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The Extended Kalman Filter for Nonlinear State Estimation
in a U-loop Bioreactor

Tobias K. S. Ritschel, Dimitri Boiroux, Marcus Krogh Nielsen, Jakob Kjøbsted Huusom,
Sten Bay Jørgensen, John Bagterp Jørgensen

Abstract— In this paper, we consider nonlinear state esti-
mation in the U-loop reactor for single-cell protein (SCP)
production. The model of the U-loop reactor is a mixture of
stochastic partial differential equations and stochastic differen-
tial equations which are stiff. By a typical finite-volume spatial
discretization, the resulting system of stochastic differential
equations for numerical simulation and state estimation has
83 states. We investigate and discuss the continuous-discrete
EKF for state estimation in this high-dimensional and stiff
continuous-discrete-time system.

I. INTRODUCTION

State estimation as a filter algorithm is a central com-
ponent in monitoring, fault detection, and model predictive
control. When the process is nonlinear, a nonlinear filter-
ing algorithm is needed. The nonlinear filtering problem
is a computationally hard problem. It is well known that
the solution of the Fokker-Planck equation (Kolmogorov’s
forward equation), i.e. the exact probability density function
of the states, is the optimal solution to the state estimation
problem [1]. However, due to the curse of dimensionality
and computational tractability, the Fokker-Planck equation is
restricted to low dimensional problems and cannot be applied
to most practical problems. It can certainly not be applied to
estimation in systems where the model is a number of partial
and ordinary differential equations. Therefore, a number of
alternative approximate nonlinear filtering algorithms are
used. These algorithms are also challenged by the high
state dimensionality of models arising from finite-volume
discretizaton of partial differential equation systems. Single-
cell protein (SCP) production in the U-loop reactor studied
in this paper gives rise to a coupled system of partial and
ordinary differential equations. Consequently, a finite-volume
spatial discretization gives rise to a high-dimensional system.
In this paper, we investigate the extended Kalman filter
(EKF) for nonlinear state estimation in this system.
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A. Nonlinear filtering algorithms

The Kalman filter is an optimal filter for linear systems
with normally distributed process and measurement noise
[2]. When the system is nonlinear, high-dimensional, and
evolving in continuous-time, a number of different approxi-
mations such as the EKF and the unscented Kalman filter
(UKF) have been suggested, while approaches based on
the Fokker-Planck equation, hidden Markov models, parti-
cle filtering, or the ensemble Kalman filter (EnKF) suffer
from the curse of dimensionality [1]–[7]. Most literature
on nonlinear filtering algorithms for process applications
considers low dimensional and discrete-discrete systems with
only few details related to the numerical methods [8]–[13].
In this paper, we formulate the EKF for a high-dimensional
continuous-discrete system stemming from a mixed system
of stochastic partial and ordinary differential equations that
are measured at discrete times. Such systems are ubiquitous
in process systems engineering. We use the EKF because it is
computationally efficient and involves few tuning parameters,
e.g. compared to the UKF. Furthermore, we demonstrate the
relevance of the formulated EKF by application to a novel
process from industrial biotechnology.

B. Single cell protein production in a U-loop reactor

Methanotrophs can grow on cheap carbon sources such as
methane or methanol. They have a high protein content and
can be used to produce SCP. SCP can be used for animal feed
and thereby sustain a growing human population. SCP may
be produced using a U-loop reactor. However, the operation
of such a reactor and in particular the startup is non-trivial.
Using a mathematical model that describes the dynamics of
SCP production in a U-loop reactor [14]–[18], we use the
EKF to estimate the state of the reactor during startup based
on the economic optimizing control strategy described by
Drejer et al. [19]. The information provided by this state
estimation is central to economic nonlinear model predictive
control [20] for economically optimal operation and startup
of the U-loop reactor. Previously, Olsen et al. [21] computed
the optimal steady-state operating points, but did not consider
the startup. Furthermore, state estimation has not previously
been considered for the U-loop reactor. The computation and
implementation of the optimal startup profile is challenging
as the optimal profile turns out to be an unstable attractor, i.e.
an uncontrolled system diverges from this optimal trajectory.
Thus, using an open-loop control strategy would cause the
startup of the U-loop reactor to fail [19].
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Fig. 1. U-loop reactor diagram for mathematical modeling.

C. Paper organization

The remaining part of the paper is organized as follows.
Section II presents the mathematical model for SCP produc-
tion in a U-loop reactor with methanol as the feed. Section
III discusses the EKF for continuous-discrete systems, and
in Section IV, we present the numerical example of state
estimation during startup of the U-loop reactor. Section V
summarizes the conclusions.

II. MATHEMATICAL MODEL

Fig. 1 is a conceptual diagram used to derive a mathe-
matical model of SCP production in the U-loop reactor [14],
[15], [19], [21]. At its inlet, the U-loop section consists of a
mixer, in which the recirculated mixture from the top tank is
mixed with feed substrate (methanol), feed water, and feed
gas (oxygen). The remaining part of the U-loop is modeled
as a liquid-gas phase plug flow reactor (PFR). The end of
the U-loop is modeled as an ideal separator that completely
separates the gas phase from the liquid phase. The top tank
is modeled as a liquid phase continuous stirred tank reactor
(CSTR). A liquid mixture of water, biomass, substrate, and
dissolved gas is harvested from the top tank. The top tank
also recirculates part of the mixture.

A. Mixing section

The gas flow rate at the inlet of the PFR is equal to the
feed gas flow rate, FG. The liquid flow rate, FL, to the inlet
of the PFR is obtained by a total static mass balance:

FL = FR + FS + FW . (1)

FR is the flow rate of liquid from the top tank to the U-loop,
FS is the flow rate of feed substrate, and FW is the flow rate
of feed water. Component mass balances for the biomass, X ,
the substrate, S, the oxygen dissolved in the liquid phase, O,
and the oxygen in the gas phase, gO, give the following inlet

concentrations to the PFR

Cin,X =
FRC̄X
FL

, (2a)

Cin,S =
FSCF,S + FRC̄S

FL
, (2b)

Cin,O =
FRC̄O
FL

, (2c)

Cin,gO = CF,O. (2d)

C̄X , C̄S , and C̄O denote the concentrations of biomass (X),
substrate (S), and oxygen (O) in the top tank.

B. The U-loop modeled as a plug-flow reactor

The corresponding inlet fluxes, Ni, to the PFR are

Ni(t, 0) = vCin,i(t), i ∈ {X,S,O, gO} , (3)

where the linear velocity is computed as

v =
FL + FG

A
. (4)

A is the cross-sectional area of the U-loop pipe. The
concentrations, Ci = Ci(t, z), of all components, i ∈
{X,S,O, gO}, are computed as functions of time, t, and
position, z, by the following mass balances

∂CX
∂t

= −∂NX
∂z

+RX , (5a)

∂CS
∂t

= −∂NS
∂z

+RS , (5b)

∂CO
∂t

= −∂NO
∂z

+RO +
1

1− ε
Jgl,O, (5c)

∂CgO
∂t

= −∂NgO
∂z

− 1

ε
Jgl,O, (5d)

for ta ≤ t ≤ tb and 0 ≤ z ≤ L. ta is the initial time, tb is
the final time, and L is the length of the U-loop pipe. Ni =
Ni(Ci(t, z)) = Ni(t, z) denotes the flux of each component,
i ∈ {X,S,O, gO}, Ri = Ri(t, z) denotes the production
rate for i ∈ {X,S,O}, and Jgl,O = Jgl,O(t, z) is the transfer
rate of oxygen from the gas phase to the liquid phase. ε =
FG/(FG + FL) is the fraction of gas in each cross section.
It is assumed to be constant throughout the U-loop pipe.

Danckwerts’ conditions describe the outlet boundary con-
ditions of the PFR, i.e.

∂Ci
∂z

(t, L) = 0, i ∈ {X,S,O, gO} , ta ≤ t ≤ tb. (6)

C. Gas-liquid separating section

We assume that the gas and liquid are perfectly and
instantaneously separated when the fast flowing gas-liquid
mixture from the U-loop pipe enters the top tank. This is
modeled as an ideal static gas-liquid separator, where the
gas is completely removed, and the liquid phase enters the
liquid phase in the top tank. This implies that the inlet
concentrations of the liquid phase to the top tank are

C̄in,i(t) = Ci(t, L), i ∈ {X,S,O} , ta ≤ t ≤ tb. (7)



D. Top-tank model

The top tank is modeled as a CSTR with a constant liquid
volume. The mass balances for the components in the liquid
phase are

dC̄i
dt

= D̄
(
C̄in,i − C̄i

)
+Ri(C̄X , C̄S , C̄O), i ∈ {X,S,O} ,

(8)
for ta ≤ t ≤ tb. The dilution rate is D̄ = F̄ /V , where
F̄ = FL and V is the liquid volume in the top tank. As the
liquid volume in the top tank is constant, the flow rate of the
product stream from the top tank is

F = F̄ − FR = FL − FR = FS + FW . (9)

E. Convective and diffusive transport

The flux, Ni, consists of convective transport, vCi, and
diffusive transport, Ji:

Ni = viCi + Ji, i ∈ {X,S,O, gO} . (10)

The diffusive transport is modeled using Fick’s law:

Ji = −Di
∂Ci
∂z

, i ∈ {X,S,O, gO} . (11)

F. Gas-liquid transport

The transport of oxygen from the gas phase to the liquid
phase is governed by the relation

Jgl,O = (kLa)O(Csat,O − CO), (12)

where Henry’s law in combination with the ideal gas law
provides the saturation concentration of oxygen, i.e.

Csat,O =
PgO
HO

=
RT

MwOHO
CgO. (13)

HO is the Henry constant for oxygen, PgO is the partial
pressure of oxygen in the gas phase, R is the gas constant,
T is the temperature, MwO is the molar weight of oxygen,
and CgO is the concentration of oxygen in the gas phase.

G. Stoichiometry and kinetics

The overall conversion of methanol (S) to biomass (X) is
governed by the stoichiometric relation

CH3OH + YSNHNO3 + YSOO2 →
YSXX + YSCCO2 + YSWH2O

(14)

which can also be formulated as

YXSCH3OH + YXNHNO3 + YXOO2 →
X + YXCCO2 + YXWH2O.

(15)

Table I reports the yield coefficients for this overall reac-
tion. The stoichiometry implies that the production rate of
substrate (methanol), RS , and the production rate of oxygen
in the liquid phase, RO, are related to the production rate of
biomass, RX , by

RS = −γSRX , γS =
MwS

MwXYSX
, (16a)

RO = −γORX , γO =
MwOYSO
MwXYSX

. (16b)

TABLE I
YIELD COEFFICIENTS

i YSi YXi Mwi WXi

[mol/mol] [mol/mol] [g/mol] [g/g]
CH3OH S 1.000 1.366 32.042 1.778
HNO3 N 0.146 0.199 63.013 0.510
O2 O 0.439 0.600 31.999 0.779
CH1.8O0.5N0.2 X 0.732 1.000 24.626 1.000
CO2 C 0.268 0.366 44.010 0.654
H2O W 1.415 1.933 18.015 1.414

The production rate of biomass, RX , is given by

RX = µ(CS , CO)CX , (17)

where µ = µ(CS , CO) is the specific growth rate. The spe-
cific growth rate of Methylococcus Capsulatus in a methanol
medium is given by the Monod-Haldane expression

µ = µ(CS , CO) = µmaxµS(CS)µO(CO), (18a)

where the growth factors, µS(CS) and µO(CO), are

µS(CS) =
CS

KS + CS + C2
S/KI

, (18b)

µO(CO) =
CO

KO + CO
. (18c)

H. Stochastic effects and parameters

In this paper, we model the variation of some key param-
eters as stochastic processes,

dµmax(t) = κµ(µ̄max − µmax(t))dt+ σµdwµ(t), (19a)
dγS(t) = κγS (γ̄S − γS(t))dt+ σγSdwγS (t), (19b)
dγO(t) = κγO (γ̄O − γO(t))dt+ σγOdwγO (t), (19c)

around the mean (i.e. the nominal) values of the parameters.
Similarly, we consider stochastic variations of the feed
substrate concentration according to

dCF,S(t) = κCF,S
(C̄F,S(t)−CF,S(t))dt+σCF,S

dwCF,S
(t).
(20)

III. NONLINEAR STATE ESTIMATION

Using spatial discretization on Nz equidistantly spaced fi-
nite volumes, the mathematical model for the U-loop reactor
presented in Section II can be compactly represented as

dxd(t) = f(xd(t),xs(t), u(t), θ)dt, (21a)

and the corresponding compact model for the stochastic
effects described in Section II-H is

dxs(t) = fs(xs(t), u(t), θ)dt+ σsdws(t). (21b)

In this section, we describe the EKF for continuous-
discrete-time stochastic systems in the form

dx(t) = f(x(t), u(t), θ)dt+ σ(x(t), u(t), θ)dw(t), (22a)
z(t) = g(x(t), θ), (22b)

y(tk) = z(tk) + v(tk; θ). (22c)



The combined model (21) is a special case of the stochastic
differential equation (22a), (22b) is a model of the process
outputs, and (22c) is a model of the measurements. x is
the state vector, u is the vector of manipulated inputs, θ
is the parameter vector, z is the vector of outputs, and
y are measurements of the outputs (at discrete times, tk)
which are corrupted by measurement noise, v(tk; θ) ∼
Niid(0, Rv(θ)). w(t) is a standard Wiener process, i.e.
dw(t) ∼ Niid(0, Idt). The initial states are normally dis-
tributed: x(t0) ∼ N(x̄0, P0).

A. Simulation and temporal discretization

We use a semi-implicit method [22] to discretize the
stochastic differential equation (22a):

xk,n+1 − xk,n = f(xk,n+1, uk, θ)∆tk,n

+ σ(xk,n, uk, θ)∆wk,n.
(23)

∆wk,n is a realization of ∆wk,n ∼ Niid(0, I∆tk,n). The
states, xk,n+1, are obtained by solution of

Rk,n = Rk,n(xk,n+1)

= xk,n+1 − f(xk,n+1, uk, θ)∆tk,n

− xk,n − σ(xk,n, uk, θ)∆wk,n

= 0,

(24)

using a variant of Newton-Raphson’s method.

B. Extended Kalman filter

The EKF for the continuous-discrete-time stochastic sys-
tem (22) consists of a filter and a one-step predictor.

1) Initialization: The initialization of the EKF is based
on the prior information represented by the distribution of
the initial states. Consequently, x̂0|−1 = x̄0 and P0|−1 = P0.

2) Filter step: At each discrete time k, i.e. time tk,
the filter assumes that x̂k|k−1 and Pk|k−1 are available. It
computes the one-step prediction of the output, ẑk|k−1, and
the measurement, ŷk|k−1, by

ŷk|k−1 = ẑk|k−1 = g(x̂k|k−1, θ). (25)

Linearization of the output equation provides

Ck =
∂g

∂x
(x̂k|k−1, θ), (26)

such that the innovation, ek, and its covariance, Re,k =
〈yk|k−1,yk|k−1〉, may be computed by

ek = yk − ŷk|k−1, (27a)
Re,k = CkPk|k−1C

′
k +Rv(θ), (27b)

where yk is the measurement. The Kalman filter gain,
Kfx,k = 〈xk|k−1,yk|k−1〉〈yk|k−1,yk|k−1〉−1, is

Kfx,k = Pk|k−1C
′
kR
−1
e,k. (28)

The Kalman filter gain, Kfx,k, is used in the
computation of the filtered state, x̂k|k, and
its covariance, Pk|k = 〈xk|k−1,xk|k−1〉 −

〈xk|k−1,yk|k−1〉〈yk|k−1,yk|k−1〉−1〈yk|k−1,xk|k−1〉.
They are computed according to

x̂k|k = x̂k|k−1 +Kfx,kek, (29a)
Pk|k = Pk|k−1 −Kfx,kRe,kK

′
fx,k. (29b)

3) One-step predictor: The one-step prediction of the
states are computed by solution of the initial value problem

d

dt
x̂k(t) = f(x̂k(t), uk, θ), x̂k(tk) = x̂k|k. (30)

In order to compute the one-step prediction of the covariance,
we compute the sensitivities of the one-step prediction of the
states at time t with respect to the states at time s, Φk(t, s),
by solving the initial value problem

d

dt
Φk(t, s) = Ak(t)Φk(t, s), Φk(s, s) = I, (31)

where

Ak(t) =
∂f

∂x
(x̂k(t), uk, θ). (32)

Using these sensitivities, we compute the covariance at time
t by [23]

Pk(t) = Φk(t, tk)Pk|kΦk(t, tk)′

+

∫ t

tk

Φk(t, s)σk(s)σk(s)′Φk(t, s)′ds,
(33)

where

σk(t) = σ(x̂k(t), uk, θ). (34)

We use Euler’s implicit method (with multiple time steps in
between measurements) together with a variant of Newton-
Raphson’s method to solve the initial value problems (30)
and (31), and we use a left rectangle rule to approximate the
integral in (33).

IV. NUMERICAL EXAMPLE

In this section, we present a numerical example of state
estimation in the U-loop reactor during startup based on the
economic optimizing control strategy presented by Drejer
et al. [19] which is stabilized by a P-controller (i.e. using
feedback). The P-controller changes the substrate feed flow
rate every 15 s based on the substrate concentration in the
top tank. The feedback dynamics are not represented in the
dynamical model used by the EKF. Furthermore, the EKF
uses average values of the substrate feed flow rate computed
by the P-controller (averaged over each sampling interval).
We consider a time interval of 30 h, and the EKF uses
measurements of the concentration of the dissolved oxygen
at positions z = 4 m, z = 7 m, and z = 10 m in the
U-loop pipe. These measurements are obtained every third
minute. We discretize the U-loop pipe using 20 equidistant
finite volumes. Consequently, we measure the concentrations
of the dissolved oxygen in the 7’th, 12’th, and 17’th finite
volumes in the discretized U-loop pipe. The resulting dy-
namical system contains 83 state variables as well as the 3
uncertain parameters, µmax, γS , and γO, and the uncertain
substrate feed concentration, CF,S , as described in Section



II-H. Consequently, the EKF estimates the 87 state variables
in the combined dynamical system.

We use a stochastic simulation to represent the true U-loop
reactor and to compute the measurements of the dissolved
oxygen concentrations. In this stochastic simulation, we use
12 time steps in between the measurements corresponding
to the update frequency of the P-controller. We use 6 time
steps between the measurements in the EKF. We provide
more detail on this numerical example in the Appendix.

Fig. 2 shows the manipulated inputs, and Fig. 3 shows the
filtered estimates of the concentrations of biomass, substrate,
and dissolved oxygen in the top tank computed using the
EKF (in blue) together with the true concentrations (in
green). Furthermore, it shows the absolute deviations of the
filtered estimates from the true concentrations. The EKF is
able to accurately estimate the concentrations of biomass
and dissolved oxygen in the top tank. However, the esti-
mates of the substrate concentration in the top tank deviate
significantly from the true values. This is possibly because
the EKF does not estimate the substrate concentration in the
feed, CF,S , accurately during the first 15 h of the startup. The
filtered estimate of CF,S is shown in Fig. 4 together with the
filtered estimates of the uncertain model parameters µmax,
γS , and γO (in blue) as well as the true values (in green)
and the nominal values (in black) of these parameters.

In the implementation of the EKF, the evaluation of the
right-hand side function f(x(t), u(t), θ) in the combined
dynamical system (22) is implemented in C, and the rest is
implemented in Matlab R2016b. The average computation
times of the filtering step and the one-step predictor are
0.1 ms and 9.4 ms which are negligible compared to the
sampling time.

V. CONCLUSION

In this work, we describe the EKF for nonlinear state
estimation in a U-loop reactor for SCP production. The EKF
requires a dynamical model of the U-loop reactor. We present
such a dynamical model which consists of both stochas-
tic partial differential equations and stochastic differential
equations, and we use a finite-volume approach to spatially
discretize the stochastic partial differential equations. Fur-
thermore, we demonstrate, using a numerical example, that
the EKF can be used to estimate the state of the U-loop
reactor during startup. In this example, we use a previously
developed economic optimizing control strategy together
with a P-controller for stabilization. The EKF is implemented
using Matlab and C, and the computation time is negligible
compared to the sampling time indicating that real-time
implementation is feasible. Future work could involve using
the UKF for improving the accuracy of the state estimation
in the U-loop reactor.
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APPENDIX

Table II shows parameters used in the numerical example.
The units of the diffusion coefficients, σµ, σγS , σγO , and
σCF,S

, contain a factor of 1/h1/2 because the unit of the
increment of the Wiener process, dw(t), in the stochastic
continuous-discrete-time system (22) is h1/2, i.e. the unit of
the covariance of this increment is h.
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Fig. 2. Manipulated inputs: feed flow rates of water, substrate, and gaseous oxygen. For the substrate flow rate, the green curve represents the values
used in the stochastic simulation of the U-loop reactor, the blue curve represents the values used in the EKF, and the black curve represents the open-loop
economically optimal strategy computed by Drejer et al. [19] (the green and blue curves almost completely coincide). For the water and oxygen flow rates,
the green curve is used both in the stochastic simulation and in the EKF.
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Fig. 3. Top row: filtered estimates of the concentrations in top tank of the U-loop reactor obtained with the EKF (blue) together with the true concentrations
(green). Bottom row: absolute differences between the filtered estimates and the true values of these concentrations.
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Fig. 4. Filtered estimates of the maximum specific growth rate, µmax, the stoichiometric coefficients for substrate and oxygen, γS and γO , and the
substrate concentration in the inlet, CF,S computed using the EKF (blue) together with the true (green) and nominal (black) values of these parameters.

The mean of the initial states, x̄0, is constructed such that
the biomass concentration in the U-loop pipe and the top
tank are 0.1 kg/m3, and the reactor contains no substrate
or oxygen (neither dissolved or in gaseous form). The
covariance of the initial states, P0, used in the EKF and
to sample the true initial states is a diagonal matrix whose
entries are 10−4 (the units vary).

The P-controller used to stabilize the open-loop economic
optimizing control strategy presented by Drejer et al. [19] is

F̃S = F ∗S +KcS(C̄∗S − C̄S), (35a)

where F ∗S and C̄∗S are the optimized open-loop substrate feed
flow rate and the substrate concentration in the top tank. C̄S
is the actual substrate concentration in the top tank, and in
this example, we use KcS = 0.1.

TABLE II
PARAMETER VALUES USED IN THE NUMERICAL EXAMPLE.

Symbol Value Unit
µ̄max 0.37 1/h
γ̄S 1.78 -
γ̄O 0.78 -
C̄F,S 792 kg/m3

κµ 2 1/h
κγS 2 1/h
κγO 2 1/h
κCF,S

0.5 1/h
σµ 0.04 1/h3/2

σγS 0.1 1/h1/2

σγO 0.1 1/h1/2

σCF,S
10.0 kg/(m3h1/2)

Rv 10−4 · I3×3 (kg/m3)2


