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Abstract— Magneto-rheological dampers are employed in the
automotive industry to control the vehicle dynamics by modu-
lating the damping characteristics of the suspension system;
these devices rely on a smart fluid which can change its
viscosity when subjected to a magnetic field. The viscosity of
this magneto-rheological fluid is significantly dependent on the
operating temperature; this phenomenon is particularly critical
in the automotive field since the working conditions span a wide
range of temperatures and, furthermore, a commercial vehicle
cannot be equipped to directly measure the temperature of the
fluid. This article proposes a methodology for the temperature
estimation which exploits the thermodynamic relationship be-
tween the resistance of the electrical circuit of the device and
the temperature of the magneto-rheological fluid.

I. INTRODUCTION

Magneto-rheological (MR) dampers are a powerful mean
for controlling the vehicle vertical movements and vibrations
induced by the road excitation [1]. These devices, differently
from electro-hydraulic suspensions, employ MR fluid to
generate friction, which can change its viscosity with respect
to the magnetic field it is subjected to.

It is well known in literature that the viscosity of the MR
fluid is significantly affected by the operating temperature
[2], [3], [4] diminishing the damping capabilities of the MR
damper [5], [6]. As remarked in [7], since the MR damper
dissipates the vehicle mechanical energy, the heating of the
internal damper fluid cannot be avoided. There has been
research in the optimal geometry for a MR damper with
the aim of minimizing the heat transfer to the MR fluid
[8], [9]; nonetheless, the studies conclude that the effect of
temperature cannot be neglected.

For these reasons, it is important to include a compen-
sation of this effect in the control strategies that exploit
such devices. In [10], [11], the authors investigate the effect
of the temperature on the performance and the stability of
feedback controllers; in [12], the problem is framed in a
fault-tolerant approach by adopting a sliding mode controller.
Further research has focused on the possibility to compensate
the performance decay with neural networks [13], [14]. All
of the above control frameworks assume the temperature is
measurable, which is not often the case, especially in com-
mercial vehicles. Hence, the need to estimate the temperature
of the MR fluid.

The most common approach which can be found in
literature to solve this task makes use of a thermal model of
the MR damper, as developed e.g. in [15] where the model
describes the heat exchange between the electromagnet and
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the MR fluid. The model has also been validated in [16]
where the authors also indicate that both mechanical and
electrical power input contribute to the fluid temperature
rise. In a similar research [17], the authors developed a
complex thermal model for an automotive twin-tube shock
absorbers. Further work exploits a neural network for the
estimation of the damping force with a variable temperature
operation [18]. These methodologies exploiting a thermal
model suffer from robustness and complexity, since a detailed
description of both geometry and heat transfer coefficient
must be characterized. Further, the heat exchange is also
dependent on the temperature of the environment, operating
conditions of the vehicle (e.g., a high traveling speed can cool
down quickly the dampers) and the location in the vehicle
body (e.g., the distance of the damper from the engine).

This work proposes a different approach for the estimation
of the MR fluid temperature without the need to develop a
thermal model, under the assumption that the temperature of
the coil generating the magnetic field and the temperature
of the MR fluid are similar; this is generally true when
considering a classic geometry of a MR damper, where the
coil is placed within the piston which, in turn, is submerged
in the MR fluid. Being the electric resistance of the coil
known to be to be proportional to the temperature of the
conductor, we are then able to infer the temperature of
the MR fluid at any given time by properly analyzing
the available electric measures. The proposed approach is
particularly suited for the application in the automotive field
where the dampers’ temperature is not directly measurable
and, to the authors’ knowledge, this is the first work where
this methodology is proposed for a MR damper.

Two strategies, both based on the aforementioned idea,
are discussed, compared and validated with experimental
data: a piecewise strategy which gives a more accurate
estimation but requires an ad hoc current injection into
the MR damper’s coil, and a continuous strategy which
can estimate the temperature without interfering with the
underlying suspension control strategy.

The remainder of this paper is as follows. In Section II,
the basic principles which this research is based upon are
presented. The experimental setup employed to character-
ize the relationship between resistance and temperature is
elaborated in Section III and the results are presented in
Section IV. The estimation strategies are described in Section
V and validated quantitatively in Section VI. The paper ends
with some concluding remarks. Throughout the paper, for
confidentiality reasons, the axes of some Figures have been
normalized.



II. PROBLEM STATEMENT
The magneto-rheological fluid can change its viscosity

according to the magnetic field which is subjected to. The
magnetic field is generated within the piston’s head by
the current flowing into an electromagnetic coil, which is
controlled via the voltage potential applied to the ends of
the coil itself. Therefore, it is possible to regulate the fluid’s
viscosity via the input control current.

However, the viscosity is also influenced by the working
temperature of the fluid: the lower the temperature, the
higher the damping forces exerted by the damper. Auto-
motive applications consider a possible temperature range
between -30 °C and +140 °C; as shown in [5], [6], with
such variations the effect of the temperature on the MR fluid
viscosity cannot be ignored.

The aim of this research consists in estimating the tem-
perature of the MR fluid by exploiting its correlation with
the temperature of the coil used as proxy. This assumption
holds true, in general, since the piston’s head is immersed in
the fluid. However, the temperature of the coil is not directly
measurable either, and needs to be inferred via the estimation
of the coil’s electric resistance.

Indeed, the coil in the piston can me modeled as a RL
circuit described by the equation

L
di

dt
+Ri = V (1)

where R and L are the resistance and inductance of the
coil, i the current flowing into it and V the applied voltage;
considering a steady-state scenario, equation (1) simply
becomes

R =
V

i
, i 6= 0. (2)

Eventually, it is well known in literature [19] that the
resistivity ρ of a conductor is related to its temperature

ρ = ρ0 [1 + α(T − T0)] .

It is thus clear how the estimate of the MR fluid temper-
ature will be done via the estimation of the coil’s resistance
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Fig. 1. Current profile in the stairs experiment.

in the piston of the damper, based on the available electric
measures i and V .

III. EXPERIMENTAL SETUP AND TESTS

The proposed strategies have been developed using the
data collected during an experimental campaign. The MR
dampers installed on the vehicle have been additionally
instrumented with thermocouples which allow to measure
directly the temperature of the MR fluid inside the chamber,
and are used to assess the estimation performance.

Each MR damper is powered by a 12V battery and con-
trolled by an Electronic Control Unit (ECU) implementing
a current control loop via Pulse Width Modulation (PWM).
Hence, in this configuration, it is possible to command a
reference current to be fed to the coil inside the piston’s
head. The actual voltage potential V applied to the coil is
available for measurement from the ECU.

The vehicle is driven on a rough road in order to excite
the vertical dynamics causing the MR damper heating;
the temperature increase transient depends on the ambient
conditions and the road excitation. The tests are stopped
when the dampers reach the maximum allowed working
temperature. An example of temperature profile recorded
during an experiment is shown in Fig. 3, where the damper
suffered a temperature excursion of 60% with respect to its
working range in 40 minutes (the actual value is normalized
for confidentiality reasons).

During the experiments, two different current profiles have
been designed: stairs and ping, depicted in Fig. 1 – 2
respectively. The stairs experiment is designed ad hoc to
collect more information on the effect of the current in
the estimation of the coil’s resistance, which is investigated
in Section IV. The ping experiment, on the other hand,
resembles a real scenario where the temperature estimation
and suspension control are operated concurrently, as shown
in Fig. 2 where the constant current ping overrides the control
logic.
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Fig. 2. Current profile in the ping experiment.
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Fig. 3. Measured temperature of the MR fluid during the experiment.

In the design of the experiment, it’s important to recall
that the amplitude of the current shall not reach the maximum
current for long time spans, in order to avoid heating the coil
due to the steady high current flow; this phenomenon would
break the assumption elaborated in Section II, since the MR
fluid and the coil would not be at the same temperature. For
this reason, in both experiments the ping is never higher than
50% of the maximum possible current.

The ECU can record all the signals of interest at a
sampling frequency of 1kHz; these data are then post-
processed and analyzed offline.

IV. PRELIMINARY DATA ANALYSIS

In this section, the analysis of the stairs experiment is
firstly presented, since the estimation strategies will build
upon these observations.

The relationship in (2) is only valid when the current flow-
ing in the coil is constant and different from zero; hence, the
estimation of the resistance is computed by extracting those
segments (taking care of excluding the transient behaviors)
and averaging the value of the measured current i and voltage
V as in

R̄ =
V̄

ī
(3)

where V̄ is the average voltage, ī the average current and R̄
is the resulting estimated resistance in the segment.

Let T̄ be the average measured temperature computed in
each corresponding steady-state segment; then, the sought re-
lationship between temperature and resistance can be mapped
on the plane depicted in Fig. 4 for the stairs experiment. A
clear linear relationship between the two quantities is visible,
which can be modeled by

T̄ = αR̄+ T0(i), (4)

where α indicates the slope, and T0 the offset which, as can
be seen from the figure, depends on the current injected into
the coil. This varying bias is not due to a temperature effect,
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Fig. 4. Temperature – Resistance map for the stairs experiment.

since a higher current flow should lead to a higher resistance
of the conductor, whereas in Fig. 4 the opposite happens.
Hence, the only plausible conclusion is the relationship
between current and voltage, in our scenario, is not constant
as in (2).

Therefore, given any constant value for the current am-
plitude (different from zero), the relationship between MR
fluid’s temperature and coil’s resistance is well defined. In
the following section, this relationship is exploited to design
the estimation strategies.

V. TEMPERATURE ESTIMATION STRATEGIES

Considering the linear regression suggested by the ex-
perimental data in Fig. 4, given a resistance value R the
temperature MR fluid temperature is computed as in (4).

Two different strategies are presented to compute the
value of R based on the available measures: in particular
the piecewise strategy requires a current ping, whereas the
continuous estimation is capable of providing a value of R
without interfering with the suspension control strategy.

A. Piecewise Estimation

This strategy is based upon the ping experiment, shown
in Fig. 2, where the suspension control is overridden by a
constant current ping. It is important to notice that, although
the effect should be minimal, this methodology perturbs the
control logic.

When the ping is raised, the time series of the signals
i(t) and V (t) are collected (excluding the transients) and
averaged in order to compute R̄ as in (3). Eventually, the
temperature T̂ is estimated as in (4), where the parameters
α and T0 represent the model and their value is the solution
to the least squares optimization

‖T̄ − (αR̄+ T0)‖2.

It is worth to remark that, once the ping amplitude has
been chosen, T0 is a constant. The results of this approach
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Fig. 5. Temperature – Resistance regression for the piecewise strategy.
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Fig. 6. Sensitivity of the maximum estimation error with respect to the
ping duration.

are depicted in Fig. 5 and a quantitative evaluation of the
methodology is elaborated in Section VI.

The experiments in Fig. 1 – 2 are based on the injection
of a ping of width 1500 ms. However, since the ping is
an undesired action which may affect the vehicle dynamics,
this duration may be too long for our purposes; hence, a
sensitivity analysis with respect to the ping duration is shown
in Fig. 6: values below 250ms yield a poor accuracy due
to measurement noise, whereas higher ones do not improve
the estimation performance significantly. Therefore, 250ms
is the optimal compromise between estimation accuracy and
perturbation of the control logic.

B. Continuous Estimation

The second methodology proposed is based upon the
relationship (2) which is valid in steady-state condition only;
since this state is never realized when the suspension control

logic is working, in this approach the signals are low-pass
filtered in order to meet that condition.

Let Lτ be a first order filter described by the transfer
function

Lτ (s) =
2π
τ

s+ 2π
τ

where the filter is parametrized as function of the time
constant τ , which gives an approximation of the filter’s
settling time.

Therefore, the estimation of the coil’s resistance is com-
puted continuously as

Rτ (t) =
Vτ (t)

iτ (t)
(5)

where iτ and Vτ are the outputs of the filter Lτ (s). This
relation trivially holds so long as iτ 6= 0.

The choice of τ consists in a trade-off between estima-
tion accuracy and perturbations. Ideally, a high value of τ
implies a low bandwidth which is close to the assumption
of steady-state condition; on the other hand, it implies a
slower response causing the estimation to lag behind the
measured value. In Fig. 7, a lower value for τ shows a better
tracking of the measured temperature, whilst yielding a poor
estimation of the coil’s resistance, which in turn it reflects
on an oscillating temperature estimation.

As it is possible to observe in Fig. 8, the linear relationship
between coil’s resistance and MR fluid’s temperature still
holds, even though visibly less accurate. The two depicted
experiments share the same slope with a different bias which
is due to the different current profile injected into the damper;
this effect is similar to the observations discussed in Section
IV where the dependency between the resistance estimation
with respect to the injected current has been outlined.

Whereas in the piecewise strategy the bias effect could be
worked around by injecting a known constant ping, in the
continuous strategy the current profile cannot be assumed
to be known. Thus, following this approach, the regression
parameter T0 in (4) cannot be considered constant, but shall
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Fig. 8. Temperature – Resistance relationship in the continuous strategy
for two experiments in different conditions.

be parametrized with respect to the filtered current. Hence,
the temperature estimation T̂ becomes

T̂ (t) = αRτ (t) + T0(iτ (t)). (6)

The relationship between T0 and iτ is drawn from the
stairs experiment, in Fig. 4, where the dependency is clearly
portrayed. In Fig. 9, the case where T0 is assumed to be
constant is compared against the compensation strategy; it is
shown how the compensation mitigates the bias observed in
Fig. 8 drastically improving the estimation error, even though
the accuracy is significantly worse than the previous method,
as it is thoroughly elaborated in Section VI.

The poorer performance can be explained by the following
rationales:

• the steady-state condition in (2) is not met, although
the low-pass filtering is a good approximation of that
configuration;

• when the current iτ is small, (2) approaches its singu-
larity point and the estimation is less robust.

VI. VALIDATION

In this section, the validation of the estimation strategies
presented in Section V is performed on different experiments
performed in diverse conditions (e.g., weather condition,
test road). With the aim of assessing quantitatively the
experiments and comparing the two approaches, two sets of
error indexes are defined: one for the piecewise strategy

εrms =

√√√√ 1

N

N∑
k=0

(T̄ − T̂ )(k)

εmax = max ‖T̄ (k)− T̂ (k)‖1
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Fig. 9. Temperature estimation with the continuous strategy.

and the other set for the continuous strategy

εrms =

√
1

N

∫ N

t=0

(T − T̂ )(t)

εmax = max ‖T (t)− T̂ (t)‖1

It is worth remarking that the former refers to a time
series where each instant corresponds to a ping of current,
whereas the latter is a continuous time evaluation of the error;
observe that, although the indexes are computed differently,
the comparison between the two set of error indexes is fair.

The estimation strategies proposed have been validated in
the scenario described in Section III; in order to evaluate
the efficacy of the strategies in a real case study, the current
profile fed to the MR damper follows the ping experiment
in Fig. 2, where the suspension control logic is overridden
by a ping of constant current (the ping is only needed by the
piecewise strategy, whereas the continuous strategy ignores
it).

The results are presented in Fig. 10 – 11, where each
experiment is characterized by a different current profile. The
piecewise strategy is the most accurate, with a maximum
error of 6 °C, whereas the continuous strategy yields, in
general, much poorer results. In particular, the latter strategy
performs badly in those experiments where the average
current is low (< 300 mA), confirming the statements at
the end of Section V-B.

VII. CONCLUSIONS

This article proposes two strategies, piecewise and con-
tinuous, for the estimation of the temperature of the MR
fluid contained in a MR damper, presenting the theoretical
foundations for the viability of estimating the temperature
through the resistance of the coil inside the piston.

The first strategy is based on the injection of a constant
current (i.e., ping) into the coil, which allows the algorithm
to estimate the temperature in the time span of the ping.
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The latter strategy can yield a continuous estimate of the
temperature without needing any ping.

The results, which have been validated on a real set-up,
show the piecewise strategy gives a more accurate estima-
tion of the MR fluid’s temperature (± 6 °C), whereas the
continuous strategy performs much worse (± 20 °C).

The piecewise strategy is better suited for those applica-
tions where a higher accuracy is requested and it is possible
to override the current with a ping signal; on the contrary,
when it is not possible to inject a ping, the continuous
strategy shall be employed to estimate the temperature of
the MR fluid in a MR damper.

Eventually, the proposed strategies are not computationally
burdensome; hence, they can be deployed to any on-board
ECU for a real-time estimation.
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