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Abstract—In this paper, we present the concept of boosting
the resiliency of optimization-based observers for cyber-physical
systems (CPS) using auxiliary sources of information. Due to
the tight coupling of physics, communication and computation,
a malicious agent can exploit multiple inherent vulnerabilities
in order to inject stealthy signals into the measurement process.
The problem setting considers the scenario in which an attacker
strategically corrupts portions of the data in order to force wrong
state estimates which could have catastrophic consequences. The
goal of the proposed observer is to compute the true states in-
spite of the adversarial corruption. In the formulation, we use a
measurement prior distribution generated by the auxiliary model
to refine the feasible region of a traditional compressive sensing-
based regression problem. A constrained optimization-based
observer is developed using l1-minimization scheme. Numerical
experiments show that the solution of the resulting problem
recovers the true states of the system. The developed algorithm is
evaluated through a numerical simulation example of the IEEE
14-bus system.

Index Terms— Resiliency, observer, cyber-physical systems,
false data injection attacks.

I. INTRODUCTION

Cyber-physical systems (CPS) are engineered systems that
are built from, and depend upon, the seamless integration
of cyber and physical components. Hence, CPS are tightly
integrated systems at all scales and levels that leverage infor-
mation, communication, and computing systems to control a
physical process in an autonomous, cooperative, intelligent,
and flexible manner [1]. The decreasing cost of sensing,
networking, and computation tools in the era of internet-of-
things (IoT) has resulted in building complex CPS with new
capabilities, reducing the cost of CPS operation, and having
safer and more efficient systems.

Many CPS applications are safety-critical systems in do-
mains such as critical infrastructure (e.g., power grid systems),
disaster monitoring, and healthcare environments. Therefore,
it is of paramount importance to ensure overall stability of
the physical process and avoid severe consequences. Towards
that goal of maintaining normal operating conditions, a CPS is
consistently monitored and controlled by data acquisition and
control systems. CPS operators use measurements acquired
from various sensors across the CPS infrastructure to estimate
system state variables. These state estimates are critical since
they are used to adjust the control of the physical space via
management operations.

Fig. 1. State estimation under false data injection attacks (FDIAs).

In order to preserve the integrity and availability of state
estimation routines in CPS-related applications, bad data
detection (BDD) mechanisms have been traditionally used
to remove faulty and erroneous measurements [2]. However,
recent studies have showed that judiciously falsified data can
inject errors in state variables without being detected by BDD
[3]–[5]. Adversaries may launch such false data injection
attacks (FDIAs) able to bypass BDD functions by altering the
measurements sent from the field sensing devices to the central
estimation station [6]. Furthermore, attackers may realize such
FDIAs by hacking into sensors and meters or even infiltrate
secondary channels of the supply chain in order to distort the
measurements [7], [8]. Fig. 1 presents a schematic of the state
estimation routine under FDIA.

Existing efforts to address the vulnerability of state esti-
mation algorithms to FDIAs either require protection of a set
of measurement sensors or verification of each state variable
independently. The high computational and deployment cost,
as well as significant risk involved with these approaches,
have hampered their feasibility for use in practical real-time
systems [4], [9]. Furthermore, existing approaches are often
developed for specific system configurations [10]. As a result,
it is necessary to investigate more computationally feasible,
adaptive and real-time implantable resiliency methods.

In this work, we present an enhanced resilient state es-
timation approach for a dynamic CPS in which the data
acquired from the sensing devices are poisoned with FDIAs.
Our method relies on a data-driven model with traditional

ar
X

iv
:2

00
8.

12
85

9v
1 

 [
ee

ss
.S

Y
] 

 2
8 

A
ug

 2
02

0



compressive sensing regression. Gaussian processes (GP) are a
typical candidate for building generative probabilistic regres-
sion models from historical data [11]. We demonstrate that
our solution can recover the true states of the system, i.e.,
the system operation is able to withstand, adapt, and detect
efficiently extreme adversarial FDIA settings. The developed
algorithm is evaluated on a power system test case model.

The reminder of the paper is organized as follows: in
Section III we provide necessary definitions and background
for this work. Then, Section IV presents the formulation of the
estimation problem as well as our proposed solution algorithm
for the enhanced state estimator. Experimental details and
simulation results are described in Section V. Our concluding
remarks are discussed in Section VI.

II. NOTATION

The following notions and conventions are employed
throughout the paper: R,Rn,Rn×m denote the space of real
numbers, real vectors of length n and real matrices of n
rows and m columns respectively. R+ denotes positive real
numbers. X> denotes the transpose of the quantity X . By
Q � 0, it is meant that Q is a positive semi-definite symmetric
matrix, i.e x>Qx ≥ 0 ∀x 6= 0 and Q � 0 denotes positive
definiteness which is defined with strict > instead. Given
Q � 0, the Q-weighted norm is defined as ‖x‖Q , x>Qx.
Normal-face lower-case letters (x ∈ R) are used to represent
real scalars, bold-face lower-case letter (x ∈ Rn) represents
vectors, while normal-face upper case (X ∈ Rn×m) rep-
resents matrices. Let T ⊆ {1, . . . , n} then, for a matrix
X ∈ Rn×m, XT ∈ R|T |×m is the submatrix obtained by
extracting the rows of X corresponding to the indices in T .
For a vector x, xi denotes its ith element. The support of a
vector x ∈ Rm is denoted by supp(x) , {i : xi 6= 0}, with
|supp(x)| ≤ m being the number of nonzero elements of x.
Sms , {x ∈ Rm} : 0 < |supp(x)| ≤ s} denotes the set of
all nonzero k-sparse vectors. Given a positive scalar ε ∈ R+,
a saturation function satε : R 7→ [−ε, ε] is given by

satε(x) =

 −ε if x < −ε
x if |x| ≤ ε
ε if x > ε

A best sth term approximation of a vector e ∈ Rm (s ≤ m)
is denoted by e[s] , min

‖f‖0=s
‖e− f‖1 .

III. PRELIMINARIES

In this section, for completeness of exposition and to
facilitate faster comprehension of subsequent developments,
we have gathered relevant results from literature that we built
upon.

A. Overview of Resilient Estimators

There are numerous work in literature on the secure es-
timation for CPS [12]–[19]. The majority of the previous
research focuses on the LTI systems ranging from a Kalman
filter as predictor and estimator, unconstrained l1-minimization
to solve the error problem, and the use of machine learning

paradigms for feature discovery. However, we focus only on
the ones which are optimization based - since that is the
approach we consider in this work. Moreover, due to sparsity
assumption on the set of attacked nodes, majority of these
works are based on the classical error correction problem [20].
Let Rm 3 y = Cx + e, where C ∈ Rm×n is a coding matrix
(m > n), be a measurement vector corrupted by an arbitrary
unknown but sparse error vector e. By sparsity, we mean that
‖e‖l0 ≤ s < m. The objective is to recover the input vector
x ∈ Rn. Assuming that the coding matrix C is full rank, one
can construct a matrix F such that FC = 0 and

ỹ = Fy = F (Cx + e) = Fe. (1)

Thus the decoding problem is equivalent to reconstructing a
sparse vector from the observation ỹ = Fe and is cast as the
compressive sensing problem:

Minimize:
e

‖e‖l0 Subject to: ỹ = Fe. (2)

Hayden et. al [21] obtained a sufficient condition that if all
subsets of 2s columns of F are full rank, then any error
‖e‖l0 ≤ s can be reconstructed uniquely by the solution of
the optimization problem in (2). Although in some cases [22]
the optimization problem in (2) is solved as is, in most cases,
it does not lend itself to a solution in polynomial time due
to its nonconvexity. As a result, it is often replaced with its
convex neighbor:

Minimize:
e

‖e‖l1 Subject to: ỹ = Fe. (3)

The two programs, however, have been shown to be equivalent
under the condition that the restricted isometric property (RIP)
holds [23]–[26].

Definition 1 (RIP [20]). A matrix A has the RIP of sparsity
k if there exists 0 < δ < 1 such that

(1− δ) ‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + δ) ‖x‖22 (4)

for all x ∈ Ss. Moreover, the smallest δ for which the above
inequality holds is called the restricted isometry constant, and
denoted as δs(A).

The above definition essentially requires that every set of
columns with cardinality less that or equal to s behaves like an
orthonormal system. The following theorem lists the recovery
error due to relaxed convex program above.

Theorem 1 ( [20], [27]). Let e be a sparse vector satisfying

ỹ = Fe and ê be the solution of (3). If δ2s(F ) <
1√
2

, then

‖ê− e‖2 ≤

2√
s

δ2s +

√
δ2s

(
1√
2
− δ2s

)
√

2
(

1√
2
− δ2s

) + 1

 ‖e− e[s]‖1 ,

(5)

where e[s] is the best s-term approximation of e.



Remark 1. If e ∈ Ss, then ê = e. Thus, if δ2s(F ) <
1√
2

the relaxed program in (3) will recover any s-sparse vector
e ∈ Ss exactly!

Now, consider the discrete LTI system

xk+1 = Axk (6)
yk = Cxk + ek, (7)

where xk ∈ Rn represents the state of the system at time
k ∈ N, yk ∈ Rm is the output of the monitoring nodes at time
k and ek ∈ Rm denote the attack signals injected by malicious
agents at the monitoring nodes. Let K ⊂ {1, 2, . . . ,m} denote
the set of attacked nodes, then for all k, |supp(ek)| ⊂ K. The
resilient estimation problem is then defined as reconstructing
the initial state x0 from corrupt measurement {yk}Tk=0 , T ∈
N. We look at two scenarios from literature: K is time-invariant
[12], [28] and K is time-varying [13].

1) Secure estimation for fixed attacked nodes [12]: Assum-
ing that the set K of attacked nodes is time-invariant:

Definition 2. s errors are correctable after T steps by the
decoder D : (Rm)

T 7→ Rn if for any x0 ∈ Rn, any
K ⊂ {1, 2, . . . ,m} with |K| ≤ s, and any sequence of
vectors e0, . . . , eT−1 ∈ Rm such that supp(ek) ⊂ K, we
have D(y0, . . . ,yT−1) = x0, where yk = CAkx0 + ek for
k = 0, 1, . . . , T − 1.

Proposition 1. Let T ∈ N\{0}. The following are equivalent:
(i) There is a decoder that can correct q errors after T steps;
(ii) For all z ∈ Rn\{0}, |supp(Cz) ∪ supp(CAz) ∪ · · · ∪
supp(CAT−1z)| > 2s.

Consequently, the following optimal decoder is defined for
when the set of attacked nodes is fixed:

x0 = arg min
x

‖YT − ΦT (x)‖l0 (8)

where

YT =
[
y0 y1 . . . yT−1

]
∈ Rm×T

and ΦT : Rn 7→ Rm×T is a linear map given by:

ΦT (x) =
[
Cx CAx . . . CAT−1x

]
∈ Rm×T .

2) Secure estimation for varying attacked nodes [13]:
Assuming that the set K of attacked nodes can change with
time but bounded as in |K| ≤ s:

Definition 3. q errors are correctable after T steps by the de-
coder D : (Rm)

T 7→ Rn if for any x0 ∈ Rn and any sequence
of vectors e0, . . . , eT−1 ∈ Rm such that |supp(ek)| ≤ s, we
have D(y0, . . . ,yT−1) = x0, where yk = CAkx0 + ek for
k = 0, 1, . . . , T − 1.

Proposition 2. Let T ∈ N\{0}. The following are equivalent:
(i) There is a decoder that can correct s errors after T steps;

(ii) For all z ∈ Rn\{0} ,
T−1∑
k=0

∣∣supp(CAkz)
∣∣ > 2s.

Consequently, the following optimal decoder is defined for
when the set of attacked nodes is not fixed:

x0 = arg min
x

∥∥y(T ) − Φ(T )x
∥∥
l0

(9)

where

y(T ) =


y0

y1

...
yT−1

 ∈ RmT ,

Φ(T ) =


C
CA

...
CAT−1

 ∈ RmT×n.

IV. RESILIENT OBSERVER DEVELOPMENT

Consider the concurrent models

xk+1

yk

=
=

Axk +Buk

Cxk + ek
(10)

yk ∼ N (µ(zk),Σ(zk)) (11)

consisting of a physics-based model (10) and a data-driven
prior (11) given as a function of the auxiliary variable z ∈ Rp.
The data-driven model in (11) gives a prior distribution on
the system measurements as a function of measured auxiliary
variables zk ∈ Rp. This provides additional layer of security
by: 1) requiring the attacker to have knowledge of the auxiliary
model and the parameters, and 2) limiting the magnitude of
possible state corruption. For a more detailed explanation of
the advantages of the concurrent models in (10) and (11), as
well as the resulting theoretical limits on the size of feasible
attacks, interested readers are referred to the references [11],
[29] and the references therein.

Let Yk , {yk,yk−1, . . . ,yk−T+1} ⊂ Rm and Uk−1 ,
{uk−1,uk−2, . . . ,uk−T+1} ⊂ Rl be collections of the last T -
samples of the system known input and output measurements
respectively. The proposed resilient observer attempts to solve
the following moving horizon optimization problem for all
time instant k ≥ T :

Minimize:
k∑

i=k−T+1

‖yi − Cxi‖l0
Subject to:

xi+1 −Axi −Bui = 0,
i = k − T + 1, . . . , k − 1

Cxk ∈ Y(zk)

(12)

where the convex set Y(z) has the property that:

p(yk
∗ ∈ Y|zk,D) ≥ τ. (13)

More insight is provided in Theorem 2. The idea is essentially
seeking historical and current state vectors, together with the
minimum attacked channels, which completely explains the



observations while satisfying the physics-based model and
having a high likelihood according to the auxiliary model prior.
The optimization parameter τ ∈ (0, 1] controls the likelihood
threshold. It can be set to a constant value or optimized with
respect to some higher-level objectives. Thus, the resilient
observer optimization problem is equivalent to:

Minimize:
k∑

i=k−T+1

‖yi − Cxi‖`0
Subject to:

xi+1 −Axi −Bui = 0,

‖Cxk − µ(zk)‖2Σ−1(z) ≤ χ2
m(τ)

(14)

where χ2
m(τ) is the quantile function for probability τ of the

chi-squared distribution with m degrees of freedom.
However, the nonconvexity due to the index minimization

objective makes the optimization problem in (14) challenging,
at best, for gradient-based solution algorithms. This will
make it difficult, if not impossible, to synthesize a pragmatic
algorithm that can be implemented real-time for the observer.
Thus, we seek convex approximation alternatives. Fortunately,
as discussed in the preliminaries Section III, it is possible to
approximate the index minimization objective using an `1-
norm without loosing global optimality – provided the RIP
condition holds. Consequently, the proposed resilient multi-
model observer is given via the following convex program:

Minimize:
k∑

i=k−T+1

‖yi − Cxi‖`1
Subject to:

xi+1 −Axi −Bui = 0,

‖Cxk − µ(zk)‖2Σ−1(z) ≤ χ2
m(τ).

(15)

After some algebraic manipulations and simplifications, the
above program is equivalent to the following quadratically
constrained basis pursuit problem:

Minimize:
∥∥y(T ) −H(T )u(T−1) − Φ(T )x

∥∥
1

Subject to: ∥∥ΦTx +HTu(T−1) − µ(zk)
∥∥2

Σ−1(zk)
≤ χ2

m(τ),

(16)

where

y(T ) =


yk−T+1

yk−T+2

...
yk

 ∈ RmT ,

u(T−1) =


uk−T+1

uk−T+2

...
uk−1

 ∈ Rl(T−1),

where Φ(T ) is defined as a results of (9),

H(T ) =


0 0 . . . 0
CB 0 . . . 0
CAB CB . . . 0

...
...

...
CAT−2B CAT−3B . . . CB


∈ RmT×l(T−1),

and ΦT , HT are the last m rows of Φ(T ), H(T ) respectively.
In the above formulation, the solution of the optimization
problem gives an estimate x̂k−T+1 of the state vector xk−T+1

which is then propagated forward to obtain an estimate of
the current state using the physics-based dynamical model as
follows

x̂k = AT−1x̂k−T+1 +Gu(T−1), (17)

where

G =
[
AT−2B AT−3B . . . B

]
.

Suppose receding horizon T is chosen big enough (i.e T ≥
n) and the pair (A,C) is observable, then there exists a matrix
F(T ) such that F(T )Φ(T ) = 0.1 Consequently, the optimization
problem above is equivalent to

Minimize: ‖e‖1
Subject to:

f(T ) = F(T )e

‖yT + eT − µ(zk)‖2Σ−1(zk) ≤ χ2
m(τ),

(18)

where

f(T ) = F(T )

(
y(T ) −Hu(T−1)

)
,

and eT ,yT ∈ Rm is the vector containing only the last m
elements of the respective vectors e,y in order. While the
form given in (16) is more intuitive and implemented for the
simulation results, the form in (18) is more suitable to proof
the main result which is given next.

Theorem 2. Given a dataset D = {Z,Y} containing his-
torical auxiliary variables Z ∈ Rp×T and corresponding
sensor measurements Y ∈ Rm×T . Suppose that the latent
sensor measurement satisfies the data-driven GPR prior given
in (11) and that there exists τ ∈ (0, 1) such that the true
measurement y∗k satisfies p(yk

∗|zk,D) ≥ τ . Consider the
convex optimization problem in (16). Let ê be the solution

1Let the singular value decomposition of Φ(T ) be given by

Φ(T ) =
[
U1 U2

]


σ1
σ2

. . .
σn

0

V >,

Then F(T ) = U>
2 is an example of such matrix.



of the equivalent form in (18). If δ2s(F(T )) <
1√
2

, then, for

any feasible sparse vector e,

‖êT − eT ‖2 ≤ K1sat1 (K2 ‖e− e[s]‖2) , (19)

where

K1 =
√

2χ2
m(τ)σ(zk)

K2 = K3

√
m− s

2χ2
m(τ)σ(zk)

,

with

K3 =
2√
s

δ2s +

√
δ2s

(
1√
2
− δ2s

)
√

2
(

1√
2
− δ2s

) + 1


and σ(zk) is the biggest singular value of Σ(zk).

Proof. Following the development in earlier part of this sec-
tion, it is straightforward to see that p(yk

∗|zk,D) ≥ τ implies
that ‖yT + eT − µ(zk)‖2Σ−1(zk) ≤ χ2

m(τ) for any composite
measurement vector yT corrupted by the composite sparse
signal eT . In order words, the inequality holds for all sparse
signal eT =

[
e>k−T+1 . . . e

>
k

]>
, with each ek ∈ Ss satisfying

yk = y∗k+ek. More, there exists the true state vector x∗k ∈ Rn

such that y∗k = Cx∗k. This implies that

y(T ) = y∗(T ) + e(T )

= Φ(T )xk−T+1 +H(T )u(T−1) + e(T ).

From which it follows that

f(T ) = F(T )

(
y(T ) −Hu(T−1)

)
= F(T )e(T ).

Thus for any y(T ), the set of all e(T ) for which the quadratic
inequality holds is a subset of the pre-image of f(T ) under the
linear transformation F(T ). Thus, using Lemma 1, the optimal
point ê(T ) of the problem in (18) satisfies

∥∥ê(T ) − e(T )

∥∥
2
≤ K3

∥∥e(T ) − e(T )[s]
∥∥

1

≤ K3

√
m− s

∥∥e(T ) − e(T )[s]
∥∥

2
.

Thus,

‖êT − eT ‖2 ≤
∥∥e(T ) − e(T )

∥∥
2

≤ K3

√
m− s

∥∥e(T ) − e(T )[s]
∥∥

2
(20)

Moreover, adding and subtracting êT in the quadratic inequal-
ity constraint and using the left-hand-side triangular inequality
yields the following sequence of inequalities;

‖yT + êT − µ(zk)− êT + eT ‖2Σ−1(zk) ≤ χ
2
m(τ)

‖êT − eT ‖2Σ−1(zk) − ‖yT + êT − µ(zk)‖2Σ−1(zk) ≤ χ
2
m(τ)

‖êT − eT ‖2Σ−1(zk) ≤ 2χ2
m(τ)

Fig. 2. IEEE 14-bus system.

which implies that

‖êT − eT ‖2 ≤
√

2χ2
m(τ)σ(zk). (21)

Now, comparing (20) and (21) yields

‖êT − eT ‖2 ≤ min


K3

√
m− s

∥∥e(T ) − e(T )[s]
∥∥

2
,√

2χ2
m(τ)σ(zk)


≤ K1 min

{
K2

∥∥e(T ) − e(T )[s]
∥∥

2
, 1
}

≤ K1sat1
(
K2

∥∥e(T ) − e(T )[s]
∥∥

2

)
V. SIMULATION RESULTS

The attack-resilient observer proposed in this paper is
evaluated using a numerical simulation of the IEEE 14-bus
system shown in Fig. 2, it has nb = 14 buses and ng = 5
generators. It is expected that each bus in the network has IIoT
measurement devices able to provide active power injections
and flow measurements.

A. Model Description

A small signal model is derived by linearizing the generator
swing equations and power flow equations around the operat-
ing points under the assumption that:
• Voltage is tightly controlled at their nominal value;
• Angular difference between each bus is small;
• Conductance is negligible therefore the system is lossless.

Furthermore, the buses are ordered so that the first buses are
generators, then the admittance-weighted Laplacian matrix is
expressed as L =

[
Lgg Llg

Lgl Lll

]
∈ RN×N , where N = ng + nb.

Thus, allowing the system to be described by the dynamic
linearized swing equations and the algebraic DC power flow
equations in the following manner:I 0 0

0 M 0
0 0 0

 ẋ = −

 0 −I 0
Lgg Dg Llg

Lgl 0 Lll

x+

0 0
I 0
0 I

u
(22)



Fig. 3. Block diagram depiction of the simulation scenario.

The state variables, x = [δ> ω> θ>]> ∈ R2ng+nb , consist
of δ ∈ Rng the generator rotor angle, ω ∈ Rng the generator
frequency and θ ∈ Rnb the voltage bus angles. The control
input u = [P>g P>d ]> ∈ Rng+nb consists of Pg ∈ Rng

the mechanical input power from each generator, controlled
in a closed-loop manner with a PI regulating the generator
frequency, and Pd ∈ Rnb the active power demand at each bus.
Where M is a diagonal matrix of inertial constants for each
generator and Dg is a diagonal matrix of damping coefficients.

For the system described in (22), the algebraic variable
θ is eliminated to reduce the system dynamics to two state
variables, x̃ = [δ> ω>]> ∈ R2ng , as follows:[

δ̇(t)
ω̇(t)

]
=

[
0 I

−M−1(Lgg − LglL
−1
ll Llg) −M−1Dg

]
x̃

+

[
0 0

M−1 −M−1LglL
−1
ll

]
u,

y(t) =

[
0 I

−PnodeL
−1
ll Llg 0

]
x̃+

[
0 0

−PnodeL
−1
ll 0

]
u

(23)
Where Pnode is a function of the system incidence and sus-
ceptance matrices, obtained by linearizing the active power
injections at the buses [30]. Consequently, the bus angles
vector θ(t) is given by:

θ(t) = −L−1
ll (Llgδ(t)− Pd).

The measurement channels y(t) = [ω> P>net]
> ∈ Rng+nb

contain ω the generator frequency used in the PI feedback
loop and Pnet the net power injected at each bus.

B. Auxiliary Model

In our earlier work [11], [29], we used actual data collected
from the New York independent system operator (NYISO)
to build gaussian process regression (GPR) models which
map from market variables (namely, locational bus
marginal prices, marginal cost loses and

marginal cost congestion) to load data (namely,
active and reactive power). The trained GPR
model is executed to give the mean µ(z) and the covariance
Σ(z) of the data-driven auxiliary model. For the scenario,
presented here, we used the obtained covariance matrix
from the earlier work to locate µ(zk) within 3 standard
deviations of the true values in the simulation. This allows
us to compensate for lack of data in this particular case by
recreating a typical auxiliary model from known instances.

C. Simulation Process

The system in (23) is discretized for the implementation of
optimization problem in (16). As depicted in the simulation
scenario shown in Fig. 3, P net represents a compromised
measurement. The goal of the observer design is to give
the correct estimate of the rotor angle δ(t) under FDIA. We
also implemented a residue-based bad data detection [31] to
monitor the integrity of the FDIA used in the simulation.

D. Results

We implemented three observer schemes; (i) a discretized
Luenberger Observer, (ii) an Unconstrained l1 minimization
based Observer based on the results presented in the prelim-
inary section, and (iii) a constrained Multi-model Observer
implementing the optimization problem given in (16), using
the auxiliary model as described above and in Fig. 3.

Fig. 4, Fig. 5 and Fig. 6 shows the results of each observer
when subjected to attacks on 30% of the available measure-
ment. The attack was triggered after 200 samples into into the
simulation. This is done to show the observers performances
before and after attacks.

Fig. 7 shows the integrity of the FDIA used in the simula-
tion. As seen in the figure, the attacked measurement is able
to pass a residue-based bad data detection (BDD) test. The
threshold used in the simulation is 0.05 and is assumed to
be known to an attacker. Different threshold values were used
and the FDIA passed the BDD test for all of them. We only
show one plot here due to space limitation.

To further clarify the performances depicted in the figures
above, we present in Table I two metrics to give numerical
comparison of the performance of each observer. The first
metric is the root-mean-square (RMS) value, which quantifies
the energy of the errors between the actual value and estimated
values. The second metric is the maximum absolute value of
the error. This helps us capture the worst-case performance
of each of the observers compared. It is seen also that, in
both metrics considered, the proposed multi-model observer
outperforms the other two.



Fig. 4. A comparison of the actual δ(t) and the observed δ(t) by a discretized
Luenberger Observer. It is seen that any attacks on the measurement channels
leads to an inability to reconstruct the real states.

Fig. 5. A comparison of the actual δ(t) and the observed δ(t) by the
Unconstrained l1-minimization-based Observer. Although, this observer is
able to reconstruct most of the signals, there are still outliers that could cause
instability if used as a feedback to a controller.

TABLE I
ERROR METRIC VALUES

RMS metric Max. Abs. metric
LO L1O MMO LO L1O MMO

δ1 2.8801 0.0001 0.0001 6.4274 0.0028 0.0007
δ2 2.7967 0.0002 0.0001 6.4437 0.0022 0.0013
δ3 3.2746 0.0018 0.0001 9.7444 0.0387 0.0013
δ4 3.4786 0.0004 0.0004 10.7019 0.0048 0.0042
δ5 3.329 0.0011 0.0003 9.1387 0.0121 0.0024
LO: Luenberger Observer, L1O: Unconstrained `1-based Observer
MMO: Proposed Multi-Model Observer

VI. CONCLUSIONS

In this paper, a constrained optimization based resilient
state observer is developed using l1 minimization scheme. The
novelty of the algorithm lies in its ability to take into account

Fig. 6. A comparison of the actual δ(t) and the observed δ(t) by the proposed
Multi-Model Observer. The proposed observer is able reconstruct the δ(t) to
within a much more reasonable degree of accuracy. This is as a result of the
additional information given through the constraint from the auxiliary model.

Fig. 7. A FDIA is undetectable by a Bad Data Detector that is set to a 5%
threshold

the machine learning model as a constraint. This constraint,
the physics-based model and estimation theory is what makes
this multi-model observer resilient. The developed algorithm
is evaluated through a numerical example of IEEE-14 bus
system. Under FDIA, state measurements differ from their true
state. By incorporating the resilient observer the FDIAs can
be neutralized and true states can be retrieved with further
accuracy.

Some of the problems open for future work include observ-
ing the behaviour of resilient observer as filter by cascading
it in closed loop with the controller. Considering more com-
plicated constraints for reconstruction optimization problem,
rather than a simple quadratic constraint. We would also study
the behavior of resilient observer under FDIA and model
uncertainty, and extend our approach to other CPS.
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