
 
 

Delft University of Technology

Incremental model-based heuristic dynamic programming with output feedback applied to
aerospace system identification and control

Sun, Bo; Van Kampen, Erik Jan

DOI
10.1109/CCTA41146.2020.9206261
Publication date
2020
Document Version
Accepted author manuscript
Published in
CCTA 2020 - 4th IEEE Conference on Control Technology and Applications

Citation (APA)
Sun, B., & Van Kampen, E. J. (2020). Incremental model-based heuristic dynamic programming with output
feedback applied to aerospace system identification and control. In CCTA 2020 - 4th IEEE Conference on
Control Technology and Applications (pp. 366-371). Article 9206261 (CCTA 2020 - 4th IEEE Conference on
Control Technology and Applications). Institute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/CCTA41146.2020.9206261
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/CCTA41146.2020.9206261
https://doi.org/10.1109/CCTA41146.2020.9206261


Incremental Model-Based Heuristic Dynamic Programming with Output
Feedback Applied to Aerospace System Identification and Control*

Bo Sun1 and Erik-Jan van Kampen1

Abstract— Sufficient information about system dynamics and
inner states is often unavailable to aerospace system controllers,
which requires model-free and output feedback control tech-
niques, respectively. This paper presents a novel self-learning
control algorithm to deal with these two problems by combining
the advantages of heuristic dynamic programming and incre-
mental modeling. The system dynamics is completely unknown
and only input/output data can be acquired. The controller
identifies the local system models and learns control polices
online both by tuning the weights of neural networks. The
novel method has been applied to a multi-input multi-output
nonlinear satellite attitude tracking control problem. The simu-
lation results demonstrate that, compared with the conventional
actor-critic-identifier-based heuristic dynamic programming al-
gorithm with three networks, the proposed adaptive control
algorithm improves online identification of the nonlinear system
with respect to precision and speed of convergence, while
maintaining similar performance compared to the full state
feedback situation.

I. INTRODUCTION

The last hundred years have witnessed the rapid develop-
ment of aerospace systems, which combines many great tech-
nological achievements of humankind. However, as struc-
tures of aerospace systems become more diverse and their
tasks get more complex, challenges are put up on control
systems. One of the most challenging things is the absence
of sufficient knowledge of the system dynamics. Especially
for aerospace systems, accurate system information can be
impossible to acquire [1] due to complexity and nonlinearity.

Recently, adaptive dynamic programming (ADP) has been
paid great attention to because of its self-learning property
[2] and close relationship with adaptive optimal control [3].
As a class of reinforcement learning (RL) methods, ADP
can also methodically adjust the control policy based on
observed responses without accurately modeled dynamics
of the system or the environment [1]. Because of these
advantages, a number of ADP-based methods have been
successfully developed for model-free flight controller design
[4]–[7].

As an extension of traditional ADP, adaptive critic de-
signs (ACDs) break the shackles in linear methods, and
have been successfully applied to adaptive optimal control
problems [3]. ACDs normally exploit nonlinear function
approximators, such as artificial neural networks (ANNs),
to approximate evaluation (critic) and improvement (actor)

*The first author’s Ph.D. is financially supported by China Scholarship
Council, project reference number 201806290007.

1B. Sun and E. van Kampen are with the Department of Control and
Operations, Delft University of Technology, 2629HS Delft, The Netherlands.
Email:{B.Sun-1, E.vanKampen}@tudelft.nl.

of the control policy, and consequently they can be applied
to problems with more complicated rewards. Based on the
information outputted by the critic network, ACDs are gen-
erally classified into heuristic dynamic programming (HDP),
dual heuristic programming (DHP) and global dual heuristic
programming (GDHP) [8]. Among them, HDP, whose critic
network directly approximates the cost-to-go, provides a ba-
sic structure and is the most popular algorithm. To speed up
the learning process and increase the success ratio, an extra
structure, usually ANN, is introduced to approximate the
system model in [9]–[12]. However, because training ANNs
usually needs much effort before the parameters converge,
offline training or information of partial system dynamics
is often required. To tackle these limitations, incremental
technique is introduced to improve the performance of online
application of ACDs, which leads to incremental model-
based ACDs (IACDs) [1], [13], [14].

Based on full-state feedback (FSF), IACDs have shown
impressive advantages over conventional ACDs in various
flight control tasks. However, real applications are often more
complex and sometimes not only the internal dynamics, but
also the information to infer its internal states is unavailable
due to structural constraints or internal sensor faults. For
example, infrared cameras used as docking sensors can only
output the tracking errors between the spacecrafts for navi-
gation, rather than explicit positions [6]. Unexpected faults
might happen in delicate sensors, such as air data sensors
[15], resulting in inaccurate measurement information. These
situations can lead to output feedback (OF) problems.

This paper aims to improve the HDP method by involving
the incremental technique and OF. Different from conven-
tional HDP, the proposed method, IHDP with OF (IHDP-
OF), employs an extended incremental model to approximate
the local dynamics of the original nonlinear system instead
of the global model [16], under the assumption that the
sampling time is small enough [1]. IHDP-OF combines the
methods proposed in [13] and [6], while outperforms them
in dealing with partial observability and more complex cost
function, respectively.

The remainder of the paper is organized as follows.
Section II introduces the incremental model to build a direct
mapping between output/input measurements. Section III
presents the structure and weights update of the actor and
critic networks in the IHDP method. Section IV verifies the
proposed IHDP-OF method by applying it to an attitude
control task of a satellite and comparing the performance
with the HDP with OF (HDP-OF) and the IHDP with FSF
(IHDP-FSF). Finally, we discuss the conclusions and future



research in section V.

II. INCREMENTAL MODEL IDENTIFICATION

A. Incremental Model with Full State Feedback

Aerospace systems are highly nonlinear and their system
dynamics can be generally described by:

ẋ(t) = f [x(t),u(t)] (1)

where x(t) ∈ Rn is the current state vector, u(t) ∈ Rm is
the current control vector, andf [x(t),u(t)] ∈ Rn builds the
system dynamics over time.

The linear approximation of the system (1) around time
instant t0 can be achieved by taking the first order Taylor
series expansion and omitting higher-order terms, which is
described as follows:

ẋ(t) ≈ ẋ(t0) + F[x(t0),u(t0)][x(t)− x(t0)]

+ G[x(t0),u(t0)][u(t)− u(t0)]
(2)

where F[x(t0),u(t0)] = ∂f [x(t),u(t)]
∂x(t) |x(t0),u(t0) ∈ Rn×n

denotes the system transition matrix and G[x(t0),u(t0)] =
∂f [x(t),u(t)]

∂u(t) |x(t0),u(t0) ∈ Rn×m denotes the input distribution
matrix. Then, an incremental model with FSF can be utilized
to represent (2):

∆ẋ(t) ≈ F[x(t0),u(t0)]∆x(t)+G[x(t0),u(t0)]∆u(t) (3)

Assuming the sampling frequency is sufficiently high and
system dynamics vary relatively slowly, the system model
can be described approximately as the following discrete
form [1]:

∆xt+1 ≈ (1 + Ft−1∆t) ·∆xt + Gt−1∆t ·∆ut (4)

where ∆t is the sampling time, Ft−1 = ∂f(x,u)
∂x |xt−1,ut−1

∈
Rn×n denotes the discrete system transition matrix and
Gt−1 = ∂f(x,u)

∂u |xt−1,ut−1 ∈ Rn×m denotes the discrete
input distribution matrix at time instant t − 1. In the FSF
situation, a recursive least squares (RLS) algorithm [1] can
be used to identify matrices Ft−1 and Gt−1 online. During
every update, only the latest data will be used.

B. Incremental Model with Output Feedback

The system output can be described as:

y(t) = h[x(t)] (5)

where y(t) ∈ Rp, and h[x(t)] denotes the output function.
Similarly, with a constant, sufficiently small sampling time
∆t, the incremental dynamics of (5) can be represented as:

∆yt+1 ≈ Ht∆xt+1 (6)

where Ht = ∂h(x)
∂x |xt

∈ Rp×n denotes the discrete observa-
tion matrix.

However, unlike (1), there is no direct transition between
the outputs at different time instants in the physical sense,
so the system output cannot be represented only by the
input/output measurements at one time step before. Conse-
quently, the information provided in (6) should be utilized,
i.e. the system is observable, so that the unavailable internal

states can be reconstructed to provide transition information
with the adequate observations [5]. Given the measured
input/output data over a sufficiently long time horizon N ,
and N satisfies N ≥ n/p , the output increment ∆yt+1 can
be presented uniquely as follows:

∆yt+1 ≈ Ft∆yt,N + Gt∆ut,N

= Ft∆yt,N + Gt,11∆ut + Gt,12∆ut−1,N−1

(7)

where Ft ∈ Rp×Np denotes the extended discrete sys-
tem transition matrix, Gt ∈ Rp×Nm denotes the ex-
tended discrete input distribution matrix, Gt,11 ∈ Rp×m
and Gt,12 ∈ Rp×(N−1)m denote partitioned matrices from
Gt. ∆yt,N = [∆yT

t ,∆yT
t−1, · · · ,∆yT

t−N+1]T ∈ RNp and
∆ut,N = [∆uT

t ,∆uT
t−1, · · · ,∆uT

t−N+1]T ∈ RNm are the
acquired output/input data from N previous steps, respec-
tively.

C. Extended RLS

The RLS algorithm is applied to identify the pending
matrices Ft and Gt online. For convenience, (7) can be
rewritten in a vector form:

∆yt+1 ≈
[
∆y

T
t,N ∆u

T
t,N

]
·
[
FT
t

GT
t

]
(8)

Define Yt =

[
∆yt,N
∆ut,N

]
∈ RN(p+m)×1, which is the input

information of the extended incremental model identification,

and Θt =

[
FT
t

GT
t

]
∈ RN(p+m)×p , which is the extended

matrix to be determined using the RLS algorithm. Therefore,
the output prediction equation can presented as follows:

∆ŷt+1 = Y
T

t · Θ̂t (9)

where •̂ stands for the estimated or approximated value.
A sliding window technique is employed to store sufficient

historic data for online identification [16]. In this situation,
there are N sets of parameters in Θt waiting for determina-
tion, and therefore during each update, L ≥ N sets of stored
historic data samples should be provided for identification,
where L is the width of data window.

The core procedure of the RLS approach [1] can be given
as follows:

εt = ∆yT
t+1 −∆ŷT

t+1 (10)

Θ̂t = Θ̂t−1 +
Covt−1Yt

γRLS + Y
T

t Covt−1Yt

εt (11)

Covt =
1

γRLS

(
Covt−1 −

Covt−1XtX
T
t Covt−1

γRLS + XT
t Covt−1Xt

)
(12)

where εt ∈ Rp is the prediction error, Covt ∈
R(p+m)N×(p+m)N denotes the estimation covariance matrix,
which is symmetric and semi-positive definite, and γRLS is
the forgetting factor.



III. ACTOR-CRITIC STRUCTURE

Both HDP and IHDP are developed based on the actor-
critic structure, so in this section we will discuss the details
about the implementation of the actor-critic structure as well
as the combination with the incremental model derived in
Section II.

A. The Critic

HDP is the most widely used ACD method because of its
simple form of the critic, which approximates the cost-to-go
directly. Among aerospace system control problems, one of
the most common tasks is to track a given reference signal.
In this paper, the one-step cost function (reward) is designed
as:

rt = r(ŷt,y
ref
t ) = (ŷt−yref

t )TQc(ŷt−yref
t ) = ỹT

tQcỹt (13)

where ŷ is the estimated output vector, yref is the reference
signal, ỹt denotes the tracking error vector and Qc ∈ Rp×p
is a non-negative definite weight matrix. Note that the reward
consists of the estimated value ŷt instead of the true value yt
because the controller is directly linked with the incremental
model. The cost-to-go J(ỹt) is defined as the cumulative
sum of upcoming rewards rt since the time instant t:

J(ỹt) =

∞∑
l=t

γl−trl (14)

where γ ∈ (0, 1) denotes the forgetting factor to decide
how the rewards at different time instants are weighted.
Because future rewards are unavailable, an ANN, called
the critic network, is utilized to approximate the true cost-
to-go, whose estimated value is represented as Ĵ , and the
temporal difference (TD) technique is applied to tune the
ANN weights iteratively. The target of TD technique is
to minimize the error between the present and successive
estimations, which can be given as:

ec(t) = Ĵ(ỹt)− rt − γĴ(ỹt+1) (15)

For convenience, a overall estimated error function Ec(t) is
utilized to eliminate the influence of signs:

Ec(t) =
1

2
e2
c(t) (16)

To minimize Ec(t), so a gradient-descent algorithm with a
learning rate ηc > 0 is applied to update the critic weights:

wc(t+ 1) = wc(t)− ηc ·
∂Ec(t)

∂wc(t)
(17)

where

∂Ec(t)

∂wc(t)
=
∂Ec(t)

∂Ĵ(ỹt)
· ∂Ĵ(ỹt)

∂wc(t)
= ec(t) ·

∂Ĵ(ỹt)

∂wc(t)
(18)

B. The Actor

The aim of the actor network is outputting a control action
to minimize the successive approximated cost-to-go Ĵ(ỹt+1)
:

u∗t = arg min
ut

Ea(t+ 1) (19)

in which Ea(t+ 1) is the overall error function, which can
be defined as a quadratic form:

Ea(t+ 1) =
1

2
Ĵ2(ỹt+1) (20)

The analytical solution is often intractable, so an ANN is
also introduced to produce the control action ut. As shown
in Fig. 1, the 3rd back-propagation path indicates the actor
weights update direction:

wa(t+ 1) = wa(t)− ηc ·
∂Ea(t+ 1)

∂wa(t)
(21)

in which ηa > 0 is the learning rate, and

∂Ea(t+ 1)

∂wa(t)
=
∂Ea(t+ 1)

∂Ĵ(ỹt+1)
· ∂Ĵ(ỹt+1)

∂ŷt+1
· ∂ŷt+1

∂ut
· ∂ut
∂wa(t)

(22)
Substitute (7) into (22) and then (22) can be rewritten as:

∂Ea(t+ 1)

∂wa(t)
= Ĵ(ỹt+1) · ∂Ĵ(ỹt+1)

∂ŷt+1
·Gt,11 ·

∂ut
∂wa(t)

(23)
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Fig. 1. The architecture of IHDP with output feedback.

IV. SIMULATION AND DISCUSSION

A. Aerospace System Model

Liquid sloshing is a kind of common internal dynamics
in the aerospace systems with liquid fuel. Despite a lot
of research [6], [17], its accurate model is still extremely
difficult to obtain and therefore many model-based control
methods cannot be applied to these systems. What is more,



due to the limitations of weight or mechanical structure, the
information of some internal states may not be available,
which results in output feedback problems. Consequently,
this paper considers a satellite perturbed by liquid sloshing
to evaluate the proposed IHDP-OF method.

As shown in Fig. (2), a attitude control problem of a satel-
lite in 2-dimensional plane is taken into account, where the
liquid sloshing is approximately represented by a mechanical
system with a pendulum [6], [17]. Subscript p denotes the
liquid fuel, and mp and Ip denote its mass equivalent and
moment of inertia, respectively. The other part of the satellite
is represented by subscript s. Fs denotes the longitudinal
motion thrust that acts on the center of mass of the satellite
and is considered to be constant in this paper. The velocity of
the satellite is decomposed into the axial component vx and
the transverse component vz . a and b denote the pendulum
length and the distance between the satellite center of mass
and the connected point, respectively. ψ denotes the angle
between the pendulum and the satellite longitudinal axis, and
θ denotes the attitude angle of the satellite. fs denotes the
transverse force and Ms denotes the pitch moment, whose
commands are generated by the controller to complete the
attitude control task.

y 
Ms

q 

Fs

fs

vx

vz

X

Z

Fig. 2. A approximated model of the satellite model with liquid sloshing
using pendulum (adapted from [6]).

Although a prior model is not necessary for IHDP-OF, for
verification and validation, the satellite model is presented.
The dynamic and kinematic state equations of the satellite
with liquid sloshing are as follows [17]:

(ms +mp)(v̇x + vz θ̇) +msbθ̇+

mpa(ψ̈ + θ̈) sin(ψ) +mpa(ψ̇ + θ̇)2 cos(ψ) = Fs
(24)

(ms +mp)(v̇z − vxθ̇) +msbθ̈+

mpa(ψ̈ + θ̈) cos(ψ)−mpa(ψ̇ + θ̇)2 sin(ψ) = fs
(25)

msb(v̇z − vxθ̇) + (Is +msb
2)θ̈ − κψ̇ = Ms + bfs (26)

(mpa
2 + Ip)(ψ̈ + θ̈) +mpa[(v̇x + vz θ̇) sin(ψ)+

(v̇z − vxθ̇) cos(ψ)] + κψ̇ = 0
(27)

in which κ denotes the damping constant. According to [6],
the rotational variables can be isolated from the translational
variables:

msb[fs −msbθ̈ −mpa(ψ̈ + θ̈) cos(ψ)+

mpa(ψ̇ + θ̇)2 sin(ψ)] + (ms +mp)·
[(Is +msb

2)θ̈ − κψ̇] = (ms +mp)(Ms + bfs)

(28)

mpa{sin(ψ)[Fs −msbθ̇ −mpa(ψ̈ + θ̈) sin(ψ)]+

cos(ψ)[fs −msbθ̈ −mpa(ψ̈ + θ̈) cos(ψ)]}+
(ms +mp)(mpa

2 + Ip)(ψ̈ + θ̈) + (ms +mp)κψ̇ = 0
(29)

Equations (28) and (29) approximately describe the rota-
tion motion of the satellite with liquid sloshing without any
translational variables and therefore can be separately used
for attitude control problem.

B. Implementation Issues

Let x = [θ, θ̇, ψ, ψ̇]T, y = [θ, ψ]T , and u = [fs,Ms]
T

denote the state, the output and the control input of the
system, respectively. The parameters of satellite dynamics
used in the simulations are: ms = 600kg, Is = 720kg/m2,
mp = 100kg, Ip = 90kg/m2, a = 0.3m, b = 0.3m,
κ = 1.5(kg ·m2)/s and Fs = 500N.

Learning rates are initially large numbers and gradually
decrease with the weights being tuned. To avoid the weights
going to infinity, the weights are bounded between [−20, 20].
Both the critic and the actor employ a fully connected, single
hidden layer ANN. As a balance between approximation
precision and computational burden, the neuron number of
hidden layer in both networks is 20. The activation function
σ in the hidden neurons is set to be a sigmoid function:

σ(o) =
1− e−o

1 + e−o
(30)

For the incremental model, let the initial Covt be an
identity matrix multiplied by 107 and γRLS = 0.99995. To
keep relatively low computational burden, let L = N based
on the derivation in Section II, which can obtain satisfying
performance. As a comparison, a model network is used in
conventional HDP, and it is configured same to the critic and
actor network. The sampling frequency is 100Hz.

The performance of the ANN and the incremental model
relies on the sufficient exploration, which is represented by
persistent excitation (PE) condition. To better explore the
state space and control policy, a predefined probing noise
is often added to the control command [10]. This paper
introduces the 3211 doublets only at the beginning to excite
the fresh modules and introduces an small input disturbance,
which is a sum of sinusoidal signals, throughout the con-
trol task. For flight control system design, measurement
uncertainties are unavoidable in the real world, and thus
need to be taken into account. Therefore, for OF problems,
zero-mean normal distributed white noises are added on the
control inputs towards real systems and the measurements
from real systems in the numerical simulations. The standard
deviations of the noises are 0.01N, 0.005N · m, 0.005◦ and



0.005◦ for fs, Ms, θ and ψ, respectively. How to satisfy and
evaluate PE condition is still an open problem, while these
disturbance and noise can improve the exploration to better
achieve PE condition.

C. Simulation Results

The one-step predictions using the incremental model with
OF (IM-OF), the incremental model with full state feedback
(IM-FSF) and the ANN-based global model with OF (NN-
OF) are compared given a determined control policy:

fs(t) = −10 cos(0.3t+ 0.5π)

Ms(t) = 3sq(0.2t− 0.5π)
(31)

where sq(•) is a square wave function.
As shown in Figs. 3 and 4, the one-step state predictions

are feasible in this open-loop condition with these three
different methods. Nevertheless, it takes more time for the
ANN to predict the outputs of the next time step accurately
at the beginning, which can cause severe results if the control
policy is not stable at the beginning. On the other hand, the
incremental model can generate accurate predictions after
only a few measurements no shorter than the chosen sliding
window. Besides, there are some obvious outliers shown
in Fig. 3 even after the NN-OF identifier has converged.
This phenomenon happens when the control commands cross
the x axis and change their signature, leading to sharp
prediction errors. On the contrary, the incremental model-
based methods can adapt very fast to this sudden change
and no outlier appears.

0 20 40 60 80 100

-10

0

10

0 20 40 60 80 100

-10

0

10

Fig. 3. One-step prediction of the system outputs, θ and ψ.

Table I takes a close look at the probability distributions
of the prediction errors after all identifiers have converged,
i.e. t > 5s. It is clear that the IM-FSF has the smallest
means and variances of prediction errors, while the NN-OF
has the largest ones. Consequently, it can be concluded that
the incremental model outperforms the ANN-based global
model in this online identification task.

The second part applies these methods to a closed-loop
control problem. Different from [5] and [6], where offline

0 20 40 60 80 100

-0.5

0

0.5

0 20 40 60 80 100

-0.5

0

0.5

Fig. 4. Prediction errors of the system outputs, θ and ψ .

TABLE I
PROBABILITY DISTRIBUTIONS OF THE PREDICTION ERRORS

Methods ∆θ[◦] ∆ψ[◦]
Mean STDa Mean STD

IM-OF 1.5× 10−4 5.3× 10−3 −1.3× 10−4 5.3× 10−3

IM-FSF −2.2× 10−7 1.9× 10−6 −2.7× 10−7 1.3× 10−6

NN-OF −7.1× 10−2 6.1× 10−1 −1.6× 10−2 3.8× 10−1

aAbbreviation of standard deviation.

training is involved, in this paper the controller learns the
control policy online. The attitude angle of satellite θ is
supposed to track a given sinusoidal reference signal θref,
whose amplitude is 30◦ and period is 200πs. Besides, the
pendulum angle ψ should be kept as close as possible to
zero.

Fig. 5 gives the results of the tracking and stabilizing
control tasks. The subfigure (a) shows that all three methods
have similar tracking plots of the attitude angle θ. Subfigure
(b) and subfigure (c) illustrates the control errors of the
attitude angle ∆θ, and the pendulum angle ψ, respectively.
Because of the nonlinearity of the system and coupling
between system states, there are avoidable oscillations in
control errors using these online self-learning methods. How-
ever, it is clear that HDP-OF has the largest control errors
while the control errors given by IHDP-FSF are smallest.
Apart from the amplitude, the oscillations produced by HDP-
OF also have the lowest frequency because the NN-based
model adapts slower than the incremental model.

Fig. 6 presents the control commands produced by the
IHDP-OF method. Subfigures (a), (b) and (c) illustrate the
control commands during the whole period, the initial 3211
excitation signals and a fragment of the detailed control
commands, respectively. The control policy is less smooth
compared to the final policy in [6], because the control policy
is learned totally online without offline training process and
measurement uncertainties are considered.
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Fig. 5. Tracking performance these three methods.
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Fig. 6. Control commands of the IHDP- OF.

V. CONCLUSIONS

This paper takes the output feedback (OF) condition into
account, and develops a new method, incremental model-
based heuristic dynamic programming with OF (IHDP-OF),
to accomplish an adaptive flight controller without prior
knowledge of the system dynamics, and measurements re-
ferring to inner states. The proposed method expands the
original IHDP with full-state feedback (FSF) by building a
direct mapping between input and output using the incre-
mental technique with historic data. The simulation results
demonstrate that the incremental model accelerates the online
identification and improves the precision compared to a

global neural network model.
Nevertheless, there still are some problems to be dealt

with in realistic applications. The most important point is to
satisfy PE condition, without which, the performance of the
controller degrades heavily and even divergence can happen.
Insufficient exploration can be severer in the OF condition
because of the data lost. In this paper, the incremental model
does not significantly improve the success ratio compared
to the traditional neural network-based model in the OF
condition.
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