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Abstract— A scheme for fast kick estimation in managed
pressure drilling is presented. The reservoir pressure and
production index are estimated by utilizing information in a fast
traveling shock wave induced by an unexpected rise in reservoir
pressure. A least squares estimation problem is formulated from
an early-lumping approach based on a reduced order drift-flux
model. The Levenberg-Marquardt scheme is applied to solve
the non-linear least-squares problem. The estimation scheme
is tested with simulated top-side flow measurements from a
two-phase drift flux model.

I. INTRODUCTION

A. Kick detection and estimation

The well-bore in oil and gas drilling operations can be
several kilometers long and extend deep into the earth. Due to
a high hydrostatic pressure or trapped high pressure reservoirs,
tight pressure control inside the well is important. To control
the pressure in the bore-hole, a fluid called drilling mud is
circulated down the hollow drilling string, through nozzles
on the drill bit and up the annulus which is the open area
surrounding the drill-string. A too low pressure in the annulus
might lead to an inflow of reservoir fluids, called a kick,
and/or collapse of the well. If not handled, a kick might lead
to blowouts on the surface endangering both the safety of
personnel and the drilling rig. The opposite situation with a
high annular pressure might lead to fracturing of the well and
inflow of drilling mud into the reservoir, potentially damaging
the formation. Even more severe, a loss of drilling fluids leads
to a loss hydrostatic pressure which in turn might cause a
kick further up the annulus.

In conventional drilling the annular pressure is controlled
by varying the density of the drilling mud. However, with a
circulation speed in the magnitude of ∼ 1ms−1, this process
is too slow to handle an unexpected rise in reservoir pressure
and the resulting kick. Instead, various time-consuming shut-
in and circulation procedures must be initiated. This entails
stopping the rotation of the drill-string, lifting the drill-bit
up from the well-bottom, closing the top-side annular seal
known as a blow out preventer (BOP) and circulating out
any inflow reservoir fluid.

In Managed Pressure Drilling (MPD), a rotating control
device seals the annulus top-side at the rig and the drilling
fluid exits through a valve. This allows for continuous
pressure control while drilling by adjusting the valve opening,
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effectively adjusting the top-side pressure. In addition, a
back pressure pump can be used to maintain the hydrostatic
pressure in the case of lost circulation. In addition to being
an enabling technology by making wells with tight pressure
margins drillable, MPD can be used for fast kick attenuation
by actively adjusting topside pressure in response to changes
in the down-hole situation. Using MPD, the kick can be
attenuated without stopping drilling, avoiding the costly shut-
in procedures. However, the topside separator equipment can
only handle a limited amount of production fluids. Early kick
detection and estimation is therefore essential to prevent the
kick from developing in magnitude to a level where shut-in
procedures must be initiated. In this paper, the problem of
fast reservoir characterization for use in kick attenuation is
studied.

B. Previous work and contribution

Reservoir characterization is an important part of off-line
well planning and parameters such as reservoir pressure and
permeability can be estimated by an extended Kalman filter
[1], a genetic algorithm [2], or, close to the method in the
current paper, a least-squares approach [3], [4] where the
reservoir permeability and pressure for a set of predefined
zones are estimated off-line. In [5], [6] a reduced DFM model
based on a quasi-equilibrium momentum balance is used for
online reservoir characterization. Good estimates of model
specific states and parameters are also important to relate the
reservoir properties to available top-side measurements. To
that end, parameter estimation in a drift-flux model (DFM)
using a least-squares scheme is presented in [7], and various
on-line Kalman filter techniques in [8]–[10]. All of the
aforementioned papers are so called early-lumping methods
where the distributed model is discretized before estimation
methods for finite dimensional systems are applied. In the
alternative late-lumping methods, the design is carried out
for the original distributed model and the system is only
discretized before simulation or computer implementation.
For results on using the late-lumping approach called infinite-
dimensional backstepping for state and parameter estimation,
see [11]. In addition to the distributed models, various
Kalman filtering methods and moving horizon estimators
have been applied on lumped, finite dimensional, models for
both bottom-hole pressure estimation and reservoir parameter
estimation. See e.g. [12]–[16].

A recurring problem in the aforementioned papers is
to achieve parameter convergence. In [4] the bottom-hole
pressure is exited by active tests in the form of varying the
top-side choke pressure. The model in [5] disregards the high



frequency pressure waves and instead rely on the much slower
pressure compression mode and even slower void advection
wave (see [17, Section 1.5.1]). This is also true for all lumped
order models where both the slow void wave and the fast
pressure waves are disregarded. And even tough not explicitly
stated, as can be seen from the time-scales in the simulation
results in e.g. [7] and [9], the information carried in pressure
waves are not utilized. In this paper, we aim at utilizing
the fast pressure waves propagating with the sound speed
of the fluids for early kick estimation. Our hope is that the
shock wave caused by a sudden rise in bottom-hole pressure
carries enough information (i.e. is sufficiently excited) so that
reservoir parameters can be correctly estimated, or at least
give the MPD decision system some information to guide
an early response attempt for attenuation. We combine an
early-lumping approach for a simplified to-phase drift-flux
model with a least-squares scheme. Compared to the lumped
order models, the distributed nature of the drilling system is
preserved. But as opposed to the late-lumping approaches,
the finite propagation time property is lost.

C. Problem formulation

Assume that a gas kick is detected at t = t0, that the
pressure and flow situation prior to the kick are known with
the well initially overbalanced, that is single phased. Assume
that the top-side volumetric flow y(t) is available for all t ∈
[t0,T ], T > t0. Consider the following optimization problem

(J∗, p∗res) = arg min
(J,pres)

∫ t0+T

t0
||y(τ)− ŷ(τ)||2dτ (1a)

s.t. ŷ(t) = ymdl(t;J, pres) (1b)

where J and pres are the production index and reservoir
pressure which will be defined in the next section and ymdl
is the output from a simplified simulation model. The kick
estimation scheme takes the form:

1) Normal drilling operation: A single-phase state observer
is used to estimate the distributed states.

2) Detected kick: Solve the optimization problem (1)
repeatedly for increasing T ≤ t utilizing the available
measurement y(τ) for τ ∈ [t0,T ].

3) Predictions: Use the estimated optimal parameters
(J∗, p∗res) as input to a high fidelity simulator to predict
how the gas kick size and location evolves with time,
so that for instance time of arrival of gas at the rig,
along with the gas amount can be forecast.

II. MODELING

A. The drift flux model

We start with the classical drift-flux model (DFM) formu-
lation

∂t(αLρL) =−∂z(αLρLvL) (2a)
∂t(αGρG) =−∂z(αGρGvG) (2b)

∂t(αLρLvL +αGρGvG) =−∂z(p+αLρLv2
L +αGρGv2

G)

−ρMg− f ρMvM (2c)

where mud, oil and water are lumped into a single liquid
state with density ρL, volume fraction αL and velocity vL and
the gas phase with density ρG and volume fraction αG and
velocity vG is kept separate. The spatial variable is denoted
z ∈ [0,L] such that z = L is the top-side choke position, and
the time variable is t ≥ 0. The mean density pM and mean
velocity vM are defined as

ρM := αGρG +αLρL vM := αGvG +αLvL. (3)

In addition, since the liquid and gas phase are lumped into a
single momentum balance, a set of closure relations must be
specified. The pressure p is related to the densities by

ρG =
p

c2
G
, ρL = ρL,0 +

p− pL,0

c2
L

(4)

where cG and cL are the sound velocity in gas and liquid
phase respectively and pL,0 and ρL,0 are given constants. The
gas and liquid velocities are related by the slip law

vG =
vM

1−α∗L
+ v∞ (5)

where α∗L and v∞ are empirically estimated constant parame-
ters. Moreover, the former act as a lower bound on αL as it
was shown in [18] that the DFM is hyperbolic for αL > α∗L .

We assume reservoir in- or out-flow only at the bottom-
hole location z = 0 such that the boundary condition takes
the form

αLρLvL +αGρGvG =
1
A
(WL,res +WG,res +WL,bit) (6)

where A is the cross-sectional area of the annulus, WL,res
and WG,res are the mass influx rate of formation liquid and
formation gas respectively, and WL,bit is the mud mass rate
circulation through the drill-bit. Within normal operating
conditions during MPD, the inflows are usually modeled by
the simple affine relationships

WL,res =JLρL(pres− p(0, t)) (7a)
WG,res =JGρG(pres− p(0, t)) (7b)

where JL and JG are the so-called production indices (PI) and
pres is the reservoir pressure. In the following, we assume
that both the PI’s JG and JL and the reservoir pressure are
unknown. For the top-side boundary condition, we ignore the
choke dynamics and assume the MPD system operates under
set-point pressure control. That is

p(L, t) = ps (8)

for a constant set-point ps.

B. Model reduction and Riemann invariants

Following the approach in [19] and [5], by defining the
pseudo density

ρ = ρM−α
∗
LρL, (9)

the pseudo mass concentration

χ =
(αL−α∗L)ρL

ρM−α∗LρL
, (10)



and neglecting higher order terms, it can be shown that system
(2) can be written in terms of the coordinates s = (χ,ρ,vG)
as

∂t χ+vG∂zχ =0 (11a)
∂tρ + vG∂zρ +ρ∂zvG =0 (11b)

∂tvG +
ᾱ0(s)c2

M(s)
ρ

∂zχ +
c2

M(s)
ρ

∂zρ + vG∂zvG = S(s) (11c)

where

ᾱ0 :=
ρ(ρG−ρL)

ρL(1−α∗L)ρG
, c2

M(s) :=
(1−α∗L)p

αGρ
(12)

and

S(s) :=−ρM

ρ
g− f

ρM

ρ
vM

=−
(

1+
α∗LρL

ρ

)(
g− f

ρ
(1−α

∗
L)(vG− v∞)

)
. (13)

Observe that the pseudo mass concentration χ is a Riemann
invariant propagating with speed vG. Following [20], the two
other eigenvalues, denoted λ and −µ , are given by

λ (s) = vG + cM(s), −µ(s) = vG− cM(s). (14)

Since cM � vG, for high frequencies the pseudo mass
concentration χ can be considered constant. The pressure
wave dynamics (11b) and (11c) with eigenvalues λ and µ can
then be considered decoupled from the void fraction wave
(11a) with eigenvalue vG. The system can now be written in
terms of the Riemann invariants (u,v)T :=V (ρ,vG)

T , where

V :=
1
2

[
cM
ρ

1
− cM

ρ
1

]
(15)

is the set of left eigenvectors corresponding to Λ :=
diag(λ ,−µ), yielding the reduced order quasi-linear system
on Riemann form

∂t

[
u
v

]
+Λ(χ;u,v)∂x

[
u
v

]
=

[
S̃(χ;u,v)
S̃(χ;u,v)

]
(16)

where

S̃(χ;u,v) =
1
2

S(V−1(u,v)T )

− ᾱ0(V−1(u,v)T )c2
M(V−1(u,v)T )

2ρ
∂zχ. (17)

Next, we heuristically simplify the coefficient matrix Λ(s) to
be independent of the state u representing the fast pressure
wave. First, since cM � vG, we set λ = µ = c2

m. Second, the
sound velocity model (12) is derived assuming the liquid is
incompressible. This assumption can not be used to model
transitions between single to two-phase flows as the pressure
is undefined for αG = 0. To model such transitions, [21]
propose to use the switching model

λ = µ =

{
cL, if αG < ε

cM, if ε ≤ αG < 1−α∗L
(18)

where ε > 0 is a small parameter. The case λ = µ = cL for
αG < ε follows easily when computing the eigenvalues of

(2) in the limiting case αGρG � αLρL, which as expected
corresponds to the eigenvalues in the corresponding single-
phase flow model. Lastly, observing that c2

M in (12) can be
written on the form

c2
M =

1−α∗L
α2

G
c2

G(1−χ) (19)

and that αG(s)≈ αG(χ, ρ̄, v̄G) where (ρ̄, v̄G) are the steady
state values of (ρ,vG) for constant χ , we have α ≈ α(χ),
so that cM ≈ cM(χ) and Λ≈ Λ(χ). That is, the quasi-linear
system (16) can be approximated by the semi-linear system

∂t

[
u
v

]
+Λ(χ)∂x

[
u
v

]
=

[
S̃(χ;u,v)
S̃(χ;u,v)

]
(20)

for constant χ .
Similarly to the eigenvalues, we consider two separate

cases for the down-hole boundary conditions: (1) A gas
kick, i.e. JL = 0,αG(0, t) = 1, and (2) a liquid kick, i.e. JG =
0,αL(0, t) = 1. Assuming incompressible liquid, we have for
(1)

vG(0, t) =
JG

A
(pres− p(0, t)) (21)

=
JGcGρ

A
ρ(0, t)+

JG

A
(pres− c2

Gα
∗
LρL). (22)

Applying the transformation (u,v)T =V (ρ,vG)
T yields

u(0, t) = θ1v(0, t)+θ2 (23)

where

θ1 =

(
J cGρG

A −1
)(

J cGρG
A +1

) , θ2 =
Jpr+qbit(
J cGρG

A +1
) . (24)

For (2), we get the same structure (23), but with

θ1 =

(
J cLρL

A −1
)(

J cLρL
A +1

) , θ2 =
Jpr+qbit(
J cLρL

A +1
) . (25)

The top-side boundary condition (8) in (u1,u2)-coordinates
is given by

v(L, t) = u(L, t)+σ (26)

where σ =− cL
ρ

ps. The top side measurement ymdl(t) =AvL(t)
used in (1) is

ymdl(t) =u(1, t)+ v(1, t)+
Wl,bit

ρL
. (27)

III. NUMERICAL ESTIMATION SCHEME

A. Early lumping discretization

Consider the system (20). Let x1, ...,xN be uniformly
distributed points on [0,1] such that xi− xi−1 =

1
N+1 =: ∆x

and let ui(t) := u(xi, t), vi(t) := v(xi, t), χi(t) := χ(xi, t) for
i = 1, ...,N such that

dui

dt
+λ (χi)

dui

dx
= S̃(χi;ui,vi) (28a)

dvi

dt
−µ(χi)

dui

dx
= S̃(χi;ui,vi). (28b)



To limit numerical diffusion, the spatial derivatives are
approximated using the linear upwind differencing scheme

dui

dx
=

3ui−4ui−1 +ui−2

2∆x
(29a)

dvi

dx
=
−3vi +4vi+1− vi+2

2∆x
, (29b)

but with the spatial derivatives at the endpoints, as a special
case, computed using the first order upwind scheme

du1

dx
=

u1−u0

∆x
(30a)

dvN

dx
=

vN+1− vN

∆x
(30b)

where the endpoints are found by extrapolation as

u0(t) =θ1v0(t)+θ2 (31)
≈θ1(2v1(t)− v2(t))+θ2 (32)

and

vN+1(t) =uN+1(t)+σ (33)
≈(2uN(t)− vN−1(t))+σ . (34)

In addition, we approximate the measurement ymdl in terms
of vN+1 and uN+1 as

ymdl(t)≈ uN+1(t)+ vN+1(t)+qbit . (35)

Defining w = [u1, ...,uN ,v1, ...,vN ] gives the following set of
ODEs on state space form:

ẇ = A(χ)w+B1(χ)θ2 +B2(χ)σ +C(χ;w) (36)

where
A(χ) = M(χ)

[
A1 θ1D1
D2 A2

]
, (37)

M(χ) = diag(−λ (χ1), ...,−λ (χN),µ(χ1), ...,µ(χN)), (38)

A1 =
1

2∆x


2 0 0 · · · 0 0 0
−4 3 0 · · · 0 0 0
1 −4 3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 −4 3

 , (39)

A2 =
1

2∆x


−3 4 −1 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · −3 4 −1
0 0 0 · · · 0 −3 4
0 0 0 · · · 0 0 −2

 , (40)

D1 =
1

2∆x


−4 2 0 · · · 0
2 −1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , (41)

D2 =
1

2∆x


0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 1 −2
0 · · · 0 −2 4

 , (42)

B1(χ) =
1

2∆x
M(χ)

[
−2 1 0 · · · 0

]T
, (43)

B2(χ) =
1

2∆x
M(χ)

[
0 · · · −1 2

]T
, (44)

and
C(χ;w) =

[
S̃(χi;w1) · · · S̃(χi;wN)

]T
. (45)

B. The Levenberg-Marquardt scheme and sensitivity compu-
tation

The ODE system (36) can be simulated using any time-
explicit solver provided the discretization step tk+1− tk = ∆t
satisfies the Courant-Friedrichs-Lewy condition

λ (χi)
∆t
∆x
≤ 1, i = 1, ...,N. (46)

The optimization problem (1) can then be formulated as least
squares problem by approximating the integral as the sum
of the square error (yk− ymdl,k)

2 for all k ∈ [K0,K] such that
tK < T − t0, yielding

(J∗, p∗res) = arg min
(J,pres)

K

∑
k=0

(y(tk)− ymdl(tk;J, pres))
2. (47a)

Let F be a vector with the residual elements (y(tk)−
ymdl(tk;J, pres)) for k = 0, ...,K and J the Jacobian of F
with respect to (J, pres). Let θ = [θ1,θ2]

T so that the solution
to (36) can be written as w(t) =: f (t;θ). We have

ḟθ1 =
∂

∂θ1
(A(χ)w+B1(χ)θ2(t)+B2(χ)σ(t)+C(χ;w))

=A(χ) fθ1 +M(χ)

[
0 D1
0 0

]
w+

∂C(χ;w)
∂w

fθ1 (48)

and

ḟθ2 =
∂

∂θ2
(Aw+B1θ2(t)+B2σ(t)+C(w))

=A fθ2 +B1 +
∂C(χ;w)

∂w
fθ2 (49)

with initial conditions

fθ1(t)|t=t0 = fθ2(t)|t=t0 = 0 (50)

We are interested in the sensitivity of ymdl relative to
changes in the uncertain parameters (J, pres). Using (35), we
have

∂ymdl

∂ (pres,J)
=

∂ymdl

∂w
∂w
∂θ

∂θ

∂ (pres,J)
(51)

where the second term is available by integrating (48) to (50).
The first and third term follow trivially from (35) and (24)
(or (25)) respectively and are given by

∂ymdl

∂w
=
[
0 · · · 0 1 0 · · · 0 σ−1/2

]
(52)

and
∂θ

∂ (pr,J)
= (J

ciρi

A
+1)−2

[
0 2 ciρi

A
J(J ciρi

A +1) pr

]
(53)

for i = {L,G}. Having computed the Jacobian J as

J =

[
∂ymdl,k

∂ (pr,J)

]
k=0,..,K

, (54)



we can compute the search direction d for the associated
linear trust-region subproblem mind ||J d +F ||2 subject to
||d|| ≤R where R> 0 is the trust region radius, as the solution
to

(J T J + γI)d =−J T F (55a)
γ(R−||d||) =0. (55b)

See e.g. [22] for details on the implementation of the
Levenberg-Marquardt scheme.

IV. SIMULATION

State measurements were generated using the DFM imple-
mentation in [23] employing an advection upstream splitting
method for the spatial discretization and explicit Euler for time
integration. ODE system (36) and sensitivities (48) and (49)
used in the estimation scheme were implemented in MATLAB
using the method of lines with the ode45 solver and used
as input to the the least-squares solver lsqcurvefit for
the minimization problem (47).

At time t0 = 10s a kick, caused by a step from pres =
400bar to pres = 450bar, is simulated. The system is initially
in steady state with αL = 1 for t < 10s with the following
parameters:

l = 2500m, g = 9.81ms−1 (56a)

cG = 346.5ms−1, cL = 1200ms−1 (56b)

ρL,0− pL,0/c2
L = 1318kgm−3, A = 10.8dm2 (56c)

qbit = 18.7dm3 s−1, F = 133.2 (56d)

C0 = 1.2, v∞ = 0.75ms−1. (56e)

We use N = 20 discretization steps and a ∆t = 0.01s step
length in the ODE solver. The re-computation computation
interval was set to 1s which is slower than the propagation
time through the liquid phase L/cL = 2500/1200s≈ 2ms−1.

Two cases are simulated. The first for a liquid inflow with
JL = 60 barrels per day per psi and JG = 0 and the second for
a gas inflow with JL = 0 and JG = 60 barrels per day per psi.
The velocity profile for the two cases are shown in Figure 3
and Figure 4 respectively. For the gas influx simulation, the
gas fraction profile is shown in Figure 2.

In both cases, we use constant χi = 0 for all i = 1, ...,N.
The validity of this approximation is studied in Figure 1,
where the top side flow measurements are compared for the
gas inflow simulation, the liquid inflow simulation and the
reduced order semi-linear system (20) for the case of having
perfect reservoir parameter estimates. As can be seen, the
reduced order semi-linear model with χ = 0 approximates the
DFM generated simulation measurements fairly well during
the first two waves. However, as the gas fraction is building
up in the gas inflow case, the top-side flow is drifting. This
is not modeled by the reduced order system when χ is kept
constant.

Figure 5 and Figure 6 show the estimated parameters
for each re-computation. For the liquid inflow case, both
the reservoir pressure and PI estimates are close to the
true parameter values. For the gas inflow case, acceptable

Fig. 1. Reduced order system (20) (solid blue) vs. the full DFM (2) with
liquid influx (dash-dotted red) and with gas influx (dashed yellow).

Fig. 2. Gas fraction profile for simulated gas inflow.

reservoir pressure estimates are obtained for most of the re-
computations. The production index estimates, however, drift
and become unreliable for high gas fractions αG.

V. CONCLUDING REMARKS

The simulations show that the fast pressure wave dynamics
can be used for reservoir characterizations when a kick
induced shock wave provide sufficient excitation. However,
the scheme should be tested with measurements either from
high-fidelity models or real-world data before any strong
conclusions on the applicability of the design are made.
In a real world implementation, measurement noise and
computational cost must be considered. Future work includes
implementation of the void fraction wave which can be

Fig. 3. Velocity profile for simulated liquid influx.



Fig. 4. Velocity profile for simulated gas influx.

Fig. 5. Estimated reservoir pressure for liquid inflow (blue bars), gas inflow
(yellow bars) and true reservoir pressure (red dashed line).

used to provide feed-forward estimates of the pseudo mass
concentration χ , enabling simulation of the reduced order
semi-linear system with a slowly varying gas fraction. The
method should also be tested in closed loop with an MPD
attenuation controller.
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d’écoulements diphasiques instationnaires dans les réseaux de produc-
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Theses, École Nationale Supérieure des Mines de Paris, July 2011.

[21] K. K. Fjelde, R. Rommetveit, A. Merlo, and A. C. V. M. Lage,
“Improvements in dynamic modeling of underbalanced drilling,” in
Proceedings of the IADC/SPE Underbalanced Technology Conference
and Exhibition. Houston, Texas: Society of Petroleum Engineers,
2003, p. 8.
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