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Modeling and control of electrostatically levitated MEMS

Michael Andonian1, Kenneth Pyle2, and Robert M’Closkey3

Abstract— A system for electrostatically suspending a silicon
disk between two sets of electrodes is reported. The electrodes
exert electrostatic forces on the disk and also measure differ-
ential capacitances related to the disk position. There are no
electrodes that directly exert in-plane forces on the disk sidewall,
however, tilting the disk relative to the plane of the electrodes
does exert lateral forces. Additional lateral-sensing electrodes
are then used to determine the disk’s lateral position so precise
positioning of the disk is possible without any disk contact.
Experimental stabilization results are reported.

I. Introduction

The modeling, analysis, and control of an electrostatically
suspended silicon disk is reported. The disk is a rigid six
degree-of-freedom system, however, yaw motion about an
axis normal to the disk is not observable with the electrode
arrangement. A schematic of the disk and its electrode set
is shown in Fig. 1 (the electrode-disk gaps are not to scale).
Although the disk is 8.2 cm in diameter, the disk-electrode
transduction gaps are only 134 µm when the disk is centered
between the electrode sets. The electrostatic forces developed
across such gaps are large enough to lift the disk with less
than 300 V applied to the top set of electrodes. Although this
is an initial proof-of-concept system, the goal is to reduce
the disk size to accommodate testing of disk resonators like
those described in [1].

The transduction system uses transformers in the same
manner as the North American Aviation Electrostatically
Levitated Gyro (ESG) [2], [3]: the electrodes measure
differential capacitances related to the disk position and
provide a natural null signal when the disk is centered; the
same electrodes also exert controlled electrostatic forces on
the disk. While this dual function of the electrodes reduces the
complexity of the electronics and system design, considerable
“feedthrough” is produced from the control signal to the
measurements. This feedthrough must be removed from the
measurements prior to implementing the controllers. One
significant difference between this work and that pertaining
to the ESG is the fact that stabilizing the disk is a more
challenging problem than stabilizing a sphere since the latter
body only requires three degrees-of-freedom to be controlled.
Electrostatic suspension of spherical proof masses, albeit
with different electronic schemes than those discussed in this
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paper, are discussed in [4], [5]. Contactless manipulation of
disks is also demonstrated in [6], [7], [8] for the purpose of
handling media storage. In these references, though, the disk’s
lateral degrees-of-freedom are not explicitly modeled and it
appears that the lateral disk position is passively stabilized by
fringe-field electrostatic forces which tend to center the disk
under the electrodes. An electrostatically suspended ring gyro
is reported in [9], however, the lateral degrees-of-freedom
are controlled with electrodes that lie in the ring’s plane
and exert forces on the ring sidewall. The system reported
herein permits the disk to undergo large, controlled lateral
displacements. The electrodes do not exert strong fringe-field
forces on the disk and so the lateral degrees-of-freedom are
controlled by tilting the disk.

The paper is organized as follows: Sec. II describes the
disk-electrode geometry; Sec. III provides details on the
signal transduction scheme; Sec. IV develops and analyzes
the system model; Sec. V examines controller design; Sec. VI
presents the experimental results and validates the modeling
paradigm; Sec. VII concludes the paper.

II. System Description

The silicon disk diameter is 8.2 cm and its thickness is
400 µm. The disk has a thin layer of sputtered aluminum
to ensure it is an equipotential body. The top and bottom
electrode sets are patterned on glass plates and are identical.
The glass plates are not shown in Fig. 1. The glass plates
are assembled so that they are parallel and an electrode on
the top plate is aligned with a mirror-image electrode on the
bottom plate. When the disk is uniformly centered between the
electrode sets there is an electrode-disk gap of approximately
134 µm between the top of the disk and top electrode set,
and a 134 µm gap between the bottom of the disk and the
bottom electrode set. The four pie-shaped primary electrodes
are labeled E1 through E4 for the top set and E11 through
E14 for the bottom set. Each primary electrode has area
Ap = 10.3 cm2. The primary electrodes are grouped into four
pairs: the electrodes immediately facing each other (with the
disk between them) form one pair, e.g., E1 and E11 form one
primary pair. The primary pairs exert controlled electrostatic
forces on the disk and also measure differential electrode-disk
capacitances. The capacitance measurements are related to
the electrode-disk gaps associated with each primary pair.
Yaw is not observable using these measurements, nor can
yaw moments be applied to the disk.

The disk’s position in the X-Y plane is measured with
lateral electrodes. In reality there are only four lateral
electrodes because mirror image electrodes on the top and
bottom plates actually form a single electrode as suggested
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Fig. 1. Exploded view of the electrode configuration and disk. The primary
electrodes are labeled E1, E2, E3 and E4 for the top electrode set, and E11,
E12, E13 and E14 for the bottom electrode set. The lateral electrodes are
labeled E5, E15, E6 and E16. Note that a single lateral electrode has an
element on both the top and bottom. The disk center of mass is displaced
from the inertial X-Y-Z frame in this schematic.

by the labels in Fig. 1. The lateral electrodes are also
grouped into (two) pairs with antipodal electrodes creating
a pair, e.g., E5 and E15 form a lateral pair, and E6 and E16
form the second pair. A lateral pair provides a differential
capacitance measurement proportional to the lateral position
of the disk relative to the pair, e.g., E5 and E15 measure
disk displacement in the X coordinate direction. The lateral
electrode configuration also largely rejects the disk’s vertical
and tilting rigid body motion.

The differential capacitance measurements provide con-
venient null positions: if all differential capacitances of
the primary pairs are zero then the disk is parallel to the
electrodes with uniform and equal gaps between the disk
and primary electrodes (this assumes an ideal transformer
model with no parasitic capacitance; in practice, there exist
measurement offsets, but these are easily removed). Similarly,
if the differential capacitances of the lateral pairs are zero
then the disk is symmetrically centered relative to the lateral
electrodes. Deviation from the null positions generate non-
zero measurements.

The diameter spanned by the primary electrodes is smaller
than the disk diameter and consequently when the disk is near
its null position the net in-plane forces exerted on the disk
by primary electrodes’ electrical fringe fields is essentially
zero. The lateral electrodes are operated at lower potentials
and their fringe field forces are not modeled. It is possible to
exert in-plane forces on the disk, however, this requires that
the disk be tilted relative to the plane of the electrodes: the
disk is an equipotential body so the field lines are normal to
the disk’s top and bottom surface; if the disk is tilted to be
non-parallel to the primary electrodes, the electrostatic forces
exerted on the disk will have a non-zero in-plane component.
It will be shown how this property can be exploited to control
the disk’s lateral position.

III. Electrode-transformer interface

The pairing of primary electrodes is achieved with trans-
formers as illustrated in Fig. 2. A given primary pair is con-
nected to its transformer’s primary leads. The transformer’s
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Fig. 2. Circuit schematic illustrating the connection between the transformers
and the E1-E11 and E2-E12 pairs of primary electrodes. The corresponding
capacitances developed between the electrodes and disk are also shown. The
disk is not physically grounded, however, the notation is used to convey
that the disk is at ground potential due to the coordination of the center tap
currents. The connection to E3-E13 and E4-E14 is identical.

primary windings have equal inductances connected at the
center tap (ct). The center tap is driven with a sinusoidal
current ict. The constant amplitude of ict is denoted act and
ω0 is its frequency. Another transformer is connected to
the center taps of two transformers linked to two primary
electrode pairs. This guarantees that the total charge on
the disk is constant. This is central to the operation of
the system. In fact, since the disk is initially grounded,
it remains at ground potential even when suspended. By
maintaining the disk at ground, any difference between the
capacitances in a pair of primary electrodes will produce a
sinusoidal voltage drop across the transformer’s secondary
windings that is proportional to the imbalance. For example,
the primary pairs Ek and E1k, k = 1, 2, 3, 4, are associated
with capacitances Ck and C1k; if Ck = C1k (about 77 pF
when the disk is in the “null” position), indicating that the
average gap between the disk and Ek is equal to the average
gap between the disk and E1k, then vs,k = 0, where vs,k is
the “sense voltage” across the secondary winding associated
with the kth set of paired electrodes. On the other hand,
if the average gaps are not equal (Ck , C1k) then vs,k is
sinusoidal with frequency ω0. Synchronous demodulation
of vs,k yields a signal proportional to the imbalance in the
electrode-disk gap associated with Ek and E1k. The phase of
the demodulator is chosen to maximize the component of vs,k
due to disk displacement from its null position. The center tap
current provides the master phase against which all sinusoidal
signals are referenced. Furthermore, the inductances of the
transformer primary windings are large enough so that the
nominal inductor-capacitor resonant frequency is smaller than
the carrier frequency. To first order the center tap current
is evenly split between the primary inductances in a given
transformer independent of the electrode-disk capacitances.

The transformers are also used for exerting controlled
electrostatic forces on the disk. The sinusoidal “control”
potential vc,k is applied at resistor Rc that is in series with
the transformer secondary load as shown in Fig. 2. The
carrier frequency is also ω0 for this signal. This produces a
differential sinusoidal potential on each electrode in a primary
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Fig. 3. Interface between the DSP and transformer signals for the primary electrodes. The anti-alias and smoothing filters are denoted Haa and Hsm,
respectively. The lateral electrodes use a similar demodulation scheme, however, since no control signals are associated with the lateral electrodes, the
modulation path is not present for the lateral electrode signal conditioning.

electrode pair, i.e., electrode potentials arising from vc,k
invariably have a 180◦ phase difference due to the magnetic
coupling within the transformer windings. In contrast, the
ict-induced potentials on both electrodes are in-phase with
one another. The superposed effects of ict and vc,k create
sinusoidal electrode voltages with frequency ω0. The control
signal phase φc,k is selected so that changing the amplitude
of vc,k, that is, changing ac,k, produces the largest differential
amplitude change in the sinusoidal potentials on the paired
electrodes. This creates the largest differential electrostatic
force on the disk for a given value of ac,k. The electrostatic
forces are proportional to the square of the electrode voltages
so this technique exploits the fact that the disk acts as a
low-pass filter: the disk responds to the mean square value
of the electrode voltages.

The amplitude-modulated sinusoids vs,k and vc,k are related
to baseband signals that are sampled and manipulated by the
discrete-time controller. The modulation/demodulation shown
in Fig. 3 is accomplished with analog electronics. A DSP
implements the feedforward filters, coordinate transformations
and the feedback compensation discussed in Sections IV
and V. The “baseband” signals {u1, u2, u3, u4} (input) and
{ζ1, ζ2, ζ3, ζ4} (output) represent an electro-mechanical model
of the suspended disk.

The lateral electrodes E5, E15, E6, and E16 (see Fig. 1)
measure lateral displacements of the disk and are connected
to another set of transformers. This schematic is not shown
given its similarity to the primary electrodes with the only
difference being there is no “control” input associated with
the lateral electrodes. Lateral translations of the disk change
the overlapping areas between the disk and the antipodally-
paired lateral electrodes (for example, E5 and E15 are paired
via a transformer to measure the disk position in the X
direction). The lateral electrodes provide the additional
baseband measurements {ζ5, ζ6}, which correspond to disk
displacement from it’s centered null position in the X and Y
coordinate directions, respectively.

IV. SystemModel

The transformer currents and voltages and the disk dy-
namics are coupled by the electrode-disk capacitances and
electrostatic forces. The disk is described by generalized
coordinates q =

[
x, y, z, θ, ϕ

]T , where {x, y, z} represent the
displacement of the origin of the disk-fixed Xb-Yb-Zb frame

from that of the inertial frame X-Y-Z. The inertial frame
is situated so that X-Y are in the center-plane between the
electrodes and the Z coordinate axis pierces the center of
the primary electrode sets (see Fig. 1). The origin of the
body-fixed frame is at the disk center of mass with Xb-Yb

in the disk plane. Successive rotations about the X-axis and
Yb-axis are given by the θ-ϕ Euler angle sequence. When
q = 0 the body-fixed frame and inertial frame are coincident.
This is the desired equilibrium configuration of the disk.

The disk is constrained to very small rotations and its
diameter-to-thickness ratio is approximately 100. A number
of simplifying assumptions can be made. First, since the
disk is thin, calculation of electrode-disk gaps is determined
by the deflection of the disk’s center-plane and small angle
approximations can be used for defining the gaps. The vertical
displacement of the disk at the location of the primary
electrodes’ centroids are defined

z1 = z + (r0 + x)ϕ − yθ

z2 = z − (r0 + y) θ + xϕ

z3 = z − (r0 − x)ϕ − yθ

z4 = z + (r0 − y) θ + xϕ.

(1)

where r0 represents the radius of a circle in the electrode
plane that interpolates the primary electrodes’ centroids. The
electrodes’ centroids are where the “effective” electrostatic
forces act and are also used to define the effective gap for
capacitance calculations. The forces ~F1, ~F11, etc., in Fig. 1 are
located at these centroids. Fig. 4 also clarifies the relationships
by showing side views of the electrodes and disk. Thus, the
E1-disk gap is given by z0 − z1, the E11-disk gap is given by
z0 + z1, and so forth.

The disk-electrode capacitances are determined from a
parallel plate model using the effective electrode-disk gaps

Ck (q) =
ε0εrAp

z0 − zk

C1k (q) =
ε0εrAp

z0 + zk

k = 1, 2, 3, 4 (2)

where Ap represents the primary electrode area. As mentioned
above, the distributed electrostatic forces are replaced by point
forces acting at the centroids. The magnitude of point forces
associated with the primary electrode pair Ek and E1k are
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Fig. 4. Side views of the disk in relation to the electrode configuration
(not to scale). The disk is assumed to be thin for the purpose of determining
the locations of the electrostatic forces acting on it.

similarly computed assuming a parallel plate model,

Fk =
ε0εrAp

2(z0 − zk)2 v2
k

F1k =
ε0εrAp

2(z0 + zk)2 v2
1k.

k = 1, 2, 3, 4 (3)

The electrostatic forces exerted on the disk by the lateral
electrodes are neglected. These electrodes are significantly
smaller than the primary electrodes and are operated at lower
potentials.

The generalized forces associated with the generalized
coordinates are computed assuming small angles. The details
of these routine calculations are not given. Lagrange’s method
yields

mẍ = ϕ

4∑

k=1

(Fk − F1k) , mÿ = −θ
4∑

k=1

(Fk − F1k)

mz̈ + mg = −czż +

4∑

k=1

(Fk − F1k)

(Jxy cos2 ϕ + Jz sin2 ϕ)θ̈ + ϕ̇ sin(2ϕ)(Jz − Jxy)θ̇ = Qθ − cθθ̇

Jxyϕ̈ +
1
2

sin(2ϕ)(Jxy − Jz)θ̇2 = Qϕ − cϕϕ̇

where Qθ and Qϕ are the generalized moments (the expres-
sions are not shown to conserve space). The disk mass and
moments of inertia are denoted m and {Jz, Jxy}, respectively.
Squeeze-film damping between the disk and the electrodes
are represented by cz, cθ, and cϕ. The damping estimates
are taken from [10]. It is clear from these equations that
forces in the lateral directions are only produced when the
disk angles are non-zero. This implies disk motion in the
X-Y plane may be controlled by tilting the disk. Similarly,
translation in the X-Y plane changes the moments applied
to the disk and therefore affects the disk angles. Thus, the
lateral and rotational components are intrinsically coupled.

The disk equations of motion can be represented as first-
order ODEs in the form

d
dt

[
q
q̇

]
=

[
q̇

f (q, q̇,w)

]
(4)

where q is the vector of generalized coordinates, w is the
vector of transformer variables defined below, and f (q, q̇,w)
is the vector function of normalized forces and moments.

The electrical subsystem model has been extensively
described elsewhere and is only briefly reviewed. Fig. 2 shows
schematics to clarify how the transformers are connected
to the electrodes in Fig. 1. Using the transformer models
from [11], [12], the electrical subsystem equations of motion
are

M(q)ẇ = Aw + B1ict + B2vc, vs = Jw, (5)

where w denotes the vector of currents and voltages associ-
ated with the electrode pairs {Ek,E1k}, k = 1, 2, 3, 4, and
the transformers, ict is the center tap current, and vc =

[vc,1, vc,12, vc,13, vc,4]T and vs = [vs,1, vs,2, . . . , vs,6]T represent
the control voltages and sense voltages associated with the
transformers’ secondary windings (see Fig. 3). As discussed
in [11], these equations are overdetermined but convenient to
use when describing the transformers. The mass matrix M(q)
depends on the disk coordinates q because the disk position
establishes the electrode-disk capacitances.

Additional states are contributed by the analog anti-alias
filters and DAC smoothing filters shown in Fig. 3. The DAC
smoothing filter transfer functions are denoted Hsm. The
output of the smoothing filters are the signals ac,k. The vc,k
signals are created by sinusoidally modulating ac,k,

vc,k = ac,k cos(2πω0t + φu,k), k = 1, . . . , 4 (6)

where the phases are selected to achieve the maximum
change in differential amplitude of the {Ek,E1k} electrode
potentials. The smoothing filters are identical and are collec-
tively modeled by the continuous-time state-space matrices
(Asm, Bsm,Csm, 0) with state vector qsm, and output ac =

[ac,1, ac,2, ac,3, ac,4]T . The diagonal matrix of modulating
sinusoids is defined,

Dc = diag
(
cos(2πω0t + φu,1), . . . , cos(2πω0t + φu,4)

)
,

so the sinusoidal control signals at the transformers’ secondary
windings are vc = [vc,1, vc,2, vc,3, vc,4]T = Dcac.

Demodulating and filtering vs,k removes the 2ω0 harmonic
components. The filtering is accomplished using identical
anti-alias filters whose transfer functions are denoted Haa.
The inputs to the anti-alias filters are

as,k := vs,k cos(2πω0t + φs,k), k = 1, . . . , 6, (7)

The outputs of the anti-alias filters are the baseband signals
ζk sampled by the DSP. The anti-alias filters are gathered
into a single state-space representation (Aaa, Baa,Caa, 0) with
state vector qaa, input as = [as,1, . . . , as,6]T , and output
ζ = [ζ1, . . . , ζ6]T . The diagonal matrix of sinusoids that
demodulate vs is defined

Ds = diag
(
cos(2πω0t + φs,1), . . . , cos(2πω0t + φs,6)

)

so as = Dsvs. Collectively, the full coupled system is governed



by
q̇sm = Asmqsm + Bsmuc, ac = Csmqsm

M(q)ẇ = Aw + B1ict + B2Dcac, vs = Jw

q̇aa = Aaaqaa + BaaDsvs, ζ = Caaqaa

d
dt

[
q
q̇

]
=

[
q̇

f (q, q̇,w)

]
.

(8)

A. Model Linearization

A periodic solution of (8) can be found with the disk at
equilibrium between the electrode sets. This occurs when
q = 0, q̇ = 0 and when the mean-value of the electrostatic
forces and gravitational force sum to zero in the Z direction
and also exert zero net moment on the disk. The elements
of uc are adjusted until the zero net force and zero moment
conditions are achieved. The offset of uc at this condition
is denoted ū so for purposes of deriving the linearization
uc = ū + u, i.e. the linearization input is u. The sinusoidal
steady-state response of the transformer variables, denoted
w0, is computed from (5) assuming q = 0, q̇ = 0 and uc = ū.
Linear variational equations are determined about q = 0,
q̇ = 0 and w0 and yield a linear time-periodic model,

δ̇ = Aδ(t)δ + Bδ(t)u
ζ = Cδδ.

, (9)

where δ represents the state vector of perturbation variables.
The equations are time-periodic with period 1/ω0.

Analysis of (9) is carried out using the parameters reported
in [11] for all of the transformers. Furthermore, the carrier
frequency, center tap currents, and each element of the control
voltage offset to establish an equilibrium position for the
disk are ω0 = 25 kHz, act = 15.5 mA, and ū = 1.77 V,
respectively. The anti-alias filters and smoothing filters are
4-pole Butterworth with 1 kHz corner frequencies. This
produces a system model with 86 states, i.e. δ ∈ R86.

The solution to an initial value problem for (9) is,

δ(t) = Θ(t, t0)δ(t0) +

∫ t

t0
Θ(t, τ)Bδ(τ)u(τ)dτ, (10)

t ≥ t0, where δ(t0) is the initial condition represented in
the perturbation variables, and Θ(t, t0) represents the state
transition matrix associated with (9). The “start time” t0
determines the phase of the time-periodic steady-state solution
about which the linearization is computed. It was shown in
[11] that the choice of t0 has no practical impact on the
subsequent model, thus, it is assumed t0 = 0 for the remainder
of the analysis. A time-invariant discrete-time model can be
derived by noting that the DSP sample period, ts, is selected to
be five times the period of the carrier, i.e. tsω0 = 5. Successive
samples at the DSP sample rate can be related using (10)

δ((k + 1)ts) = Θ((k + 1)ts, kts)δ(kts)

+

∫ (k+1)ts

kts

Θ((k + 1)ts, τ)Bδ(τ)u(τ)dτ,
(11)

where k is the integer sample index. Because of the zero-
order hold implemented by the DAC, u(τ) can be replaced by
u(kts) in the integral. Thus, the time-invariant discrete-time
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is shown with and without the feedthrough. The feedthrough in the ζk/ul,
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model from the perspective of the DSP that implements the
controllers is

δ[k + 1] = Φδ[k] + Γu[k]
ζ[k] = Cδδ[k],

(12)

where

Φ := Θ(ts, 0), Γ :=
∫ ts

0
Θ(ts, τ)Bδ(τ)dτ. (13)

and where the notation δ[k] has replaced δ(kts) and so forth.
This analysis yields the four-input/six-output system de-

noted P. The frequency response of (12) is shown in Fig. 5.
A notable feature of the model is presence of three unstable
eigenvalues with continuous-time values equal to 6.4 rad/s and
7.0 rad/s, the latter eigenvalue having algebraic and geometric
multiplicity two. It will be shown that these eigenvalues can
be associated with disk’s vertical translation (6.4 rad/s) and
its two “tilt” degrees of freedom (the repeated eigenvalue
7.0 rad/s). There are also two pairs of stable lightly-damped
eigenvalues that correspond to two resonant modes with
natural frequencies near 0.2 Hz. Due to the symmetry of
the disk and identical transformer models, a permutation of
indices will produce the plant response to the other inputs, e.g.,
ζ2/u2 = ζ1/u1. Also of interest is the presence of “feedthrough”
coupling in ζ1/u1 and the other “diagonal” channels. This
coupling is caused by using each primary electrode for
actuation and sensing (see the relation of vs,k and vc,k in
Fig. 3). The coupling must be reduced to practically stabilize
the disk and in practice a MIMO FIR filter is identified from
measurements and is used as a feedforward filter.

V. Controller design

A loop shaping design technique based on decoupling
transformations is used to stabilize the system. Additional
synthesis approaches will be addressed in future papers. The
new input-output variables are more directly related to the
disk’s rigid body motion. The new input and output variables
are defined {uz, uϕ, uθ} and {vz, vϕ, vθ, vx, vy}, respectively, and
are related to the original input-output variables according to
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Fig. 6 where the matrices M and N are defined,

M =
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The new output variable vz can be interpreted as the average
gap between the disk and electrodes. Similarly, since vϕ
is proportional to the difference between ζ1 and ζ3, it is
related to an angle. From the input perspective, a moment
is applied about the X coordinate axis when uθ , 0, and,
similarly, a moment is applied about the Y coordinate axis
when uϕ , 0. A vertical electrostatic force is applied to the
disk with uz. Feedthrough compensation can be performed
using the original input-output variables, however, it is more
convenient to remove the feedthrough after the input-output
transformations as illustrated in Fig. 6. This approach is
adopted in the experiments.

The system P̃ = MPN −Hfwd is used for controller design.
It is referred to as the “decoupled” plant because the transfer
function has only non-zero entries in the (1, 1), (2, 2), (3, 3),
(4, 2) and (5, 3) elements. Note that the (1, 1) element is
referred to as vz/uz, the (2, 2) element as vϕ/uϕ, and so
forth. The frequency response magnitudes of the non-zero
elements of P̃ are shown in Fig. 7. Also shown are the
perturbation variables {δz, δϕ, δθ, δx, δy} associated with the
disk’s kinematic variables. The perturbation variables are not
directly assessable in the physical system, however, they can
be extracted from the model and compared to the electrical
measurements {vz, vϕ, vθ, vx, vz}. It is evident from Fig. 7 that
the electrical measurements are excellent proxies for the disk’s
kinematic variables. This justifies the choice of subscript for
the electrical measurements. The scale factors associated
with the electrical measurements can be extracted from these
graphs by comparing the magnitude of vz/uz to that of δz/uz

and so on. The scale factors are estimated to be: 1.03 mrad/V
for θ and ϕ; 16.5 µm/V for z; 2.87 mm/V for x and y.

The controller topology is shown in Fig. 8. The SISO
controllers, denoted Gz, Gϕ and Gθ, are separately designed
for vz/uz, vϕ/uϕ, and vθ/uθ. These controllers stabilize the
closed-loop system. The disk’s lateral position is regulated
by using the lateral position error as the references (rϕ, rθ)
for the tilt degrees-of-freedom controllers. Thus, the lateral
position of the disk is controlled by tilting the disk.

The vz/uz transfer function has only one unstable pole
at 6.4 rad/s –this pole is referred to as the “z-instability”
of the disk. The magnitude of vz/uz exhibits a low-pass
characteristic whose corner frequency corresponds to this
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Fig. 7. Frequency response of P̃ compared to the frequency response of
the disk’s kinematic perturbation variables {δz, δϕ, δθ, δx, δy}.
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Fig. 8. Closed-loop block diagram.

unstable pole. It is a simple matter to stabilize the z-instability
using constant gain feedback, however, due to uncertainty
in the feedthrough cancellation at higher frequencies in the
actual system, the controller gain is rolled off after 100 Hz.
Thus, the (continuous-time) transfer function of the z-DOF
controller, denoted Gz, is

Gz = 4
200π

s + 200π
. (14)

The loop gain Nyquist plots are shown in Fig. 9.
The tilt transfer function vϕ/uϕ only has one unstable pole

at 7.0 rad/s. This pole is referred to as a “tilt-instability.”
A companion tilt-instability appears in vθ/uθ. Thus, the tilt
instabilities associated with the double eigenvalue at 7.0 rad/s
are present in vϕ/uϕ and vθ/uθ, but only as a single unstable
pole in each of these transfer functions. Other notable features
of the tilt transfer functions are the double zeros at the origin.
This creates the ω2 trend at low frequencies in Fig. 7 and
implies that the disk angles must be zero when the disk is at
equilibrium.

Stabilizing the tilt degrees of freedom is an interesting
problem because vϕ/uϕ (and, hence, vθ/uθ) is not strongly
stabilizable. This can be illustrated by analyzing the parity
interlacing property of the poles and zeros and also by analysis
of the Nyquist plot. The following controller is implemented
for vϕ/uϕ,

Gϕ =
14π

s + 14π
s2 + 0.2ωns + ω2

n

s2 + 2ωns + ω2
n

s + 3
s − 3

, ωn = 0.4π, (15)

where the unstable pole is located at 3 rad/s. The Nyquist
plot of loop gain is shown in Fig. 9. An identical controller
is used to stabilize the unstable pole in vθ/uθ associated with
the second tilt-instability (Gθ = Gϕ).

Analysis of the plant model with the controllers (14)
and (15) demonstrates that the closed-loop system is asymp-
totically stable. Further analysis reveals that the lateral
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controllers can be selected as simple gains in order to regulate
the disk’s lateral position,

Gx = 1, Gy = −1. (16)

VI. Experimental results

The controllers are discretized and implemented as given
in (14)–(16). Only minor adjustments to the gains {Kz,Kϕ,Kθ}
are performed. The disk is demonstrated to be stably sus-
pended by introducing pulse disturbances into the closed-loop
system at the input of P̃. The pulse is sequentially summed
in with the controller outputs in order to perturb uz, uϕ and
uθ. The results of this experiment are shown in Fig. 10. The
disk returns to its equilibrium position (0 V represents the
equilibrium configuration of the disk because measurement
offsets have been removed).

The physical plant exhibits cross-channel coupling that
does not exist in the model, however, this is not surprising
because small differences in the transduction gains associated
with the primary electrode pairs and their transformers will

destroy the symmetry in the model so that the decoupling
transformations M and N actually mix all of the measurements
related to the disk’s kinematic variables.

The scale factors that have been estimated from the model
have not been independently verified, however, vibrometer
measurements of the beam system described in [11], which
uses a transduction scheme that is identical to the present
work, shows that the model-based scale factor deviates less
than 10% from the measurement-based scale factor so similar
accuracy is expected in this work.

VII. Conclusion

Electrostatic suspension of an untethered and contact-
free platform –a thin silicon disk– has been demonstrated,
however, there are host of interesting system and controls
issues that can be addressed including: efficient testing and
identification techniques to extract (unstable) models from test
data; systematic uncertainty modeling and robust controller
synthesis for improving the stability margins; synthesizing
stable controllers (the plant has no real, unstable blocking
zeros so there are no structural impediments to accomplishing
this). There are also a number of issues associated with the
design of the system including: signal processing techniques
to eliminate the feedthrough coupling and therefore obviate
the need for the feedforward filters; design of the electrode
layout for improved control authority. These topics will be
addressed in future papers.
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