. Linear Time-varying model

We presented a reduced network model that predicts the
pressure p̂ in elevated reservoirs and describes the inlet and
non-inlet pressures p̄, given measurements of d̄K inlet flows,
p̂ tank pressures and based on an average daily consumption
profile. σ is calculated using

σ(tk) = 1Tc d̄K(tk) + 1Tl d̂(tk). (20)

We approximated g̃K, g̃D and g̃W with RBFNNs to model
the non-linear system dynamics. In this paper, we refine
the model such that it is suitable for standard MPC. Using
the NN model for MPC imposes a model constraint that is
likely to be non-convex and thus hard to solve with standard
methods. Therefore, we attempt to find linear approximations
of the NN model in different Operating Points (OP). For that
reason, we use the Taylor series expansion of (18) and (19)
and formulate a switching State Space model, where θ is the
scheduling variable. The dynamics are given by

∆p̂W(tk+1) =
[
A(θ) Bu(θ) Bd(θ)

]∆p̂W(tk)
∆d̄K(tk)
∆σ(tk)

 , (21a)

and the expression for the inlet pressures is

∆p̄K(tk) =
[
C(θ) Du(θ) Dd(θ)

]∆p̂W(tk)
∆d̄K(tk)
∆σ(tk)

 , (21b)

where A,Bu, Bd, C,Du and Dd are constant for each value
of θ. Variables denoted with ∆ are small signal deviations
from the current OP.

Although the daily demand differs between workdays and
weekends, in the following we only consider the average
value of the total demand on workdays and assume that
σ(tk) = σ(tk+T ), as depicted in Fig. 2.

0
20
40
60
80

100
120

Time [h]

σ
[l
/
s

]

σ θ

0 10 20 30 40

0

1

θ
[-

]

Fig. 2. Switching rule according to the total demand σ.
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As shown in Fig. 2., parameter θ shifts with T = 1
day periodicity according to the lowest and highest daily
consumption in the WDN. Correspondingly, the NN model
is linearized at the two peak values of σ, therefore the shifting
rule for all system matrices is

A(θ) = θAmax + (1− θ)Amin, θ ∈ {0, 1}, (22)

where Amax and Amin describe the models linearized in the
two peak flow points, respectively. In the following, we refer
to the switching model as Linear Time Varying (LTV).

IV. PREDICTIVE CONTROL

We introduce a standard MPC scheme [14], that minimizes
the cost of operating pumping stations. The control shifts the
power consumption in time, such that tank capacity is used
to minimize the operating costs subject to varying energy
prices. The cost sequence C(tk) is known in advance. We
further assume such operating conditions that the efficiency
of pumping stations are constant and identical [15].

The goal is to minimize the operating cost over a day
by controlling d̄K inlet-flows. That is, we want to solve the
convex optimization problem

min
d̄K

1

η

Hp−1∑
i=0

C(tk+i|k)d̄TK(tk+i|k)p̄K(tk+i|k)

+
(
p̂W(t0+Hp

)− p̂W(t0)
)2

(23)

where η is the efficiency of all pumping stations and
Hp = 24 hours is the prediction horizon. The term in the
second line is introduced because the system is periodic
and therefore the initial and final water pressure in the
storage tanks should be equal over Hp. Furthermore, this
optimization problem uses the internal model dynamics in
(21). The operational and physical constraints are shown in
(24).

0 < d̄minK ≤ d̄K(tk) ≤ d̄maxK ,∀ tk (24a)

0 < p̂minW ≤ p̂W(tk) ≤ p̂maxW ,∀ tk (24b)

0 < ymin ≤ y(tk) ≤ ymax,∀ tk, (24c)

where (24a) describes the physical limitations on inlet flows.
Furthermore, (24b) sets constraints on the minimum and
maximum admissible storage volume in elevated reservoirs.
Equation (24c) describes the constraints on the minimum and
maximum pressure in the critical points of the network.

In standard MPC, the network dynamics are used to
make predictions over Hp. In each initial time step tk,
the controller determines the OP which corresponds to the
current peak or low consumption rates. The OP is kept
constant over the predictions, meaning that we do not shift
the model dynamics while we are in the current prediction
horizon.

V. RESULTS

Both numerical and experimental results demonstrate the
proposed method in system identification and in MPC. In
the EPANET environment [1], tank and inlet pressures are
expressed in terms of length, e.g. water levels and pressure
heads, respectively.

A. System identification

We show numerical results for comparing the performance
of the Neural Network, LTV and high-fidelity EPANET
models. For simulation, we use the EPANET model of the
northern half of city Randers, located in Denmark. The
network is illustrated in Fig. 3.

W2

K2

K1

W1

Fig. 3. EPANET model used for system identification and control.

This particular network consists of 3169 vertices and 3431
edges (n = 3169 and m = 3431). There are two inlet points
K1 and K2, thus d̄K ∈ R2 (p̄K ∈ R2). Furthermore, there are
two elevated reservoirs W1 and W2, thus p̂W ∈ R2. Note
that in this network critical points y have not been chosen.
Fig. 4. shows the validation for the identified tank model.
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Fig. 4. Water level validation.

The first row shows the results using the RBFNN model
linearized in σmax, while the second row illustrates the
results using the model linearized in σmin. The last row
shows the LTV model where we switch between the two
local linear models. Fig. 5. shows validation results for the
model describing the inlet pressures. Here we only show the
results when we switch between the two OPs.

0 20 40

42

43

44

45

Time [h]

Pr
es

.H
ea

d
[m

]

p̄K1

EPANET LTV

Neural net

0 20 40

51

52

53

54

Time [h]

p̄K2

EPANET LTV

Neural net

Fig. 5. Inlet pressure validation.
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As shown in Fig 4., the local linear models describe
the process accurately in the proximity of the OPs. We
indicate this by distinguishing between days and nights, as
the two average dominating flow consumption can be divided
into these two periods. Furthermore, the model deviation is
also expected since we know that the linearized NN cannot
describe the non-linear process given that we assume large
variations in the daily total flow consumption.

The identification and validation results show that switch-
ing between two OPs, corresponding to the two peak points
of σ, results in good model accuracy. Note that the accuracy
of the linear model dynamics depends on the accuracy of the
NN model. Therefore, it is crucial to carry out the RBFNN-
based identification on long data sets and to excite the system
within the whole range of operation.

In the following, the proposed linearized control model
will be used for standard MPC.

B. Numerical results with EPANET

Taking into account varying electricity prices, operational
and physical constraints, the standard MPC scheme has
been tested. The results obtained using the EPANET model
simulating the real environment are presented below.
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Fig. 6. Input and state evaluation on the EPANET model under MPC.

In Fig 6., the control signals at the peak electricity are
decreasing and the actuation is shifted towards the less
expensive period in the night. Here, a prediction horizon
Hp = 24 has been used. From the level signal it is evident
that the reservoir is filled when the energy price is low and
empties when the energy price is high. Note that the level
variation in W1 is one meter and 0.7 meter in W2.

C. Experimental results

The proposed modelling and control method has also been
implemented on a test setup at Aalborg University. This setup
represents a 1 : 20 scaled version of a real WDN. The
schematic and physical setup is shown Fig. 7.
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Ground reservoir
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Pressure sensor
Flow sensor

w Power sensor

Fig. 7. Schematic (above) and photo (below) of the laboratory setup.

There are two inlet pumps C1 and C2, supplying a
water ring formed around three Pressure Management Areas
(PMAs), placed at different elevations. To the main ring, one
elevated reservoir is connected. The schematic also indicates
the sensors available on the setup. The time constant of the
system is approximately 52 minutes, which is low compared
to a real WDN. Therefore, the consumption and price profiles
have been compressed accordingly. The control algorithm
has been implemented with Hp = 2 hours and the overall
test time was four hours, equivalent to two days in real life.
Note, that in this specific test scenario the varying cost is a
simple sinusoidal which follows the total flow consumption.
The measurements showing the results of the implemented
control are shown in Fig. 8.
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The sinusoidal cost function is a simplification, representing
a possible agreement between utilities and energy providers.
This typically means low prices during night and high cost
during the daytime. The daily consumption rate σ has been
generated by controlling two outlet valves in each PMAs.
This valve control rule follows a periodic pattern, mimicking
a typical daily flow consumption rate.
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The algorithm has been implemented with soft constraints
to avoid infeasibility and thereby system failure. The on-line
test results above show the feasibility of the proposed control
strategy, while guaranteeing appropriate safety objectives.
Note that the pumps cannot shut down completely as in
real life, due to the lack of non-return valves on the inlets.
Therefore, the inflow is kept at a minimum when the tank
is being emptied. In addition to the control results, Fig. 9.
illustrates pressure measurements in the PMAs.
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Fig. 9. Pressure in the critical points.

The pressure variation in the PMAs is around 0.1 bar
which is considered high. With the proposed constraints, and
test setup it has not been possible to reduce this variation,
especially not in the PMA where the elevated reservoir is
connected. A solution to this is to keep higher pressure in
the elevated reservoir and allow less variation in the MPC.

The pump power consumption with the proposed MPC
have been compared with on/off control. The sum of the
power consumption at the two inlets are shown in Fig. 10.
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Fig. 10. Comparison of power consumption.

One of the features of on/off control is that typically the
storage tanks get emptied at the time when the consumption
increases together with the energy prices. The areas marked
with grey belong to the cost-expensive period of the day. As
Fig. 10 indicates, pumping stations under on/off control must
turn on in these expensive periods to fill up the storage tanks
again.

For accumulated economic cost comparison, 14 hours
long measurements have been carried out which account for
a whole week in real-life. The money used on electricity
yielded approximately ten percent less than in case of on/off
control, see Fig. 11.
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Fig. 11. Accumulated economic cost comparison.

It is reasonable to compare the accumulated cost in the
end of each period, as we minimize the economic cost over
an Hp = 24 hours long horizon.

VI. CONCLUSIONS
We proposed a reduced model for describing elevated

reservoir dynamics and pressures in water distribution net-
works with multiple inlets. The proposed model structure has
been used to identify Neural Network-based models relying
on data available at inlet points and in storage tanks. We
have shown that if we linearize the NN-model in the two
peak points of the total demand, the resulting LTV model
represents the network with good prediction accuracy and
thereby suitable for the internal model of standard MPC.
The proposed model has been tested with standard Model
Predictive Control. Results on a simulation model of a real
distribution network from Denmark, along with experimental
tests with a scaled lab setup have demonstrated feasibility
and cost savings. The proposed methods are considered
Plug&Play in the sense that only data and structural assump-
tions have been used in our design.
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