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Abstract— In this work, inspired by the needs of the H2020
European Project PANTHEON1, we address the hazelnut
sucker detection and canopy volume estimation problem on
a per-plant basis. Sucker control is an essential but challenging
practice in agriculture, given the fact that suckers, i.e., shoots
that grow from the tree roots, compete with the tree itself for
water and nutrients. This research is motivated by the obser-
vation that in current best-practice, sucker control is carried
out by applying a non-calibrated amount of chemical inputs
to each tree. Indeed, a proper sucker detection and estima-
tion algorithm would represent the enabling technology for an
environmentally friendly sucker control approach where the
amount of herbicide could be properly calibrated according to
the needs of each individual plant. In this work, we propose an
end-to-end algorithm for detecting the presence of suckers and
for estimating their canopy. First a sparse point cloud-based
representation of the suckers is detected, then an approximated
canopy estimation is achieved by means of a tailored meshing
strategy that performs a leaf-based clustering and an iterative
clusters connection. The volume is then estimated by the result-
ing mesh. Preliminary real-world experiments are provided to
corroborate the effectiveness of the proposed canopy estimation
strategy.

I. INTRODUCTION

Precision Agriculture is a farming management concept
and is based on observing, measuring, and responding to in-
ter and intra-field variability in crops [1]. Modern hazelnut
farming is generally carried out using regular layouts to allow
the mechanization of many field operations, as it is the use
of tractors and specialized agricultural machinery. However,
there are still time-consuming and labor-intense agronomic
activities that could be clearly improved. In this regard, the
European project PANTHEON focuses on the management
of large-scale hazelnut orchards, where, to the best of our
knowledge, precision farming techniques have not been in-
vestigated yet. Among the main field management activities,
the sucker control is one of the most labor-intensive.

Nowadays, sucker control in large-scale orchards is com-
monly carried out by tractors with a pump spraying herbicide
with no distinction between a plant that needs the treatment
and a plant that does not require it. Additionally, a non-
calibrated amount of herbicide is applied to all plants. In
this context, the scope of PANTHEON is to design a solu-
tion to individually treat each tree according to its needs.
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Fig. 1: Example of a hazelnut tree with suckers, in the red square,
(left) and a hazelnut tree after suckers removal (right).

The sucker control solution proposed within PANTHEON
is composed of two steps: i) in the first step, the characteri-
zation and estimation of sucker canopy dimensions of every
plant is carried out, and ii) in the second step, tailor-made
treatments are computed based on this information and per-
formed to allow the application of different rates of herbicide
to each tree. This innovative, environmentally friendly solu-
tion is expected to reduce herbicide volumes and enhance
the health conditions of the plants.

In this work we focus on the first step of the suckering
control solution proposed within the project PANTHEON. To
achieve this objective, we propose a method that relies on vi-
sual and 3D sensory data. Our approach is based on two ma-
jor components: (i) a sucker detector and (ii) a sucker canopy
estimator. More specifically, the former locates suckers from
visual data. In this context, the extremely variable light con-
ditions in open environments play a key role and pose impor-
tant challenges in the sucker detection process. We achieve
a robust and reliable detection performance by fine-tuning
a state-of-the-art object detection system with on-field gath-
ered data. The outcome of the sucker detection process is
then used to obtain a sparse point-cloud-based representa-
tion of the sucker by filtering out redundant 3D information
coming from a LiDAR sensor.

The second component, the canopy estimator, starts from
the resulting sparse point-cloud and converts it into a triangle
mesh to perform an exact volumetric estimation. Although
the reconstruction of a 3D mesh from a point cloud is a
widely investigated area [2], state-of-the-art methods might
perform poorly (see Figure 2) with open-air vegetation. This
can be explained by the fact that open-air vegetation shows
extremely varying shapes, and it is challenging to acquire
using scanning devices usually resulting into a quite sparse
point cloud. Hence, we derived a novel strategy to compute
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a volumetric approximation, which is designed for the spe-
cific characteristics of suckers. In particular, we exploit a
leaf-based 3D points clustering and an iterative clusters con-
nection process to derive an approximated mesh. Notably,
the design of this novel strategy is made even more chal-
lenging by the fact that we intentionally exploited a LIDAR
sensor originally designed for navigation purposes, thus with
a significantly lower resolution compared to classical LIDAR
solutions designed for 3D reality capture. Indeed, this choice
was made by observing that reasonably such a LIDAR sen-
sor should already be available on an autonomous vehicle,
thus limiting the impact on the economic cost of the pro-
posed sucker control solution. The whole system eventually
results in an end-to-end estimation process that can poten-
tially provide benefits to a large variety of canopy estimation
applications.

To validate the proposed approach, we report preliminary
results from real-world data where the ground-truth volume
has been computed through the Archimedes method [3]. We
show that the proposed method represents a promising so-
lution for achieving an adequate volumetric estimation that
could be used for calibrating the amount of chemical treat-
ment according to the needs of each single plant. We also
provide an open-source annotated dataset for sucker detec-
tion at the following link

https://tinyurl.com/y68wdz5j

A. Related Work

The problem of detecting suckers and estimating their
canopy has not been extensively investigated over the years,
and relatively few solutions for different cultivars can be
found at the state of the art [4], [5]. Kang et al. [4] pre-
sented a sucker detection system consisting of a laser scanner
for vine detection and a color camera for imaging suckers.
The main purpose was to trigger a targeted spray for vine-
specific sucker control in grape vineyards. In particular, by
using a camera installed below the laser scanner, this system
would allow to calculate the diameter and the position of
the vine trunk. Furthermore, to facilitate the separation be-
tween sucker and background the authors used white boards
to block background noise. The results of this work show a
high level of accuracy. Wang et al. [5] presented an iden-
tification and location algorithm of vine suckers for real-
time, targeted, spraying activities based on a sensor fusion
among 2D laser scanners and a camera. The sucker position
estimation is performed in the camera image plane by us-
ing white calibration board to determine the invisible laser
scanning line. The reported results show an average compu-
tational time lower than 1 second, while a recognition rate
about 90%. Although these methods presented above show
promising results, they make use of external components to
aid the estimation process. This solution might not be ade-
quate for large-scale orchards.

A branch of the literature close to sucker canopy estima-
tion is the automated plant phenotyping for which a full 3D
reconstruction of the crop is essential to measure the plant
growth and to estimate the yield. This estimation process

is carried out with different sensor modalities, and several
approaches have been proposed in the last years [6]–[10].
Paulus et al. [6] presented a high throughput phenotyping of
barley organs based on 3D laser scanning. This work showed
the automatic parameter tracking of the leaves and stem of a
barley plant on a temporal scale, with the final goal of growth
monitoring in a time course for barley plants. Nguyen et
al. [7] implemented a full 3D reconstruction system for plant
phenotyping, which utilized simultaneous, multi-view, high-
resolution color digital imagery. The cameras were mounted
on an arc-shaped super structure and organized into 16 stereo
pairs in four separate arcs. The results revealed that both can
yield satisfactory 3D reconstruction models and are suited for
high-throughput phenotyping without destroying any leaves
or stems of the plant. Pound at al. [10] an approach for the
3D plant reconstruction by means of a single low-cost cam-
era. The reconstruction pipeline exploits a series of small
planar sections to model more complex leaf surfaces. The
output of this work is a 3D mesh structure that is suitable
for modelling applications, in a format that can be imported
in most of 3D graphics and software packages. Shim et al. [8]
presented a multi-view acquisition system composed of Time
of Flight (ToF) and RGB color cameras. The proposed sys-
tem compensates for errors in the acquisition process through
an ad-hoc calibration procedure and is well-suited for the
3D reconstruction of dynamic scenes. In Dong et al. [9], the
authors implemented a method which exploits the structured
environment. Specifically, this method utilizes global features
and semantic information to obtain an initial solution align-
ing the two sides of orchard rows. The 3D model is then
refined by using semantic information extracted by using
a robust detection and fitting algorithm. The vision system
could be used to measure semantic traits from the optimized
3D model in order to obtain an estimate of canopy volume,
trunk diameter, tree height and fruit count. Although these
works described above represent promising solutions for the
automated plant phenotyping, they are focused on the recon-
struction of the entire tree, while in our work, inspired by
the needs of the H2020 project PANTHEON, we proposed a
tailored approach for the detection of suckers and estimation
of their canopy volume.

B. Contributions

Briefly, the contributions made in this work can be sum-
marized as follows:

(i) an end-to-end canopy estimation algorithm;
(ii) a novel meshing strategy for open-air vegetation;

(iii) publicly available annotated data for sucker detection.

II. PROBLEM STATEMENT AND ASSUMPTIONS

In this section, first the mathematical formulation of the
proposed sucker detection and canopy estimation problem is
provided, then some working assumptions are discussed.

Problem 1. Given a 3D sparse point-cloud set S representing
a sucker (Figure 2, left column), our goal is to find a function
F : R3 → R+ that computes a volumetric estimation of the
sucker.
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Notably, the set S can be either collected by one or more
3D sensors (e.g. LiDARs and RGBD cameras) or generated
in a post-processing phase by a photogrammetry-based 3D
reconstruction software. In this work we aim to perform vol-
umetric estimations in real-time, thus collecting data from 3D
sensors.

To derive an effective method, we made the following as-
sumptions on the data collection process and on the structural
properties of the sucker canopy:
i) The 3D point-cloud set S mainly belongs to the target

sucker;
ii) The leaves are connected through minimal paths.

Assumption i) is an essential data requirement, and is ful-
filled by extracting 3D points inside the “Region Of Interest”
(ROI) surrounding the target sucker. In this regard, we also
perform a further outlier rejection refinement step by pruning
out all those points that might belong to the soil terrain. As-
sumption ii) is a reasonable simplification assumption since
in a real-world scenario the different branches of a plant are
individually linked to a single connected component. Indeed,
Assumption ii) is explicitly exploited for the sucker canopy
volume estimation.

III. SUCKER DETECTION

In this section we focus on the sucker detection problem,
i.e., the problem of extracting a set of Regions Of Interest
(ROIs) B = (B0, B1, . . . , Bi) (see Figure 1 for an example
of ROI) from the input images, such that they bound the
suckers to inspect. As a matter of fact, detecting suckers in
an open-environment present two major challenges: (i) the
background noise (e.g. grass, or other plants [4]) and (ii) the
extremely variable light conditions.

We tackle these issues by fine-tuning the state-of-the-art
convolutional neural network YOLOv3 [11]. Notably, this
choice was made as the YOLOv3-tiny architecture (depicted
in Table I) represents as a trade-off beetween computational
time and accuracy. Briefly, the YOLOv3-tiny architecture is
composed of successive 3×3 and 1×1 convolutional layers,
and it accepts input images with size 608× 608.

In particular, the fine tuning is performed on a pre-trained
model, trained on the ImageNet [12] dataset, with on-field
gathered datasets. To achieve a reliable sucker detection, the
datasets have been gathered in different weather and daylight
conditions. The accuracy of the proposed neural network ar-
chitecture will be discussed in section V-B.

IV. SUCKER VOLUME ESTIMATION

In this section, we focus on the estimation of the sucker
canopy volume. Note that, this process cannot be performed
by solely relying on visual data. Therefore, we exploit sparse
3D information contained in the point cloud S. To map such
points to their respective pixel coordinates in the camera
image plane, we make use of the calibration procedure de-
scribed in [13]. Points that do not belong to the sucker are
detected and removed by exploiting the ROIs determined
through the detection process described in Section III. At
the end of this process, it is very likely that a non-negligible

Type Filters Size Output
Convolutional 16 / 2 3× 3 304× 304
Convolutional 32 / 2 3× 3 152× 152
Convolutional 64 / 2 3× 3 76× 76
Convolutional 128 / 2 3× 3 38× 38
Convolutional 256 / 2 3× 3 19× 19
Convolutional 512 / 2 3× 3 10× 10
Convolutional 1024 / 2 3× 3 10× 10
Convolutional 256 / 2 1× 1 10× 10
Convolutional 512 / 2 3× 3 10× 10
Convolutional 256 / 2 1× 1 10× 10

Avgpool Global
Connected 1000
Softmax

TABLE I: YOLOv3-tiny architecture.

portion of the remaining 3D points does not belong to the
sucker leaf surface (e.g. tree trunk or soil terrain). This could
lead the volume estimation algorithm to yield poor results.
Therefore, a preliminary step to filter out misleading data is
mandatory. We achieve this goal by means of Excess Green
(ExG) [14] index threshold operation. The ExG index is
an image color transformation process which is commonly
adopted in agronomic image analysis since it highlights the
presence of vegetation through a green color enhancement.
In our case, the exploitation of such index allows to easily
distinguish between the sucker canopy and the soil and the
trunk of the hazelnut tree. Despite its simplicity, this method
can effectively remove most of the outliers. Future work will
focus on the investigation of more refined strategies for out-
liers processing and removal.

At this point, given the filtered point cloud, we start the
estimation procedure by building a 2-manifold triangle mesh,
for which the exact volume could be computed by resorting
to the simple algorithm described in [15] assuming that the
mesh is watertight and free of self-intersections.

Fig. 2: The poor 3D mesh reconstruction provided by Screened
Poisson reconstruction [16] (right) due to a noisy normal compu-
tation (shown in blue) and a sparse input point set (left).

Several methods to reconstruct such a 3D mesh from a
point cloud can be found at the state of the art. Notably,
this research area has seen substantial progress in the past
two decades, the reader is referred to [2] for a comprehen-
sive overview of this topic. While most of these methods
are actively used in the industry to produce well-structured
triangular meshes, they usually require a dense point set as
an input, a pre-condition which unfortunately does not hold



in our application scenario. As a matter of fact, open-air
vegetation is extremely challenging to acquire using scan-
ning devices, and the result is usually a quite sparse point
cloud where state-of-the-art reconstruction methods perform
poorly (see Figure 2). Hence, we propose a novel automated
strategy to derive a volumetric approximation of the sucker
canopy.

input : A set of samples si ∈ S
output: A new set of connected Samples

STEP 1 - AVERAGE : computing average distance α between each
sample and the closest;
α← 0;
forall si ∈ S do

sci ← FindClosest (S, si);
α← α+ |sci − si|;

end
α← α/|S|;
STEP 2 - CLUSTERING : Cluster samples whose distance is below α;
forall si ∈ S do

ci = {si};
end
merged← true;
while merged do

merged← false;
forall ci ∈ C do

cci ← FindClosestCluster (ci) ;
if (ClusterDistance (ci, cci )< α) then

ci ← ci ∪ cci ;
C ← C − cci ;
merged← true;

end
end

end
STEP 3 - LINK : Greedy add links between partitions until a single

connected component is created;
while |C| > 1 do

c0, c1 ← FindClosestClusterPair(C);
clink ← FindLinkSamples(c0, c1);
cnew ← (c0 ∪ c1 ∪ clink);
C ← C ∪ cnew ;
C ← C − c0 ;
C ← C − c1 ;

end
Algorithm 1: A pseudo-code illustrating the different steps
of our clustering procedure.

Given a sparse point cloud set S (see Figure 3.b), we
first estimate a distribution factor α, as the average distance
between each point si ∈ S to its closest sample sci (see
Figure 3.c). Then we connect the samples whose distance is
below α, and we cluster the connected components (see Fig-
ure 3.d). Intuitively, if we create a sphere with a radius of α
for each sample, then every cluster will result in a connected
volume. A pseudo-code of this procedure is described by Al-
gorithm 1. The first two steps of our algorithm are similar to
the well-known hierarchical clustering algorithm. However,
we perform an additional step (Step 3) to connect the differ-
ent branches of a plant. Consequently, we perform an extra
step to connect the various branches. We use a greedy strat-
egy that favors the connection between closest cluster. Given
the closest pair of clusters c0 and c1, we connect them to
a new cluster cnew by creating a new set of samples which
are distributed along the shortest segment that connects c0
with c1. We iterate this process by repeatedly connecting the

closest pair of clusters until all the samples are joined to a
unique cluster. Notice that for these new samples, we de-
fined a sphere with a smaller radius α/5 as they represent
the branches of the sucker (see figure 3.e). We point out that
the value of alpha for the branch of the sucker is the result of
a trial and error procedure that has been carried out in order
to obtain the lowest volumetric estimation error. We finally
create a single mesh for every sphere, and we merge them all
by using the Boolean operations of [17] implemented in Li-
bIGL [18]. At this stage, as we performed the union of a set
of closed, 2-manifold, orientable spheres, we also guarantee
a closed, 2-manifold, orientable mesh T as an output, match-
ing the condition for exact volume calculation. However, the
mesh resulting from the boolean operation might have badly
shaped triangles and geometrical sharp features which can
affect the volume estimation. Hence, we improve the mesh-
ing by performing a couple of loop subdivision steps [19]
using the implementation in the VCG library [20] (see figure
3.f). Future work will be focused on the optimization of this
pipeline for the sake of real-time computation. Finally, as
we previously stated, the volume of the mesh can be com-
puted as the sum of all the signed volumes of the tetrahedra
bounded by the origin and the three vertices of a triangle.

V. EXPERIMENTAL VALIDATION

In this section we provide a preliminary experimental val-
idation to demonstrate that the proposed method represents a
promising solution for achieving an accurate volumetric es-
timation of the sucker canopy. In particular, first the sucker
detection part is validated, then the volumetric estimation
process is verified.

A. Experimental Setup

Real experiments have been carried out within the real-
word hazelnut orchard available for the experimental vali-
dation of the PANTHEON project, which is composed of 3
fields selected within the “Azienda Agricola Vignola”, a farm
located in the municipality of Caprarola, in the province of
Viterbo, Italy. In particular, the data collection of the suck-
ers and the validation of the proposed approach were con-
ducted within field 16, which hosts a young orchard (cul-
tivar Nocchione treated as multi stemmed bushes) with a
4.5 m x 3.0 m layout.

Figure 4 shows the ground vehicle prototype (top), namely
SHERPA HL robotic platform R-A, together with the sensor
equipment used for data acquisition: i) a Velodyne VLP-16
Puck LITE 3D LiDAR, ii) a Genius WideCam F100 web-
cam (bottom), and iii) an Intel NF697 with an Intel Core
i7-7700 Processor. In particular, the Genius webcam is lo-
cated right below the Velodyne and both are mounted paral-
lel to the ground plane. The Velodyne VLP-16 generates ap-
proximately 300.000 points/second and consists into 16 rings
with an horizontal field of 360◦ and a vertical one of 30◦

(± 15◦ from the horizon). Given the front-side placement in
our setup, we restricted its horizontal F.O.V. to be only at
180◦. The Genius webcam has a 120◦ vision and an image
resolution of 1280× 720. It supports only manual focus that
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Fig. 3: The 3D reconstruction pipeline: given a sparse set of 3D points (b) sampled through 3D scanning on the real sucker (a) we
estimate the average radius α (c) and we cluster samples based on their proximity (d); then we connect the separated branches using a
greedy strategy (e) and we gather the final mesh as the union of all the spheres (f).

Fig. 4: The robotic platform (top) and the front-side of the robot
where the sensors are mounted (bottom).

was kept fixed for all the duration of the experiments. As
pointed out in the introduction, we reiterate that the LIDAR
used for the experimental validation is purposely designed
for navigation tasks, and therefore it does not provide the
typical resolution of classical LIDAR solutions designed for
3D reality capture, such as the FARO S70 laser scanner.
Nevertheless, we made this choice motivated by the fact that
a sensor such as the Velodyne VLP-16 can be reasonably
found in almost any autonomous vehicle, thus significantly
reducing the economic impact of the hardware requirements
of the proposed approach.

B. Sucker Detection

To test the sucker detection process, we gathered four
datasets in different weather and daylight conditions. Specif-
ically, DataA is composed of 715 images and was acquired
in the middle afternoon and late morning; DataB is com-
posed of 61 images and was acquired in the early morning
with cloudy sky; DataC is composed of 181 images and
was acquired at midday; finally DataD is composed of 213
images and was acquired in the late afternoon. We point out
that the heterogeneity in the size of the collected datasets
depends on the daylight conditions. Indeed, the most vary-
ing light conditions happen in the middle afternoon and in
the late morning, leading DataA to be the largest dataset,
while DataB to be the smallest dataset since the cloudy
sky does not involves variable shadowing conditions. The

four datasets were recorded across four different weeks in
the summer. Each one was collected according to a different
robot approaching maneuver towards a plant with suckers.

Note that, while DataA and DataC were then divided
into train and test datasets, namely Train/TestA and
Train/TestC , DataB were entirely used for training, while
DataD was split into two individual test sets, namely
TestD1 and TestD2. It is important to remark that the
fast growth rate of the suckers potentially leads to sensibly
change their appearance in a week. Therefore, our aim is to
use TestSetD1,2 to test how the neural network performs
on a previously unseen suckers condition.

Sub Set I Sub Set II
Test Set IoU .5R .75R IoU .5R .75R
TestA 65.4 87.3 22.1 62.4 100 22.5
TestC 72.7 100 42.3 59.6 76.3 5.2
TestD1 51.2 55.8 43.4 64.9 95.9 84.4
TestD2 72.7 85.2 39.3 69.3 53.2 21.1

TABLE II: Sucker detection statistics.

Figure 5 reports some outcomes of the convolutional neu-
ral network across the different test datasets. We report nu-
merical results in Table II according to the following met-
rics: (i) the average Intersection over Union (Iou), (ii) the
recall rate at an IoU percentage of 50% (.5R), and (iii) the
recall rate at an IoU percentage of 75% (.75R). To evalu-
ate the sucker detection process for each approaching ma-
neuver, the datasets have been further divided into SubSetI
and SubSetII . As reported, the IoU is always kept above the
50%, also in TestD1,2. The same trend is also reported in the
recall rates. The only exception is the SubSetII in TestC
where the camera was facing the sun, leading the detection
network to fail more frequently, thus resulting in a lower re-
call rate. Future work will focus on investigating a strategy
to mitigate this effect. A feasible solution could be to gather
more data with similar light conditions, supplementing the
current training datasets.



Fig. 5: Examples of network predictions for TestSetA, TestSetB and TestSetD1,2.

C. Volumetric Estimation

In this section, we provide a preliminary experimental val-
idation of the accuracy of the proposed volumetric estima-
tion. To compute an error metric, the first step was to obtain
a reliable ground truth. In the case of suckers, standard 3D
reconstruction approaches based on 3D dense point clouds,
as shown in Figure 2, might suffer the 3D geometric irreg-
ularities of the sucker surface. Thus, to get an accurate esti-
mate of the suckers real volume we used a variation of the
Archimedes method. Specifically, the target sucker is sus-
pended below the surface of the water in a container placed
on an electronic scale. The volume V of the immersed ob-
ject will simply be the increase in weight ∆w divided by
the water density ρ, that is V = ∆w/ρ, see [3] for further
details. In order to carry out our preliminary experimental
validation, we measured three suckers, namely Sucker1,2,3.

Sucker ID RMSE [%] St. Dev. [%]
Ground

Truth [cm3]
Sucker1 21% 5.1% 631.9
Sucker2 15% 3.8% 834.3
Sucker3 6% 2.5% 372.8

TABLE III: Sucker volumetric estimation statistics.

Notably, even though only a limited number of samples
were used for the experimental validation, according to Ta-
ble III these preliminary results seem very promising. In de-
tail, the RMSE remains below the 21% in all datasets. The
entire process takes on average 10 seconds on a 2,9 GHz
Intel Core i7 Mac, except for the boolean union step which
might take up to 2 minutes.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a sucker detection and canopy
volume estimation approach composed of 2 steps. The first
step detects the suckers and filter the 3D data, while the
second one compute an approximate meshing of the target
sucker and estimate its volume. A preliminary experimental
validation has been conducted to demonstrate that the pro-
posed approach represents a promising solution to develop a
more environmentally friendly sucker control methodology.
Future work will be mainly focused on: i) the design of a
real-time processing pipeline; ii) the evaluation of different
and cheaper sensor setups to gather both visual and 3D data;
and iii) a more comprehensive experimental validation ac-
cording to data collected in the next vegetative season.
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