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Computationally efficient stochastic MPC: a probabilistic scaling
approach
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Abstract— In recent years, the increasing interest in Stochas-
tic model predictive control (SMPC) schemes has highlighted
the limitation arising from their inherent computational de-
mand, which has restricted their applicability to slow-dynamics
and high-performing systems. To reduce the computational
burden, in this paper we extend the probabilistic scaling
approach to obtain low-complexity inner approximation of
chance-constrained sets. This approach provides probabilistic
guarantees at a lower computational cost than other schemes
for which the sample complexity depends on the design space
dimension. To design candidate simple approximating sets,
which approximate the shape of the probabilistic set, we
introduce two possibilities: i) fixed-complexity polytopes, and
ii) /,-norm based sets. Once the candidate approximating set
is obtained, it is scaled around its center so to enforce the
expected probabilistic guarantees. The resulting scaled set is
then exploited to enforce constraints in the classical SMPC
framework. The computational gain obtained with the proposed
approach with respect to the scenario one is demonstrated via
simulations, where the objective is the control of a fixed-wing
UAYV performing a monitoring mission over a sloped vineyard.

I. INTRODUCTION

In recent years, the performance degradation of model
predictive control (MPC) schemes in the presence of un-
certainty has driven the interest towards stochastic MPC, to
overcome the inherent conservativeness of robust approaches.
A probabilistic description of the disturbance or uncertainty
allows to optimize the average performance or appropriate
risk measures. Furthermore, allowing a (small) probability
of constraint violation, by introducing so-called chance con-
straints, seems more appropriate in some applications. As
highlighted in [1], current SMPC methods can be divided
in two main groups, depending on the approach followed
to solve the chance-constrained optimization problem: (i)
analytic approximation methods; and (ii) randomized [2]
and scenario-based methods. For the analytic approximation
methods, the probabilistic properties of the uncertainty are
exploited to reformulate the chance constraints in a deter-
ministic form. For the second class of methods, the craved
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control performance and constraint satisfaction are guaran-
teed properly generating a sufficient number of uncertainty
realizations and on the solution of a suitable constrained
optimization problem, as proposed in [3], [4]. The main
advantage of this class of stochastic MPC algorithms is
given by the inherent flexibility to be applied to (almost)
every class of systems, including any type of uncertainty and
both state and input constraints, as long as the optimization
problem is convex. On the other hand, they share two main
drawback: i) slowness, which has limited their application
to problems involving slow dynamics and where the sample
time is measured in tens of seconds or minutes; and ii)
a significant computational burden required for real-time
implementation, narrowing the application domains to those
involving low-computation assets. Some examples are [5] for
water networks, [6] for river flood control, [7] for chemical
processes, and [8] for energy plants.

An efficient solution to the aforementioned disadvantages
was proposed in [9] where the SMPC controllers design is
based on an offline sampling approach and only a predefined
number of necessary samples are kept for online implemen-
tation. In this approach, the sample complexity is linearly
dependent to the design space dimension and the sampling
procedure allows to obtain offline an inner approximation of
the chance-constrained set. This approach has been extended
to a more generic setup in [10] and experimentally validated
for the control of a spacecraft during rendezvous maneuvers.
Beside the efficacy of the approach, the results highlighted
the need to further reduce the computational load and the
slowness of the proposed approach to comply with faster
dynamics and low-cost, low-performance hardware.

Among challenging applications, the control of unmanned
aerial vehicles (UAVs) during assorted scenarios, have been
triggering the attention of MPC community. These platforms
are typically characterized by fast dynamics and equipped
with computationally-limited autopilots. In the last decade,
different receding horizon techniques have been proposed,
see e.g. [11], [12], [13], [14], including a stochastic approach
by [15]. In this case, preliminary analysis have confirmed the
effectiveness of the proposed offline sampling-based SMPC
(OS-SMPC) strategy but the results highlighted also the need
to further reduce the dimension of the optimization problem
to comply with hardware requirements.

The main contribution of this paper is to propose a
new methodology that combines the probabilistic-scaling
approach proposed in [16], which allows to obtain a low-
complexity inner approximation of the chance constrained
set, with the SMPC approach of [9], [10]. In [16], authors



show how to scale a given set of manageable complexity
around its center to obtain, with a user-defined probability,
a region that is included in the chance constrained set. In
this paper, we extend the aforementioned approach showing
how it is possible to reduce the sample complexity via prob-
abilistic scaling exploiting so-called simple approximating
sets (SAS). The starting point consists in obtaining a first
simple approximation of the “shape” of the probabilistic set.
To design a candidate SAS, we propose two possibilities. The
first one is based on the definition of an approximating set
by drawing a fixed number of samples. On the other hand,
the second case envisions the use of ¢,-norm based sets,
first proposed in [17]. In particular, we consider as SAS a
{1-norm cross-polytope and a {,,-norm hyper-cube. Solving
a standard optimization problem, it is possible to obtain the
center and the shape of the SAS, which will be later scaled
to obtain the expected probabilistic guarantees following the
approach described in [16]. Then, the scaled SAS is used in
the classical SMPC algorithm to enforce constraints.

To validate the proposed approach, an agriculture scenario
has been selected, because of the increasing interest of using
drones in the agriculture 4.0 framework, as explained in [18],
due to their great potential to support and address some of
the most pressing dares in farming. And real-time quality
data and crop monitoring are two of those challenges. In
particular, UAVs could represent a favorable alternative to
conventional farming machines, whenever clear advantages
with respect to traditional methods, in terms of higher
efficiency in operations, reduced environmental impact or
enhanced human health and safety are sought. For this paper,
the control objective envisions the proposed approach applied
to a fixed-wing UAV performing a monitoring mission over
a sloped vineyard, following a pre-defined snake path. The
performance of the proposed approach in terms of tracking
capabilities and computational load has been compared with
those obtained exploiting the “classical” OS-SMPC scheme
proposed in [15].

Notation: The set N denotes the positive integers, the
set N>g = {0} UN- the non-negative integers, and N2 the
integers interval [a, b]. Positive (semi)definite matrices A are
denoted A = 0 (A = 0) and ||z||3 = 27 Az. For vectors,
z > 0 (z = 0) is intended component-wise. Pr, denotes the
probabilistic distribution of a random variable a. Sequence
of scalars/vectors are denoted with bold lower-case letters,
ie. v.

II. OFFLINE SAMPLING-BASED STOCHASTIC MPC
In this section, we first recall the Stochastic MPC Frame-
work proposed in [9], [10].
A. Problem setup
We consider the case of a discrete-time system subject to
generic uncertainty wy € R™v
Tp1 = A(wg)xk + B(wi)ug + aw(wr), (1)

with state z € R”, control input u; € R™, and the vector
valued function a,,(wy) represent the additive disturbance

affecting the systems states. The system matrices A(wy) and
B(wy,), of appropriate dimensions, are (possibly nonlinear)
functions of the uncertainty wy at step k. The disturbances
(wk)kens, are modeled as realizations of the stochastic pro-
cess (W )ken-,» on which take the following assumptions.

Assumption 1 (Random Disturbances): The disturbances
Wy, for k € N>, are independent and identically distributed
(i.i.d.), zero-mean random variables with support W C
R™w. Moreover, let G = {(A(wk), B(wk), @w(Wk)}y, cws
a polytopic outer approximation with N, vertexes G =
co{Al, B, az;’}jeN{VC 2 G exists and is known.

We can notice that the system can be augmented by a
filter to model a specific stochastic processes of interest. The
assumption of independent random variables in necessary
to perform the offline computations discussed next while
the need of a known outer bound is required to establish
a safe operating region (see [9] for details). We remark
that the system’s representation in is very general, and
encompasses e.g. those in [9], [10], [19]. Given the model
and a realization of the state zj at time k, state predictions
[ steps ahead are random variables, as well and are denoted
x|, to differentiate it from the realization x;y . Similarly
uy) denotes predicted inputs that are computed based on the
realization of the state xy.

The system is subject to p state and input chance con-
straints of the form']

I:)rw {[Hw];rmﬂk + [Hu]?ul\k S 1|$k} Z 1-—- €j,y
1€Nso, j N, (2
with ¢; € (0,1), and H, € RP*", H,, € RP*™, where [H]]T
denotes the j-th row of matrix H. The probability Pry, is
measured with respect to the sequence w = {w; };~x. Hence,
equation (2)) states that the probability of violating the linear
constraint [H,]]« 4 [H,]]u < 1 for any future realization
of the disturbance should not be larger than ¢;.
The objective is to derive an asymptotically stabilizing
control law for the system such that, in closed loop, the
constraints (2) are satisfied.

B. Stochastic Model Predictive Control

To solve the constrained control problem, a stochastic
MPC algorithm is considered. The approach is based on
repeatedly solving a stochastic optimal control problem
over a finite, moving horizon, but implementing only the
first control action. Defined the control sequence as ug =
(uo|ks U1y -y UT—11), the prototype optimal control prob-
lem that is to be solved at each sampling time is given
minimizing the cost function

Jr(zk,ug) =

T-1
=0

IThe case where one wants to impose hard input constraints can be also
be formulated in a similar framework, see e.g. [9].



with @ > 0, R > 0, and appropriately chosen P > 0, subject
to the system dynamics (I)) and constraints (2).

The online solution of the stochastic MPC problem re-
mains a challenging task but several special cases, which can
be evaluated exactly, as well as methods to approximate the
general solution have been proposed in the literature. The
approach followed in this work was first proposed in [9],
[10], where an offline sampling scheme was introduced.
Therein, with a prestabilizing input parametrization

uyk = Ky + oy, “4)

with suitably chosen control gain K € R"*™ and free
optimization variables vy, € R™, equation (I) is solved ex-
plicitly for the predicted states x|, ...,z and predicted
inputs ug|y, - - ., ur—_1%. In this case, the expected value of
the finite-horizon cost (3) can be evaluated offline, leading
to a quadratic cost function of the form

Tk
T T 4T1&
JT(Ik,Vk) = [Ik Vi ln]S Vi (5)
1,
in the deterministic variables vy = (Vojk, Vijks -, V1)

and xj. The reader can refer to [10, Appendix A] for a
detailed derivation of the cost matrix S.

Focusing now on the constraint definition, we can no-
tice that by introducing the uncertainty sequence wj =
{w; }i=k,... k+17—1, We can rewrite the j-th chance constraint
defined by equation (2)) as

XI = { {xk] e R™mT |
€ Vi

Prw, {ij(Wk) [i’;] < 1} >1- 5}7 ©6)

with f; being a function of the sequence of random variables
wy. Again, the reader is referred to [10] for details on the
derivation of f;. The results in [9] show that, by exploiting
results from statistical learning theory (cf. [20], [21]), we can
construct an inner approximation X’ of the constraint set X4
by extracting Ny i.i.d. samples W](:) of wy, and taking the
intersection of the sampled constraints, i.e.

J T n+mT

Frwi) [”} <1,i= 1,...,NLT}, (7)

Vi

In particular, it has been shown in [9], that for given
probabilistic levels 6 € (0,1) and ¢; € (0,0.14), choosing
the sample complexity

N}, > N(n+mT,e;,0)

4.1 21.64 8
= —(ln +4.39(n + mT) log, (ﬁ)) )
1) €5
guarantees that with probability at least § the sample approx-
imation XJLT is included in the original chance constraint Xg,
ie.

g

Pr{ngng}zl—é, i=1,..p. 9)

Hence, exploiting these results, we obtain that the stochastic
MPC problem can be well approximated by the following
linearly constrained quadratic program

min Jr(zgv) (10)
(11)

While the result reduces the original stochastic optimiza-
tion program to an efficiently solvable quadratic program,
the ensuing number of constraints, equal to

st (g, Vi) €X)py G=1,.0p

T
Npr = Z Nir,

i=1
may still be too large. For instance, even for a moderately
sized MPC problem with n = 5 states, m = 2 inputs and
horizon of T' = 10, and for a reasonable choice of proba-
bilistic e/ = 0.05, § = 1075, we get N7, = 20,604. For
this reason, in [9] a post-processing analysis of the constraint
set was proposed for removing redundant constraints. While
it is indeed true that all the cumbersome computations may
be performed offline, it is still the case that in applications
with stringent requirements on the solution time the final
number of inequalities may easily become unbearable. This
observation motivates the approach presented in the next
section, which builds upon the results presented in [16],
showing how the probabilistic scaling approach leads to
approximations of “controllable size,” that can be directly
used in applications.

III. COMPLEXITY REDUCTION VIA PROBABILISTIC
SCALING

In this section, we consider the very general problem of
finding a decision variable vector &, restricted to a set = C
R™ subject p uncertain linear inequalities. Formally, we
consider uncertain inequalities of the form

F(q)¢ < g(q)

where F'(q) € RP*™ and g(q) € R" are continuous
function of the uncertainty vector ¢ € R™¢. The uncertainty
vector ¢ is assumed to be of random nature, with given prob-
ability distribution Pr, and (possibly unbounded) support Q.
Hence, to each sample of ¢ corresponds a different set of
linear inequalities. We aim at finding an approximation of
the e-chance-constraint set, defined as

X. = {€ € 2| Pr, {Flo) < gl)} > 1 - ¢}

that represents the region of the design space = for which this
probabilistic constraint is satisfied. Note that this captures
exactly the SMPC setup discussed in the previous section.
Indeed, the chance-constrained set in @ is a special instance
of (T3), with ¢ = [z} vi]" and ¢ = wy,.

The characterization of the chance constrained set has
several application in robust and stochastic control. A clas-
sical approach is to find inner convex approximation of
the probabilistic set X., obtained for instance by means of
applications of Chebyshev-like inequalities, see e.g. [22] and

12)

13)
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Fig. 1. Example of chance-constraint set for ¢ = 0.05, for 2D scalar linear
constraints of the form f(q)T¢ < 1, with f(q) = q1 - g2 € R%, q1 € R
uniformly distributed in the interval [0.5,1.5] and g2 € R? Gaussian with
variance .. The set was obtained by evaluating the empirical probability
via random sampling.

[23]. A recent approach, which is the one applied in the
previous section to the SMPC problem, is instead based on
the derivation of probabilistic approximations of the chance
constraints set X, through sampling of the uncertainty. That
is, we aim at constructing a set X which is contained in X,
with high probability.

Denote Fj(g) and g; the j-th row of F(g) and j-th
component of ¢ respectively. Consider the binary functions

hi(€,q) ﬁ{ (1) if Fj(9)¢ <g;la) . _ L

otherwise »J P

Now, if we define
P
(& a) = [ hia)-
=1

we have that h is an (1, p)-boolean function since it can be
expressed as a function of p boolean functions, each of them
involving a polynomial of degree 1. See e.g. [21, Definition
7] for a precise definition of this sort of boolean functions.
Suppose that we draw N i.i.d. samples ¢, i = 1,..., N.
Then, we can consider the (empirical) region X defined as

Xy ={¢eR™ : hi&,q¢P)=0i=1,...,N}.

It has been proved in [21, Theorem 8], that if € € (0,0.14)
and N is chosen such thafl

N > a1 (ln 2161 + 4.39n¢ log, <86p>)
€ ) €

then Xy C X, with a probability no smaller than 1 — §.

We notice that X is a convex set, which is a desirable
property in an optimization framework. However, the number
of required samples N might be prohibitive for a real-time
application. To tackle this issue, in this paper we exploit
an appealing alternative approach proposed in [16], and we
specialize it to the problem at hand. This work proposes
a probabilistic scaling approach to obtain, with given con-
fidence, an inner approximation of the chance constrained

2Note the difference under the log, with respect to (§).

set X, avoiding the computational burden due to the sample
complexity raising in other strategies.

The main idea behind this approach consist in first ob-
taining a simple initial approximation of the “shape” of the
probabilistic set X, by exploiting simple approximating sets
of the form

T.PH S.

This set is not required to have any guarantees of probabilis-
tic nature. Instead, to derive such probabilistic guaranteed
set, a scaling procedure is devised. In particular, an optimal
scaling factor ~ is derived so that the set scaled around its
center x.

S(y) =z 18 (14)

is guaranteed to be an inner approximation of X. with the
desired confidence level 4.

A. Simple Approximating Sets

The idea at the basis of the proposed approach is to define
Simple Approximating Sets (SAS), which represent specif-
ically defined sets with a low — and pre-defined — number
of constraints. First, we note that the most straightforward
way to design a candidate SAS is to draw a fixed number
Ng of uncertainty samples, and to construct a sampled
approximation as follows:

1. Sampled-poly

Ns
Ss =X (15)
i=1

where

Clearly, if Ng << Npr, the probabilistic properties of Sq
before scaling will be very bad. However, at this point we do
not care, since the probabilistic scaling proposed in Section
[[IT=B] will take care of this.

A second way to construct a SAS considered in this paper
exploits a class of £,-norm based sets introduced in [17] as
follows

Az, P) ={{ €eR"™ |{=a.+ Pz,z€ B,}, (17)

where B, C R"™¢ is the unit ball in the p norm, z. is the
center and P = PT > 0 is the so-called shape matrix. In
particular, we note that for p = 1, oo these sets take the form
of polytopes with fixed number of facets/vertices. Hence, we
introduce the following two SAS:
2. {1-poly

S; ={{eR™ [{=a.+ Pz |z[p <1}, (18)

defined starting from a cross-polytope, also known as
diamond, of order n¢ with 2ng vertices and 2"¢ facets.

3. {so-poly

Sm:{£6Rn£|§:zc+P37 ||ZH0<><1}, (19)



defined starting from a hyper-cube of dimension n¢ with
2™¢ vertices and 2n; facets.

Hence, the problem becomes designing the center and
shape parameters (z., P) of the set S; (resp. S_,) so that
they represent in the best possible way the set X.. To this
end, we start from a sampled design polytope

Np
D= ﬂ Xi,
i=1

with a fixed number of samples [Np, and construct the largest
set S, (resp. S,.) contained in . It is easily observed that
to obtain the largest #;-poly inscribed in D, we need to solve
the following convex optimization problem

max tr(P) (20)
st. P=0,
P < g — fTa,
i=1,...,Np, e, 1)

where V; = {zl1,... 2[?7¢]} are the vertices of the unit
cross-polytope while the vertices of the optimal ¢;-poly can
then be obtained as

0 — w £ P2V, =1, 2n. (22)

It should be remarked that, from these vertices, one could
then recover the corresponding 2™¢ linear inequalities, each
one defining a facet of the rotated diamond. However, this
procedure, besides being computationally extremely demand-
ing (going from a vertex-description to a linear inequality
description of a polytope is known to be NP hard, [24]),
would lead to an exponential number of linear inequalities,
thus rendering the whole approach not viable. Instead, we
exploit the following equivalent formulation of (T7), see
e.g. [17] for details

Sy ={¢eR™ | [|[Mz —c|y <1} (23)

where M = P~! and ¢ = P~ !x.. From a computational
viewpoint, this second approach results to be more appealing.
Indeed, using a slack variable (, it is possible to obtain the
following system of 3n¢ + 1 linear inequalities

min—cigg, i:l,...,ng
_m?§+czSCla 22177’”5
C,‘EO, i:l,...,nf
Z?£(i§17

The same convex optimization problem of (20) could be
solved to define the center and the shape of the largest {.-
poly inscribed in . However, this would involve an expo-
nential number of vertices 2"¢. To avoid this, an approach
based on Farkas lemma can be adopted, exploiting again a
formulation in terms of linear inequalities. The details are
not reported here due to space limitations. In this second
case, obtained the center x. and the rotation matrix P, the
corresponding H-poly has only 2n¢ hyper-planes, each one
representing a different linear inequality.

Once the initial SAS, Sg and the ¢;- and /-polys, i.e. S;
and S_, respectively, has been evaluated in terms of linear
inequalities, the probabilistic scaling approach can be applied
to determine the corresponding scaling factor ~. The scaling
procedure is described in details in the paper [16]. For the
sake of completeness, in the next subsection we recall its
basic ideas and illustrate its application to the SAS case.

B. SAS probabilistic scaling

Given a candidate SAS set, the following simple algorithm
can be used to guarantee with prescribed probability 1 — ¢
that the scaled set S(y) is a good inner approximation of X..

Algorithm 1 Probabilistic SAS Scaling
1: Given probability levels € and 4, let

767 1 N.
Ny>—In—andr= £y .
€ ) 2
2: Draw NV, samples of the uncertainty gV, . Ny
3: for i =1to N, do
4: Solve the optimization problem
y; = argmax -y (24)

st. S(v) € X,

5: end for
6: Return the r-th smallest value of ~;.

A few comments are at hand regarding the algorithm
above. In step 4, for each uncertainty sample ¢(*) one has
to solve a convex optimization problem, which amounts at
finding the largest value of ~ such that S(v) is contained
in the set X; defined in . Then, in step 6, one has to
reorder the set {1,72,...,7n, } so that the first element is
the smallest one, the second element is the second smallest
one, and so on and so fort, and then return the r-th element
of the reordered sequence. The following Lemma applies to
Algorithm 1.

Lemma 1: Given a candidate SAS set in the form S(v) =
DS, assume that z. € X.. Then, Algorithm 1 guarantees
that

S(y) € Xe

with probability at least 1 — 9.
Proof to Lemma 1 is reported in Appendix.

C. Illustrating Example

To better illustrate the proposed approach, and to high-
light its main features, we first consider a simple three-
dimensional examples (n¢ = 3), with scalar uncertain linear
inequalities of the form

flg)Fe<t

with f(¢) = q1g2, with ¢ € R uniformly distributed in
the interval [0.5,1.5] and ¢o € R3 zero-mean Gaussian
distribution. Note that, for ng = 3, the £; and /-polys have
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Fig. 2. Visualization of the probabilistic scaling procedure for the 2D
chance-constraint set considered in Figure [[l-B] The initial set (in red) was
obtained by constructing the largest S,-poly enclosed in the set S.

10 and 6 facets, respectively, irrespective to the number of
design samples Np used to preliminary obtain the generic
polyhedron ID. However, as we will see, the number of
constraints Np employed to design the initial SAS plays
a significant role in the final outcome of the procedure.
To show this, we performed two different tests, where the
number of design samples was set to Np = 100 and Np =
1,000. The results are shown in Figures [3] and [ respectively,
for both the ¢; (left) and /., (right) cases. Algorithm 1
was applied in all cases with ¢ = 0.05 and 6 = 1076,
leading to N, = 2,063 and r = 103. For allowing a better
comparison, the same set of samples where considered for
the evaluation of the scaling factor in all examples. These
samples lead to N, random hyper-planes which define a
polyhedron represented (in black) in the figures.

04,
0.2
0-
-0.2.
04 .
02 . < -
o T, 02 02
02
0.4 02
(a) v1 = 0.7183 (b) Yoo = 0.6527
Fig. 3. Scaled ¢1-poly (a) and £o.-poly (b) obtained starting from Np =
100.

It can be observed that when Np is small, the ensuing
initial ¢1- (resp. {oo-) poly is large, and Algorithm 1 returns
a scaling factor - which is less than one (Fig. [3). Hence, the
probabilistic scaling produces a “deflation” of the original set
so to guarantee the probabilistic constraints. Vice-versa, for
large Np (Fig.[), the scaling produces an inflation, returning
a value of v larger than one.

Finally, we compared the ¢1- / £,,- polys with the naive
approach based on sampled polytope Sg. Notice that, to
allow a fair comparison, we should select a number of hyper-
planes comparable with the number of linear inequalities
defining S; and S . In Fig. [5(a)] we represent the initial

0.2

02
0.1
0 0
0.1
0.2 02
02 02
0 : 0.2 : 0.2
0.2 0 0 : 0
02 02

-0.2

(a) y1 = 1.1509 (b) Yoo = 1.1890

Fig. 4. Scaled ¢;-poly (a) and £~ -poly (b) obtained starting from Np =
1, 000.

and final polytopes. Then, we also generated two additional
sampled-polys with Ng = 100 and Ng = 1,000, i.e. equal
to the number of hyper-planes used to generate the design
polyhedrons D for the previous case. These are depicted in

0.5

(a) Ng = 10, vg = 0.1754

0.2
0.2 0.1
0 0
0.1
02 02

02 0.2 02 ™ 02

0 > 0 0 - 0
02 0.2 0.2 0.2

(b) Ns =100, vs = 0.6918 (c) Ng = 1000, vs = 0.9459

Fig. 5. Scaled sampled-polys obtained starting from Ng = 10 (a), Ng =
100 (b) and Ng = 1,000 (c) and for N = 2,063.

Figs. while the volumes of the different SASs are
reported in Table

IV. UAV CONTROL OVER A SLOPED VINEYARD

The selected application involves a fixed-wing UAV per-
forming a monitoring mission over a Dolcetto vineyard at
Carpeneto, Alessandria, Italy (44°40'55.6"N,8°37'28.1"E).
The Mission Planner of ArduPilot open source autopilot has



TABLE I
VOLUME OF THE DIFFERENT SASS CONSIDERED IN EXAMPLE 1.

S Ns Np Vv
S, | 10 — | 0.0001
S0 | 100  — | 0.0403
S1000 | 1000 — | 0.0526
S - 100 | 0.0176
S, — 1000 | 0.0258
Seo — 100 | 0.0131
- — 1000 | 0.0175

been used to identify a grid pattern with a peculiar path
orientation with respect to the grapevine rows, as shown
in Fig. [0l The main objective is to provide proper control

Fig. 6. Carpeneto vineyard, Piedmont, Italy (credit: Google).

capabilities to a fixed-wing UAV to guarantee a fixed relative
altitude with respect to the terrain of 150 m while following
the desired optimal path defined by the guidance algorithm
(described in detail in [25]), maintaining a constant airspeed,
i.e. Viey = 12 m/s. The controllability of the aircraft shall
be guaranteed despite the presence of external disturbance
due to a fixed-direction wind turbulence, which intensity can
randomly vary among +1 m/s.

For validation purpose, the longitudinal control of the UAV
has been provided exploiting both OS-SMPC and the new
PS-SMPC approach. In this case study, we have that the state
variable are the longitudinal component of the total airspeed
in body axes u, the angle of attack «, the pitch angle 6,
the pitch rate ¢, and the altitude h. On the other hand, the
control variables are represented by the throttle command
AT and the elevator deflection J.. Hence, we have n = 5
and m = 2 while the prediction horizon 7" has been set
equal to 15. Consequently, setting ¢ = 0.05, § = 1075, we
get N = 20,604 and N, = 2,063. On the other hand, the
sample complexity selected for generating the ¢;-poly has
been set equal to Np = 100 obtaining (n + mT) - Np =
3,500 hyper-planes but only 3(n +mT) 4+ 1 = 107 linear
constraints implemented online.

The preliminary results are represented in Fig. [7] as 3D
trajectories and in Fig. [§] as controlled states with respect
to reference signals. We can notice that both MPC schemes
provide acceptable tracking capabilities, despite larger (but
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Fig. 7. UAV controlled trajectories obtained running OS-SMPC (a) and
PS-SMPC (b) five times each.
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Fig. 8. Zoom-in on the behavior of controlled state variables, i.e. airspeed
u, altitude h and roll angle ¢, obtained exploiting OS-SMPC (blue lines)
and PS-SMPC (red lines) with respect to corresponding reference signals
(black lines), i.e. Uref, Pres and ¢rey.

still acceptable) oscillations can be observed in[7(b)] when the
scaled set is exploited. More interesting results are reported
in Tab. [l in terms of maximum and average values of the
computational time required to solve online the finite-horizon
optimal control problem, evaluated for 5 different run each.
The results show a significant reduction (about 100 times
lower) of the computational load when a lower complexity
constraint set is employed. This makes the stochastic MPC
approach not only effective from a performance viewpoint
but also presumably compliant with the computational con-
straint coming from autopilot hardware.

V. CONCLUSIONS

In this paper, we proposed a novel approach which exploits
a probabilistic scaling technique recently proposed by some
of the authors to derive a novel Stochastic MPC scheme. The



TABLE II
MAXIMUM AND AVERAGE COMPUTATIONAL COST REQUIRED BY
OS-SMPC AND PS-SMPC APPROACHES FOR ONLINE SOLVING THE
OPTIMIZATION PROBLEM DURING EACH RUN.

N leyaxgs  teaveog  lemaxpg  teavepg
1 2.0959 0.4178 0.0966 0.0087
2 0.5394 0.3291 0.0215 0.0088
3 5.1215 0.4546 0.1065 0.0045
4 2.1497 0.5434 0.2628 0.0086
5 2.9411 0.5626 0.7221 0.0190

introduced framework exhibits a lower computational com-
plexity, while sharing the appealing probabilistic guarantees
of off-line sampling.

APPENDIX

The proof of to Lemma 1 follows from Proposition 1 in
[16], which guarantees that, for given r > 0, Pr{S(~) C X.}
is guaranteed if the scaling is performed on a number of
samples such that

2(r — 1)1111

—14+In=
T +In—-+ 5

(25)

Since r = [%L we have that r—1 < % Thus, inequality

(23) is satisfied if
N 1 1
%-Hng—kwleng
N 1 1 1.1
S llm-+4/N=In=.
2+€n§+ s

Lettin V =+VN and o =
rewrites V2 —2aV —2a? > 0, which has unique positive so-
lution V > (1—|—\/§)a, which rewrites as N > % In %.

The formula in Algorithm 1 follows by observing that
(1++/3)2 < 7.67.

N

vV
™ | =

\/L1In %, the above inequality
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