

Delft University of Technology

Launch vehicle discrete-time optimal tracking control using global dual heuristic
programming

Sun, Bo; Van Kampen, Erik Jan

DOI
10.1109/CCTA41146.2020.9206252
Publication date
2020
Document Version
Accepted author manuscript
Published in
CCTA 2020 - 4th IEEE Conference on Control Technology and Applications

Citation (APA)
Sun, B., & Van Kampen, E. J. (2020). Launch vehicle discrete-time optimal tracking control using global
dual heuristic programming. In CCTA 2020 - 4th IEEE Conference on Control Technology and Applications
(pp. 162-167). Article 9206252 (CCTA 2020 - 4th IEEE Conference on Control Technology and
Applications). Institute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/CCTA41146.2020.9206252
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/CCTA41146.2020.9206252
https://doi.org/10.1109/CCTA41146.2020.9206252

Launch Vehicle Discrete-Time Optimal Tracking Control using Global
Dual Heuristic Programming*

Bo Sun1 and Erik-Jan van Kampen1

Abstract— Optimal tracking is a widely researched control
problem, but the unavailability of sufficient information refer-
ring to system dynamics brings challenges. In this paper, an
optimal tracking control method is proposed for an unknown
launch vehicle based on the global dual heuristic programming
technique. The nonlinear system dynamics is identified by
an offline trained neural network and a feedforward neuro-
controller is developed to obtain the desired system input and
to facilitate the execution of the feedback controller. By trans-
forming the tracking control problem into a regulation problem,
an iterative adaptive dynamic programming algorithm, subject
to global dual heuristic programming with explicit analytical
calculations, is utilized to deal with the newly built regulation
problem. The simulation results demonstrate that the developed
method can learn an effective control law for the given optimal
tracking control tasks.

I. INTRODUCTION

It is generally recognised that the optimal tracking control
problems have gained much attention in the control field,
because the demands are closely linked with many real world
applications [1], [2]. However, handling the optimal control
problems for nonlinear systems generally involves solving
the nonlinear Hamilton-Jacobi-Bellman (HJB) rather than
the Riccati equation [3], which makes it intractable to be
dealt with, in that nonlinear partial difference equations are
required to be solved but analytical solutions are difficult
to obtain [3], [4]. Although dynamic programming (DP)
provides a useful implement to handle the optimal control
problems for several decades, it often suffers from com-
putational burden because of the widely known “curse of
dimensionality”. Moreover, sometimes even full information
referring to the dynamics of the nonlinear systems is not
available, which puts more challenges on controller design
for complex nonlinear systems, such as the aerospace sys-
tems. Consequently, it is demanded to investigate effective
optimal tracking control methods for unknown nonlinear
systems.

In recent years, adaptive dynamic programming (ADP)
and associated research have been paid much attention to
because of its self-learning property and been widely applied
to different tracking control problems in the aerospace appli-
cations, such as launch vehicle [5], [6], airplane [7], satellite
[8], etc. Developed from DP, ADP is proposed to iteratively
solve optimal control problems in a forward-in-time way.

*The first author’s Ph.D. is financially supported by China Scholarship
Council, project reference number 201806290007.

1B. Sun and E. van Kampen are with the Department of Control and
Operations, Delft University of Technology, 2629HS Delft, The Netherlands.
Email:{B.Sun-1, E.vanKampen}@tudelft.nl.

When combined with neural networks (NNs) and the actor-
critic scheme, ADP has stronger generalization capability
and thus can be applied nonlinear systems. According to the
information used for policy evaluation, ADP approaches are
generally categorized into several major structures: heuristic
dynamic programming (HDP), dual heuristic programming
(DHP) global dual heuristic programming (GDHP) as well
as their action-dependent schemes [6]. Among them, GDHP
combines the information used by HDP and DHP, so it takes
advantage of the latter two schemes [7]. Most researches on
GDHP employ the straight form, in which the critic approx-
imates the cost-to-go and its derivatives simultaneously [3],
[4], [6], [9]. However, two different outputs sharing the same
input and hidden layers results in strong coupling. To tackle
this limitation, [7] derives a direct method to analytically
compute the mixed second-order derivatives, which has been
successfully applied to an online flight control problem.
Nevertheless, due to difficulty of satisfying the optimal
persistence excitation (PE) condition for online applications,
[7] does not prove the convergence of the method.

This paper aims to apply the model-free GDHP technique
with analytical calculations to a discrete-time optimal track-
ing flight control problem. Because the model network is
pretrained offline, the convergence property can be analyzed.
The remainder of this paper is organized as follows. Section
II gives the formulation of the discrete-time optimal tracking
control task. In section III, we introduces the iterative ADP
algorithm and discusses its convergence. Section IV presents
the NN implementation of the GDHP technique. In Section
V, an example about launch vehicle attitude tracking control
is given to verify the proposed control scheme. Finally, we
discuss the conclusions and future research in section VI.

II. PROBLEM STATEMENT

Consider a class of discrete-time affine systems which can
be presented as:

xk+1 = f(xk) + g(xk)us(xk) (1)

in which xk ∈ Rn is the state vector, us(xk) ∈ Rm is
the control vector. f(•) and g(•) are differentiable in their
argument with f(0) = 0. Assume that f + gus is Lipschitz
continuous on a set Ωs ⊂ Rn containing the origin and
that the system (1) is controllable on Ωs. Assume that the
generalised inverse of g(•) exists such that g−1(•)g(•) =
Im ∈ Rm×m, where Im denotes the identity matrix and the
subscript m gives the dimensionality. For simplicity, u(xk)
is represented by uk in the rest of this paper.

This paper aims to tackle optimal tracking control prob-
lems, so the reference trajectory rk is assumed to be bounded
and satisfies:

rk+1 = φ(rk) (2)

where φ(•) is a Lipschitz continuous vector function with
φ(0) = 0. Therefore the tracking error can be defined as
ek = xk − rk.

There exists a sequence of controls corresponding to the
reference trajectory rk, namely desired control. Inspired by
the work of [1], [2], [10], the desired control is as follows:

udk = g−1(rk)(φ(rk)− f(rk)) (3)

Then, define the feedback control uk as uk = usk − udk,
and a new system is built:

ek+1 =f(ek + rk) + g(ek + rk)g−1(rk)×
(φ(rk)− f(rk))− φ(rk) + g(ek + rk)uk

rk+1 =φ(rk)

(4)

In the new system (4), ek and rk are regarded as the
system states and uk is regarded as system input. Note
that the second equation only provides the evolution of
the reference trajectory and is independent from the system
input. Hence, (4) can be concisely represented as:

ek+1 = F (ek,uk) (5)

where F (ek,uk) is a Lipschitz continuous on a set Ωe ⊂ Rn

with F (0, 0). Therefore, e = 0 is an equilibrium state of
system (5) with u = 0.

Let v(ek) denote an arbitrary feedback control law and
uk = {uk,uk+1,uk+2, ...} be the control chain from k to
∞ produced by v(ek). The performance index function is
given as:

J(e0,u0) =

∞∑
k=0

γkU(ek,uk) (6)

where e0 denotes the initial state, γ denotes the forgetting
factor, and 0 < γ ≤ 1. γ is set to be 1 in this paper. U is the
utility function and can be defined in a classical quadratic
form:

U(ek,uk) = eT
kQek + uT

kRuk (7)

in which Q ∈ Rn×n and R ∈ Rm×m are positive semi-
definite and positive definite matrices, respectively.

In this way, the original tracking problem is transformed
into a regular optimal control task. The designed feedback
control is supposed not only to stabilize the system (5) but
also to prevent (6) from being infinite, i.e. the control is
admissible.

Definition 1. [3] A control v(e) is said to be admissible w.r.t.
(6) on Ωe if v(e) is continuous on a compact set Ωv ⊂ Rm

including the origin, v stabilizes (5) on Ωe, and ∀e0 ∈ Ωe,
J is finite.

As claimed by Bellman’s principle of optimality, the
optimal performance index function satisfies the discrete-
time HJB (DTHJB) equation:

J∗(ek) = min
uk

J(ek,uk) = min
uk

{U(ek,uk) + J∗(ek+1)}
(8)

where •∗ stands for the optimal value of •. Therefore, the
optimal control law can be expressed as:

v∗(ek) = arg min
uk

{U(ek,uk) + J∗(ek+1)} (9)

From (7) and (9), the optimal control law is given as:

v∗(ek) = −1

2
R−1gT(ek + rk)

∂J∗(ek+1)

∂ek+1
(10)

According to (8) and (10), the DTHJB equation (8) can be
represented as:

J∗(ek) = J(ek,v
∗
k) = U(ek,v

∗
k) + J∗(ek+1) (11)

Launch vehicles are generally nonlinear and the partial
derivative of J∗(ek+1) is intractable to compute analytically.
Consequently, an iterative ADP algorithm is employed to
iteratively solve the DTHJB equation in the next section.

III. THE ITERATIVE ADP ALGORITHM

A. Algorithm Procedure

By convention, value function V (•) and reward function
v(•) are introduced for derivation, which are compatible with
the perform index function J(•) and utility function U(•),
respectively.

The procedure starts from a initial value function V0(•) =
0 and solving the following equation:

v0(ek) = arg min
uk

{U(ek,uk) + V0(ek+1)} (12)

After that, the cost value function can be updated by:

V1(ek) = eT
kQek + vT

0(ek)Rv0(ek) (13)

Next, for i = 1, 2, · · · , the ADP algorithm iterates between
policy improvement

vi(ek) = arg min
uk

{U(ek,uk) + Vi(ek+1)}

= −1

2
R−1gT(ek + rk)

∂Vi(ek+1)

∂ek+1

(14)

and policy evaluation

Vi+1(ek) = eT
kQek + vT

i (ek)Rvi(ek) + Vi(ek+1) (15)

where ek+1 = F (ek,vi(ek)), i and k denote iterative and
time indices, respectively. The iteration will not stop until
the value function and control law converge to the optimal
ones, i.e. Vi → J∗ and vi → u∗ as i→∞.

B. Convergence analysis

The convergence analysis of the iteration between (14)
and (15) is presented based on the work of [1], [2], [11] as
follows.

Lemma 1. Let {vi} be the control sequence expressed in
(14) and {µi} be an arbitrary sequence of control laws.
Define Vi(ek) as in (15) and Λi as:

Λi+1(ek) = eT
kQek + µT

iRµi + Λi(ek+1) (16)

If V0(ek) = Λ0(ek) = 0, then Vi(ek) ≤ Λi(ek), ∀i.

Proof. The proof is omitted here for space reasons.

Lemma 2. Let the value function sequence {Vi} be defined
in (15). Given the system is controllable, there exists an
upper bound Y which satisfies 0 ≤ Vi(ek) ≤ Y , ∀i.

Proof. The proof is omitted here for space reasons.

Based on Lemma 1 and 2, the following theorem can be
deduced.

Theorem 1. Define the control law sequence and the value
function sequence {Vi} as in (14) and (15), respectively,
with V0(•) = 0. Then, Vi(ek) is a non decreasing sequence
satisfying Vi(ek) ≤ Vi+1(ek), ∀i. Moreover, as i → ∞,
Vi → J∗, i.e.,

lim
i→∞

Vi = min
uk

{U(ek,uk) + V0(ek+1)} (17)

Proof. The proof is omitted here for space reasons.

Consequently, it can be concluded that the value sequence
{Vi} converges to the optimal one J∗. Moreover, according
to (14), the corresponding control law sequence {vi} con-
verges to the optimal one v∗, i.e., vi → v∗ as i→∞.

IV. NN IMPLEMENTATION OF THE ADP ALGORITHM
USING THE GDHP TECHNIQUE

To carry out the iterative ADP algorithm, function approx-
imation structures, such as NNs, are utilized to provide the
system information, and to approximate vi(ek), Vi(ek) and
udk. The architecture of the algorithm is shown in Fig. 1.

A. The Model Network

The iterative ADP algorithm requires the state information
at the next time instant. Therefore, a NN identifier with single
hidden layer is employed to approximate the dynamics of
the unknown nonlinear system. According to the universal
approximation property of NN, there is a NN representation
of the system dynamics (1) on a compact set Ωm, and it can
generally be given as:

xk+1 = w∗Tm2σ(w∗Tm1zk) + εmk (18)

In (18), zk = [xk uk]T is the input, w∗m1 and w∗m2

are the ideal weight matrices between the input layer and
hidden layer, and between the hidden layer and output layer,
respectively, σ(•) is the element-wise activation function of
the hidden layer, and εmk is the bounded approximation

Model

Network

Actor

Network

Critic

Network

Explicit

Analytical

Calculations

2c ike
1c ike

1
ˆ()k e

1
ˆ(, ())k i kU e v e

ˆ ()i kV e

1 1
ˆ ()i kV e

Explicit

Analytical

Calculations

1
ˆ(, ())k i k

k

U

e v e

e

1

k

k

e

e

Critic

Network

Target Control

Input Equation

ˆ ()i k e

1
ˆ ()i kv e

1ke
1kx

1kr

Signal Line

Back-propagating Path

Weight Transmission

ke

ke

kx

1()i kv e

d
ˆ

ku

sku

Feedforward

Neuro-controller

1kr kr

Fig. 1. The architecture diagram of the iterative GDHP algorithm (adapted
from [9]).

error. The activation function is set as a sigmoid function
[6] in this paper such that it is bounded and ||σ(•)|| ≤ 1.

The system identification scheme with the model network
is presented as:

x̂k+1 = wT
m2σ(wT

m1zk) (19)

where •̂ stands for the estimated or predicted value of •. The
approximation error to be minimized is defined as follows:

Emk =
1

2
eT
mkemk (20)

where
emk = x̂k+1 − xk+1 (21)

is the error between the measured state vector xk+1 and
the estimated state vector x̂k+1. Then, a gradient-descent
algorithm is used to tune the weights:

wm2(j + 1) = wm2(j)− ηm ·
∂Emk

∂wm2(j)
(22)

wm1(j + 1) = wm1(j)− ηm ·
∂Emk

∂wm1(j)
(23)

where ηm denotes the learning rate and j denotes the iterative
step for updating.

Remark 1. The model network are trained offline and its
weights should be kept unchanged for controller design
processes.

B. The Critic Network

Combining HDP and DHP, GDHP approximates the in-
formation of both Vi(ek) and its derivative w.r.t. the input
of the critic network ek, i.e. ∂Vi(ek)/∂ek, which is denoted
by λi(ek). Different from the straight form presented in [3],
[4], [6], [9], the output of the critic network in this paper is
only the approximated value function V̂i(ek):

V̂i(ek) = wT
c2σ(wT

c1ek) (24)

Then analytical calculation [7] is carried out to compute
λ̂i(ek) directly using V̂i(ek):

λ̂i(ek) =
∂V̂i(ek)

∂ek
= wc1(wc2 � σ′(wT

c1ek)) (25)

where � is the Hadamard product, and σ′(•) is the first order
derivative of σ.

Remark 2. (25) is the derivative form of (24) , so they are
equivalent for convergence in principle. Since Vi → J∗ as
i → ∞, it can be concluded that the sequence {λi} also
converges, i.e. λi → λ∗ as i→∞.

Similarly, the critic network is also trained by minimizing
the errors between the estimated value and the optimal one.
The critic errors are given as follows:

ec1ik = V̂i(ek)− Vi+1(ek) (26)

ec2ik = λ̂i(ek)− λi+1(ek) (27)

GDHP merges them into an overall error function Ecik:

Ecik = β
1

2
e2c1ik + (1− β)

1

2
eT
c2ik(t)ec2ik (28)

in which β denotes the importance scalar within a range of
[0, 1]. If β = 1, then it becomes pure HDP, and if β = 0, it
is equivalent to DHP. Then the critic network is also trained
by the gradient-descent algorithm with a learning rate ηc:

wc2i(j + 1) = wc2i(j)− ηc ·
∂Ecik

∂wc2i(j)
(29)

wc1i(j + 1) = wc1i(j)− ηc ·
∂Ecik

∂wc1i(j)
(30)

C. The Actor Network

The actor network approximates the control law using the
tracking error information:

v̂i(ek) = wT
a2σ(wT

a1ek) (31)

Considering (14), the target control policy vi(ek) can be
obtained by:

vi(ek) = −1

2
R−1gT(ek + rk)

∂V̂i(ek+1)

∂ek+1
(32)

Therefore the overall error function of the actor network can
is as follows:

Eaik =
1

2
eT
aikeaik (33)

where
eaik = v̂i(ek)− vi(ek) (34)

Similar to the model and critic networks, the actor network
is trained in a back-propagation way with a learning rate ηa:

wa2i(j + 1) = wa2i(j)− ηa ·
∂Eaik

∂wa2i(j)
(35)

wa1i(j + 1) = wa1i(j)− ηa ·
∂Eaik

∂wa1i(j)
(36)

According to (32), the computation of the target control
policy vi(ek) needs the information of the control coefficient
matrix g(ek + rk) = g(xk), which, however, is not available
directly. Therefore, the model network is used to estimate
g(xk):

ĝ(xk) =
∂wT

m2σ(wT
m1zk)

∂usk
(37)

D. The Feedforward Neuro-Controller

In addition, the obtained control law v̂i(ek) cannot di-
rectly be introduced into the model network and the real
system before added with udk. However, according to (3),
computing udk requires the information of g−1(rk), φ(rk)
and f(rk), which is not available directly. Inspired by [1],
the desired control udk is approximated by a feedforward
neuro-controller using the trajectory reference at current and
next time step:

ûdk = wT
g2σ(wT

g1[rT
k rT

k+1]T) (38)

Since training the controller usually cannot be carried out
with the real system due to safety reasons, the pretrained
model network is involved, as shown in Fig. 2. ûdk and rk
work as the inputs of the model network for outputting the
estimated reference trajectory r̂k+1. Therefore the overall
error function of the feedforward neuro-controller is given
as:

Egk = eT
gkQgegk (39)

where
egk = r̂k+1 − rk+1 (40)

and Qg is the weights matrix in that perhaps not all state
references are available and in these cases the corresponding
weight of the absent reference is set to be 0.

Feedforward

Neuro-controller

Model

Network

1kr

1kr

1
ˆ
kr

kr

d
ˆ

ku

kr

Fig. 2. The architecture diagram of the feedforward neuro-controller
(adatpted from [1]).

Similarly, the network is trained in a back-propagation way
with a learning rate ηg:

wg2(j+ 1) = wg2(j)−ηg ·
∂Egk

∂r̂k+1
· ∂r̂k+1

∂ûdk
· ∂ûdk

∂wg2(j)
(41)

wg1(j+ 1) = wg1(j)−ηg ·
∂Egk

∂r̂k+1
· ∂r̂k+1

∂ûdk
· ∂ûdk

∂wg1(j)
(42)

Note that ∂r̂k+1/∂ûdk can be obtained by backpropagation
from the model network output r̂k+1 to its input ûdk.

V. SIMULATION STUDY

A. Aerospace System Model

The proposed method is applied to control a generic
surface-to-air missile [5], [6] for verification. The nonlinear
system is simplified to a second order model including the
longitudinal force and moment equations, and the model has
two system states: angle of attack α and pitch rate q, and one
input: elevator deflection δe. At an altitude of approximately
6000 meters, the nonlinear model in the steady wings-level
flight condition can be presented as:

α̇ = q +
q̄S

mVT
Cz(α, q,Ma, δe) (43)

q̇ =
q̄Sdl
Iyy

Cm(α, q,Ma, δe) (44)

where q̄, S, m, VT , dl, Iyy, Ma are dynamic pressure,
reference area, mass, speed, reference length, pitching mo-
ment of inertia, and Mach number, respectively. Cz and Cm

denote the aerodynamic force and moment coefficients, and
are approximated by:

Cz(α, q,Ma, δe) = Cz1(α,Ma) +Bzδe

Cm(α, q,Ma, δe) = Cm1(α,Ma) +Bmδe

Cz1(α,Ma) = φz1(α) + φz2Ma

Cm1(α,Ma) = φm1(α) + φm2Ma

φz1(α) = h1α
3 + h2α|α|+ h3α

φm1(α) = h4α
3 + h5α|α|+ h6α

φz2 = h7α|α|+ h8α

φm2 = h9α|α|+ h10α

Bz = b1Ma + b2

Bm = b3Ma + b4

(45)

where h1, · · · , h10, b1, · · · , b4 are identified constant
coefficients in a valid flight envelope of α ∈ (−10◦, 10◦)
and Ma ∈ (1.8, 2.6), and Ma = 2.0 thereafter.

Although the given system model is continuous, the com-
putation and simulation in the computer are all discrete, and
therefore the proposed discrete method can be utilized. The
sampling time for discretizing the system is set to be 0.001
seconds.

B. Simulation Results

Model network, critic network, action network and feed-
forward neuro-controller all take a feedforward structure,
with three layers of 3–20–2, 2–20–1, 2–30–1 and 4-50-
1, respectively. The algorithm is carried out from the time
instant k = 0. The initial weights of these NNs are randomly
initialized in the range of [−0.01, 0.01]. Firstly, random sam-
ples are taken within α ∈ (−10◦, 10◦), q ∈ (−20◦/s, 20◦/s)
and δe ∈ (−15◦, 15◦), and the model network is trained
for 200 time steps by 5000 samples with ηm = 0.002. As
shown in Fig. 3, the mean values and standard deviations
of the identification errors converge to approximately 0 as
the training progresses. After training the model network, its
weights remain unchanged.

0 50 100 150 200
-15

-10

-5

0

5

10

15

Fig. 3. The system identification errors.

Then the feedforward neuro-controller is trained with ηg =
0.3 and Qg = diag([100, 1]) for 500 time steps by 5000
data samples using the same sampling method as the model
network. The weights are also kept unchanged after training
and the trained controller is tested with a desired control from
initial zero states. The results are illustrated in Fig. 4, from
which it can be seen that the feedforward neuro-controller
can learn the desired control udk.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 4. Comparison between the estimated desired control produced by
the feedforward neuro-controller and the true value.

Next, let γc = 1, β = 0.5, Q = diag([100, 1]), R = 1,
ηa = 0.001 and ηc = 0.01, and the actor and critic networks
are trained for 100 iterations (i.e., for i = 1, 2, ..., 100)
with every iteration containing 10 epochs. After training, the
proposed ADP algorithm is applied to an optimal tracking
control problem of the aforementioned launch vehicle. The
launch vehicle is supposed to track a given angle of attack
reference αref, which is a sinusoidal function with respect
to time step, i.e. αref = 8 sin(1000k) degrees. Because the
pitch rate reference is not available directly, it is set to be
0 all the time. Then the relevant simulation results of the

first 10000 time steps (10 seconds for real world), with
different initial angles of attack α0 and zero initial pitch
rates, are presented in Figs. 5-6. Fig. 5 presents the tracking
performance when beginning from different initial angles
of attack α0, and Fig. 6 shows the corresponding elevator
control signals outputted by the controller in these cases. It
can be found that the launch vehicles can track the reference
well in all cases. In both figures, the subfigure (a) presents
detailed curves at the beginning of the control task, and all
curves converge fast to similar values.

0 100 200 300
-10

-8

-6

-4

-2

0

2

4

6

8

10

0 2000 4000 6000 8000 10000

Fig. 5. The tracking performance using the GDHP algorithm with different
initial angle of attack.

0 100 200 300
-10

-8

-6

-4

-2

0

2

4

6

8

10

0 2000 4000 6000 8000 10000

Fig. 6. The control input performance using the GDHP algorithm with
different initial angle of attack.

VI. CONCLUSIONS

This paper proposes an iterative global dual heuristic
programming (GDHP) algorithm in the discrete-time con-
dition to cope with the optimal tracking control problems.
The GDHP algorithm can effectively solve the discrete-time
Hamilton-Jacobi-Bellman equation (DTHJB) with the facili-
tation of the neural networks (NNs), under the framework of

the scheme of the iterative adaptive dynamic programming
(ADP) with convergence analysis. Explicit analytical calcu-
lations are introduced to obtain the derivatives of the value
function, which can eliminate the inconsistent errors of the
traditional straight form of GDHP. Behaving as a model-free
method, the algorithm is facilitated by a model network and a
feedforward neuro-controller, which are utilized to learn the
system dynamics and the inverse dynamics for approximat-
ing the desired control, respectively. The simulation results
demonstrate that both the model network and the feedforward
neuro-controller can effectively learn the objective dynamics
and the proposed GDHP method can be successfully applied
to the optimal tracking control task for the given launch
vehicle.

Nevertheless, some problems need to be considered before
realistic applications. In this launch vehicle control problem,
the only useful reference is actually the angle of the attack
while the pitch rate can be an interference term. Besides, the
offline trained NNs cannot deal with the uncertainties and
sudden changes in the practical scenarios. Therefore further
study should concentrate on these topics.

REFERENCES

[1] Y. Huang and D. Liu, “Neural-network-based optimal tracking control
scheme for a class of unknown discrete-time nonlinear systems using
iterative adp algorithm,” Neurocomputing, vol. 125, pp. 46–56, 2014.

[2] Q. Lin, Q. Wei, and D. Liu, “A novel optimal tracking control scheme
for a class of discrete-time nonlinear systems using generalised policy
iteration adaptive dynamic programming algorithm,” International
Journal of Systems Science, vol. 48, no. 3, pp. 525–534, 2017.

[3] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, “Optimal control of
unknown nonaffine nonlinear discrete-time systems based on adaptive
dynamic programming,” Automatica, vol. 48, no. 8, pp. 1825–1832,
2012.

[4] D. Liu, D. Wang, D. Zhao, Q. Wei, and N. Jin, “Neural-network-based
optimal control for a class of unknown discrete-time nonlinear systems
using globalized dual heuristic programming,” IEEE Transactions on
Automation Science and Engineering, vol. 9, no. 3, pp. 628–634, 2012.

[5] Y. Zhou, E. van Kampen, and Q. P. Chu, “Launch vehicle adaptive
flight control with incremental model based heuristic dynamic pro-
gramming,” in Proceedings of the IAC 2017, Adelaide, Australia, 2017.

[6] B. Sun and E.-J. van Kampen, “Incremental model-based global dual
heuristic programming for flight control,” IFAC-PapersOnLine, vol. 52,
no. 29, pp. 7–12, 2019.

[7] B. Sun and E. van Kampen, “Incremental model-based global dual
heuristic programming with explicit analytical calculations applied
to flight control,” Engineering Applications of Artificial Intelligence,
vol. 89, p. 103425, 2020.

[8] Y. Zhou, E. van Kampen, and Q. P. Chu, “Incremental approximate
dynamic programming for nonlinear adaptive tracking control with
partial observability,” Journal of Guidance, Control, and Dynamics,
vol. 41, no. 12, pp. 2554–2567, 2018.

[9] D. Liu, D. Wang, and X. Yang, “An iterative adaptive dynamic
programming algorithm for optimal control of unknown discrete-
time nonlinear systems with constrained inputs,” Information Sciences,
vol. 220, pp. 331–342, 2013.

[10] D. Wang, D. Liu, and Q. Wei, “Finite-horizon neuro-optimal tracking
control for a class of discrete-time nonlinear systems using adaptive
dynamic programming approach,” Neurocomputing, vol. 78, no. 1,
pp. 14–22, 2012.

[11] D. Liu and Q. Wei, “Policy iteration adaptive dynamic programming
algorithm for discrete-time nonlinear systems,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 25, no. 3, pp. 621–634,
2014.

